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Abstract

Background: While the health effects of air pollution and temperature are widely studied, 

the molecular effects are poorly understood. Extracellular microRNAs (ex-miRNAs) have the 

potential to serve as diagnostic or prognostic biomarkers and/or to act as intercellular signaling 

molecules that mediate the effects of environmental exposures on health outcomes.
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Methods: We examined the relationship between short-term exposure to air pollution and 

ambient temperature and the ex-miRNA profiles of participants in the Normative Aging Study 

(NAS) from 1999 to 2015. Our exposures were defined as same-day, two-day, three-day, one-

week, two-week, and three-week moving averages of PM2.5, NO2, O3, and temperature which 

were derived from high-resolution spatio-temporal models. The ex-miRNA profiles of the subjects 

were obtained during follow-up visits. We analyzed the data using a longitudinal quantile 

regression model adjusted for individual covariates, batch effects, and time trends. We adjusted 

for multiple comparisons using a false discovery rate (FDR) correction. Ex-miRNAs that were 

significantly associated with exposures were further investigated using pathway analyses.

Results: We found that all the examined exposures were associated with changes in ex-miRNA 

profiles in our study, particularly PM2.5 which was responsible for most of the statistically 

significant results. We found 110 statistically significant exposure-outcome relationships that 

revealed associations with the levels of 52 unique ex-miRNAs. Pathway analyses showed these ex-

miRNAs have been linked to target mRNAs, genes, and biological mechanisms that could affect 

virtually every organ system, and as such may be linked to multiple clinical disease presentations 

such as cardiovascular disease, respiratory disease, and neurological disease.

Conclusions: Air pollution and temperature exposures were significantly associated with 

alterations in the ex-miRNA profiles of NAS subjects with possible biological consequences.
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1. Introduction

Studies have linked air pollution and temperature to numerous health outcomes including 

cardiovascular, respiratory, neurological, and endocrine diseases as well as mortality(Danesh 

Yazdi et al., 2022, 2021; Di et al., 2017; Dockery et al., 1993; Eze et al., 2015; Klompmaker 

et al., 2021; Ma et al., 2022; Schinasi et al., 2018; Shi et al., 2020; Wei et al., 2022). The 

main mechanisms hypothesized to link air pollution and these outcomes are inflammation 

and oxidative stress(Hajat et al., 2015; Ostro et al., 2014; van Eeden et al., 2005; Viehmann 

et al., 2015; Zhao et al., 2013). However, there is very limited information on the specific 

molecular mechanisms that mediate these effects.

One of the ways in which environmental exposures may exert their biological effects 

is through epigenetic changes, such as alterations in individuals’ microRNA (miRNA) 

profiles. MiRNAs are short non-coding sequences of RNA, usually about 22 nucleotides 

in length, that have been shown to play an important role in regulating gene expression, 

primarily through their role in altering messenger RNA (mRNA) stability and/or 

translation(Chekulaeva and Filipowicz, 2009; Eulalio et al., 2008; van Rooij, 2011). It stands 

to reason that any exposure that might change the body’s normal regulatory mechanisms 

for gene expression could have downstream effects that may even lead to clinical disease 

presentation. Extracellular miRNA (ex-miRNA), particularly those found in extracellular 

vesicles (EV-miRNA), are of special interest as they can be used as mechanisms for 

intercellular communication and biomarkers of illness(Andres et al., 2020; Mori et al., 
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2019). They are also stable and can be extracted in a non-invasive manner(Mitchell et al., 

2008; Mori et al., 2019). As such, they have great potential for use in health outcomes 

research.

Recent studies have begun to look at the relationship between air pollution and ex-miRNAs 

more extensively(Chen et al., 2020, 2022; Eckhardt et al., 2022a; Ferrari et al., 2022; 

Pavanello et al., 2016; Pergoli et al., 2017; Rodosthenous et al., 2016, 2018; Wang 

et al., 2022). A study among steel workers in Northern Italy found EV miR-302b, 

miR-300c, and miR-30d to be associated with long-term exposure to particulate matter 

and particulate matter metals. These EV-miRNAs were also associated with biomarkers 

of inflammation and coagulation(Pavanello et al., 2016). A previous study found changes 

in levels of EV miR-150 and miR-155 among patients with coronary artery disease 

after short-term exposure to ambient ozone(Chen et al., 2020). A pilot study conducted 

among the participants of the Normative Aging Study found changes in several EV-

miRNAs in response to long-term exposure to PM2.5 which were linked to pathways 

leading to cardiovascular disease (CVD) such as oxidative stress, inflammation, and 

atherosclerosis(Rodosthenous et al., 2016). Another study in the same population showed 

effect measure modification of the effect of long-term PM2.5 on systolic blood pressure by 

EV miR-199a/b and miR-223-3p(Rodosthenous et al., 2018). However, the results of these 

studies have not always been consistent, and typically, only a few miRNAs are studied at 

a time with relatively few subjects(Chen et al., 2020; Pavanello et al., 2016; Rodosthenous 

et al., 2018, 2016). Furthermore, while temperature is reported as a covariate in some of 

these studies, none report the effects as an exposure of interest. As such, there is a great 

need for further research in this area, particularly in terms of epidemiological studies using 

ex-miRNAs, and particularly for short-term exposure studies which are quite sparse.

In this study, we used data from participants in the Normative Aging Study (NAS) to look 

at the relationship between short-term exposure to air pollution and ambient temperature and 

changes in the ex-miRNA profiles of NAS subjects from 1999 to 2015. We then used the 

ex-miRNAs with expression levels that changed significantly over time to identify relevant 

biological pathways and clinical diseases, particularly cardiovascular disease, respiratory 

disease, and neurological disease, as these have been studied more extensively in air 

pollution epidemiology.

2. Material and Methods

2.1 Study Population

Our study population drew from the cohort of men enrolled in the NAS. The details of this 

population have been published elsewhere(Bell et al., 1966). Briefly, this cohort, established 

in 1963, consisted of men who used the services of the US Department of Veterans Affairs 

(VA), lived in the Greater Boston Area, and did not have any chronic conditions. Participants 

were followed up every three to five years, during which they underwent a number of 

exams and answered certain questionnaires. The participants in this study included all NAS 

members who lived in the contiguous United States and whose plasma samples collected 

between 1999 and 2015 were used to sequence their plasma extracellular miRNA.
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The VA Boston Health Care System and Harvard TH Chan School of Public Health 

Institutional Review Boards approved this study. All participants provided written consent 

for inclusion in the cohort.

2.2 Exposure Assessment

Our exposures of interest included short-term exposure to the following: fine particulate 

matter (PM2.5), nitrogen dioxide (NO2), ozone (O3), and mean daily temperature (measured 

in Kelvin, K).

PM2.5, NO2, and O3 were estimated from ensemble models that used predictions from three 

machine learning algorithms: a random forest (RF), a gradient boosting machine (GBM), 

and a neural network (NN) in a geographically weighted generalized additive model (GAM)

(Di et al., 2019a, 2019b; Requia et al., 2020). For each pollutant, predictors were extracted 

from satellite data, land-use data, meteorological data, and chemical transport models and 

used as input for the machine learning algorithms. The predictions generated by the machine 

learning algorithms and the ensemble model were validated against measured values from 

held out monitors using ten-fold cross validation. All three pollutants demonstrated strong 

R2 values of 0.86, 0.79, and 0.91 for PM2.5, NO2, and O3, respectively. The models 

estimated daily pollutant levels on a 1 km x 1 km scale from 2000 to 2016 across the 

contiguous United States(Di et al., 2019a, 2019b; Requia et al., 2020).

For observations prior to 2000, when modeled air pollution data was not available, we used 

measured values at the Countway Library Supersite to assign air pollution values. First, 

we regressed modeled pollution levels against Countway air pollution measurements and 

gridMET temperature data for all the days in the year 2000 (where we have both values) 

for each individual in the dataset. Then, we extracted those coefficients and used measured 

values in 1999 from Countway to predict the pollution levels for each individual with visits 

in 1999. If data was not collected from Countway for any reason, that day and any moving 

average including that day was considered to be missing.

Maximum and minimum daily temperature K  were obtained from the gridMET dataset 

(Abatzoglou, 2013). This dataset contains predicted levels of meteorological parameters on 

a 4 km x 4 km scale from 1999 to 2015. The value for maximum and minimum daily 

temperature were averaged to obtain the daily mean.

Exposure levels were assigned based on levels at the closest grid-cell centroid to the 

residential address for both air pollution and temperature exposures.

We calculated several short-term levels for all exposures: same-day exposure, two-, and 

three- day, one-, two-, and three-week moving averages.

2.3 Outcome Measurement

We obtained blood samples from consenting cohort participants during normal follow-

up visits. These blood samples were centrifuged and processed to obtain the plasma. 

Extracellular RNA was isolated from these plasma samples using the procedure described 

in Gandhi et al(Gandhi et al., 2017) and sequenced according to a procedure described 

Yazdi et al. Page 4

Environ Int. Author manuscript; available in PMC 2024 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



previously by Srinivasan et al (Srinivasan et al., 2019). The exRNA extraction was 

performed using the Norgen Plasma/Serum Circulating and Exosomal RNA Purification 

Kits (Slurry Format). The small RNAseq libraries were made using the NEBNext® Small 

RNA Library Prep Set for Illumina® (Multiplex Compatible). Sequencing was performed 

on a HiSeq2500. FASTQ sequencing data were mapped using the ExceRpt small RNA 

sequencing data analysis pipeline on the Genboree Workbench (http://genboree.org/site/

exrna_toolset/). Mapping parameters specified a minimum read length of 15 nucleotides 

and 0 mismatches allowed, with the rest on default. Samples that had fewer than 10,000 

total input reads n = 64  or low miRNA mapping (<100,000 mapped miRNA reads, n = 18) 

were dropped during quality control. Further details are available in Eckhardt, et al, 

2022(Eckhardt et al., 2022b). MiRNAs were reported as read counts per million. Reads 

that were not aligned to a single unique miRNA due to sequence similarities were collapsed 

into a single category that represented multiple miRNAs. Values for individuals who had 

multiple samples on the same visit day were calculated as the average of the samples. We 

included miRNAs in our analysis that were detectable in at least 40% of our samples. This 

resulted in 1508 samples that passed quality control and processing (and were within the 

study’s geographic limits and follow-up times) and 567 ex-miRNAs that were used in the 

analyses.

2.4 Covariate Measurement

We included age, body mass index (BMI), highest educational attainment (maximum years), 

drinking habits (at least two drinks a day: yes or no), smoking habits (current/former 

smoker: yes or no), pack-years of smoking, diabetes status (physician diagnosed: yes or 

no), and batch effects (batch pool) as covariates. This information was obtained from 

questionnaires and physical assessments done during study visits. We also accounted for 

long-term trends by adding a term which counted the number of days since January 

1st, 1995. This date was chosen to pre-date the beginning of the study. We adjusted for 

seasonality by including sine and cosine functions for day of year.

2.5 Statistical Analysis

Ex-miRNA measurements were generally not normally distributed, and we were interested 

in how exposures might influence the lower and upper ends of the distribution of ex-miRNA 

levels as well as the middle. Quantile regression also makes no distributional assumption 

about the outcome. Therefore, we used a longitudinal quantile regression model to estimate 

the change in ex-miRNA level in response to air pollution and temperature. This model 

included fixed effects for the exposures and the covariates and an approximation of a 

random intercept for each individual. For each ex-miRNA, we looked at the following 

quantiles as outcomes: 10th percentile, 25th percentile, 50th percentile, 75th percentile, and 

90th percentile. We ran separate models for each quantile, exposure duration, and ex-miRNA 

outcome. The model was as follows:

E(Qij) = β0 + β1Xij + β2Cij + δi + εij
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Where Qij is the quantile of interest for the ex-miRNA of interest in individual i in measure 

j, Xij is a vector of exposures, Cij is a vector of covariates, δi is a random intercept 

approximation by individual, and εij is the residual. The standard errors of the model 

were calculated using a bootstrapping approach with 1000 bootstraps. We corrected for 

multiple comparisons using a false discovery rate (FDR) procedure that accounted for the 

use of multiple ex-miRNAs as outcomes of interest. An exposure was considered to be 

significantly associated with an outcome if the adjusted p-value was less than 0.05.

Statistically significant ex-miRNAs were then linked to relevant biological pathways 

using a Kyoto Encyclopedia for Genes and Genomes (KEGG) Pathway Analysis run 

through the DIANA-miRPath web server(Vlachos et al., 2015). Significant pathways were 

identified using an FDR correction at a threshold p-value of 0.05. We also analyzed 

significant ex-miRNAs and their target mRNAs, genes, biological pathways, and diseases, 

particularly cardiovascular, respiratory, and neurological disorders using QIAGEN Ingenuity 

Pathway Analysis microRNA Target Filter(QIAGEN Inc., https://digitalinsights.qiagen.com/

IPA)(Krämer et al., 2014).

We also conducted sensitivity analyses by running the raw count data through a Deseq 

procedure, which includes a normalization procedure and a negative binomial model, using 

a similar model specification to our main analyses but without the random intercept as 

that functionality is not supported(Love et al., 2014). Given the longitudinal nature of the 

majority of our data, this may lead to wider confidence intervals and larger p-values.

All data cleaning and analyses were done in R version 3.6.3. The “rqpd” package was used 

to conduct the regression analysis(Koenker and Bache, 2014) and “DESeq2” was used to 

conduct the Deseq procedure(Love et al., 2014).

3. Results

3.1 Baseline Characteristics of Study Population

Our study population used for analysis consisted of 734 individuals with 1508 measurements 

from 1999 to 2015. The vast majority were white, and the average age was 72.7 years at 

baseline. At their baseline visit, most participants did not have physician-diagnosed diabetes, 

were current or former smokers, and did not drink at least two alcohol drinks each day. On 

average, our population had 15 years of education and a BMI of 28.2 (kg/m2). Over sixty 

percent of participants had two or more samples analyzed (Table 1). Fourteen observations 

were dropped from the analyses due to missing covariate data. The number of observations 

missing exposure data can be found in Table S1.

3.2 Exposure Distribution

Our exposures of interest included three air pollutants: PM2.5, NO2, and O3, as well as 

average daily ambient temperature. The distribution of these variables can be seen in Table 

2. The median level for the pollutants was 8.11 μg/m3 for PM2.5, 23.97 parts per billion 

(ppb) for NO2, and 42.18 ppb for O3. These represent fairly low levels of exposure and 

reflect the reduction in air pollution levels that has occurred over time in the United States. 

The distribution of temperature reflects the seasonality that is observed in the New England 
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area. The correlation between same-day exposures can be seen in Table 3. There were 

moderate positive correlations between exposures except between NO2 and O3 which had a 

smaller negative relationship.

3.3 Regression Results

There were a total of 145 significant results, reflecting 110 relationships between our 

exposures of interest and outcomes over various exposure time windows (Table S1). Of 

these, 71 were associated with exposure to PM2.5, 19 were due to daily temperature, 10 were 

attributed to O3, and 10 significant relationships were found with NO2. In our analysis, 34 

ex-miRNAs were up-regulated due to exposure and 76 were down-regulated. These results 

identified associations with 52unique ex-miRNAs. PM2.5 affected the expression profile of 

41 unique ex-miRNAs while the non-PM exposures affected17 unique ex-miRNAs.

Figure 1A shows the number of unique ex-miRNAs that were found to be significantly 

associated with each pollutant and exposure time window. The greatest number of 

significant relationships was found for exposure to the 2-day, 3-day and 3-week moving 

averages of PM2.5. For average daily temperature, most of the significant results came 

from exposures of 3-days or longer, suggesting that longer-term trends in temperature may 

be important in changes in individual ex-miRNA profiles. Our other exposures and time 

windows accounted for a smaller portion of the significant results. The significant effects 

seen with exposure to PM2.5 tended to focus on higher quantiles of the outcome while those 

for ozone tended to be found in the lower quantiles of the outcome. Mean temperature 

and NO2 were associated mostly with lower and upper quartiles of ex-miRNAs but not the 

median (Figure 1B).

Figure 2 shows the significant associations between our exposures of interest and ex-

miRNAs by time window for those relationships that were significant in at least two 

quantiles of the outcome. The nine ex-miRNAs identified were miR-1228-5p, miR-1323, 

miR-140-3p, miR-19b-3p, miR-2115-3p, miR-296-3p, miR-3127-3p, miR-6772-3p, and 

miR-93-3p. Of these nine, changes in levels of miR-2115-3p and miR-3127-3p were 

associated with all of our exposures of interest in at least two quantiles of the outcome. 

Figure 3 shows the direction and magnitude of the significant associations between these ex-

miRNAs and all of the exposures of interest. In most but not all of these ex-miRNAs, PM2.5, 

O3, and NO2 were associated with a down-regulation and increased mean temperature was 

associated with an up-regulation of ex-miRNA levels.

3.4 Pathway Analysis

KEGG Pathway Analysis showed that most of the ex-miRNAs we found to have 

significantly changed in relation with exposure to air pollution and temperature were 

associated with genes that affected biological pathways primarily associated with the 

development of a variety of cancers, infectious disease, but also related to inflammation 

and other major types of adverse outcomes as they affect fundamental cell functions and 

communication. The full results can be seen in Tables S3–S8. Table 4 lists the significant 

KEGG pathways that were relevant based on the ex-miRNAs found to be associated with air 

pollution and ambient temperature. Two of the pathways, “fatty acid biosynthesis” and “fatty 
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acid metabolism”, were found to be significantly associated with ex-miRNAs associated 

with exposure in every time window we studied.

3.5 Ingenuity Pathway Analysis

We used Ingenuity Pathway Analysis (IPA) microRNA Target Filter to find relationships 

between individual significantly affected ex-miRNAs and relevant mRNAs, genes, 

pathways, and clinical diseases. The table of full results from the IPA is available in Table 

S9. From our full list of significant ex-miRNAs, 17 could be linked to 496 unique mRNAs 

in relationships that had been experimentally validated. The ex-miRNAs we found to be 

significantly associated with short-term exposure to air pollution and ambient temperature 

were linked through their predicted mRNA targets with a host of pathways, which in 

turn are associated with numerous adverse health outcomes, such as cancer, cardiovascular 

disease, endocrine disorders, dermatological disease, respiratory disease, auditory disease, 

connective tissue disease, and neurological disease.

Of the previous nine ex-miRNAs mentioned which were significantly associated with at 

least one exposure and one time window in two quantiles, four, miR-140-3p, miR-296-3p, 

miR-93-3p, miR-19b-3p, were identified in the IPA with several mRNA targets which could 

then be linked to numerous disease states, including but not limited to those that can be seen 

in Figure 4.

3.6 Sensitivity Analysis

We also ran a Deseq analysis for each exposure time window as a sensitivity analysis. 

The full results can be found in Table S10. Deseq analysis revealed 103 significant 

exposure-outcome associations with 70 unique ex-miRNAs. Most of these significant 

associations were between ozone and the ex-miRNA and occurred during the three-week 

moving average exposure time window. There were ten ex-miRNAs that were significant 

both in the main analyses and in the Deseq analysis, namely: miR-145-5p, miR140-3p, 

miR-127-3p, miR-16-5p, miR-19b-3p, miR-15b-5p, miR-15a-5p, miR-181a-3p, miR-93-5p, 

and miR-17-5p. For four of these, miR-140-3p, miR-17-5p, miR-181a-3p, and miR-93-5p, 

the associations were with the same exposure. In each of those cases, the direction of 

association was consistent across both analyses, even when they were significant in different 

time windows.

4. Discussion

In this study, we identified relationships between short-term exposure to air pollution and 

temperature and repeated measures of ex-miRNA expression among participants of the 

Normative Aging Study between 1999 and 2015 using a longitudinal quantile regression 

approach. We looked at changes among hundreds of sequenced ex-miRNAs. We found a 

number of significant relationships, mostly from exposure to fine particulate matter (PM2.5) 

after adjusting for other pollutants and covariates. Future research could explore longer-term 

moving averages of air pollutants and temperature. Both KEGG analysis and IPA showed 

that the ex-miRNAs found to be significantly associated with air pollution were involved in a 

variety of pathways and could have broad system-level effects including pathways involving 

Yazdi et al. Page 8

Environ Int. Author manuscript; available in PMC 2024 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cancer, cell communication, and cell cycle changes. In addition, we found that PM2.5 tended 

to have a greater effect on the 75th and 90th percentile of the ex-miRNA levels than on the 

median level, suggesting that the impact on health may be underestimated by focusing on 

mean or median changes. Mean ambient temperature, O3, and NO2, on the other hand, had 

the most significant relationships at the lower and upper quantiles of outcome.

This study adds to the growing literature looking at the relationship between environmental 

air pollution and ex-miRNA profiles. A pilot study of EV-associated miRNAs in 

this population found only miR-30d-5p to be significantly associated with short-term 

exposure to PM2.5, which we did not find to be significantly altered in our study; 

however, the sample size in the pilot was much smaller, a different ex-miRNA extraction 

method (Qiagen miRNeasy®) was used, and a different miRNA measurement method 

(NanoString nCounter®) was used (Rodosthenous et al., 2016). A study among coronary 

artery disease patients looking at short-term exposure to PM2.5 and O3 and EV-miRNA 

in plasma found significant effects only for exposure to O3 and EV miR-150 and 

miR-155, both of which were up-regulated with no significant effect on EV-miR-21, 

miR-126, and miR-146(Chen et al., 2020). We did not find significant effects for 

miR-150 or miR-155. However, we did find down-regulation for ex-miR-21-3p and ex-

miR-146a-5p in response to PM2.5 exposure, which is consistent with this study, though 

it was statistically non-significant. In a study conducted among the participants of the 

Susceptibility to Particle Health Effects, miRNAs and Exosomes (SPHERE) cohort, PM10 

was found to be associated with downregulation of plasma EV-miRNAs: miR-218-5p, 

miR-99b-5p, let-7c-5p, miR-331-3p, miR-185-5p, miR-642-5p, miR-106a-5p, miR-143-3p, 

and miR-652-3p. They also found that five of these EV-miRNAs (let-7c-5p, miR-331-3p, 

miR-185-5p, miR106a-5p, and miR-652-3p) significantly mediated the relationship between 

PM10 exposure and fibrinogen levels, which plays a role in coagulation(Pergoli et al., 

2017). We did not find significant effects between air pollution and miR-106a-5p, 

miR-185-5p, miR-143-3p, miR-218-5p, miR-331-3p, or miR-99b-5p and we found let-7c-5p 

to be upregulated in response to PM2.5 exposure. We did, however, find significant 

downregulation of miR-652-3p associated with exposure to PM2.5. A study conducted 

among steel plant workers in northern Italy looking at short-term exposures to metal-

rich particulate matter found significant upregulation for plasma microvesicle miRNAs 

miR-128 and miR-302c(Bollati et al., 2015). We did not find a significant relationship 

between air pollution and miR-128. In an experimental crossover study conducted 

in England comparing short-term exposure to traffic-related air pollution (TRAP) and 

plasma circulating miRNA, multiple miRNAs were found to be associated with higher 

exposure to pollution: miR-133a-3p, miR-193b-3p, miR-1224-5p, miR-433-3p, miR-145-5p, 

miR-27a-5p, miR-580-3p, miR-3127-5p, and miR-6716-3p(Krauskopf et al., 2018). We 

did not find a significant relationship with miR-133a-3p, miR-1224-5p, miR-433-3p, 

miR-27a-5p, and any air pollutants. We did find a significant relationship between 

PM2.5 and miR-145-5p and in both studies the level of miR-145-5p was downregulated. 

miR-3127-5p was also significantly upregulated in both studies. Furthermore, we found 

several common KEGG pathways including those relating to cancer, cellular processes, 

and signal transduction(Krauskopf et al., 2018). A similar study also looking at TRAP, 

this time in Barcelona, among a selection of the participants in the TAPAS II cohort, 
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found circulating miR-28-3p, miR-222-3p, miR-146-5p, miR-30b-5p/30c-5p, miR-320a-3p/

320b/320c/320d/320e to be positively associated with increased pollution and miR-532-5p, 

miR-192-5p/215-5p, miR-144-3p, and miR-425-5p to be negatively correlated with 

increased pollution(Krauskopf et al., 2019). We did not find significant associations 

with miR-28-3p, miR-222-3p, miR-30b-5p, miR-30c-5p, miR-320a, miR-320b,miR-320c, 

miR-320d, miR-320e, miR-532-5p, miR-192-5p, miR-215-5p, andmiR-144-3p. We did 

find that exposure to PM2.5 was associated with a downregulation of miR-146a-5p and 

miR-425-5p.

Theiologyical pathways we found in the KEGG analysis have been linked to numerous 

health conditions. Several specifically impacted a variety of cancers and infectious diseases. 

Others could be linked to the functions of multiple organ systems. The Hippo signaling 

pathway is involved in cardiac development, cardiomyocyte hypertrophy and apoptosis, 

cardiomyocyte autophagy, heart regeneration, and angiogenesis(Zhou and Zhao, 2018). It 

has also been linked to gliomas(Masliantsev et al., 2021), Huntington’s Disease (Mueller 

et al., 2018), and neurodegeneration(Sahu and Mondal, 2020). It is also thought to be 

important in the development of idiopathic pulmonary fibrosis(Gokey et al., 2018; Sun et 

al., 2021). Fatty acid metabolism influences neuroinflammation(Bogie et al., 2020) and 

cardiac pathology(Lopaschuk et al., 2010). Protein misfolding in the endoplasmic reticulum 

has been linked to neurodegenerative conditions and inflammation(Wang and Kaufman, 

2016). FoxO signaling pathways may play a role in ischemic heart disease, diabetic 

cardiomyopathy, and myocardial hypertrophy(Xin et al., 2017). Lysine degradation has been 

associated with type 2 diabetes(Razquin et al., 2019). These pathways are fundamental and 

often have affects at a cellular level.

Our study had some limitations. The cohort studied was fairly homogenous; all subjects 

were male and almost all were white. This limits the generalizability of the results. However, 

as a cohort of elderly individuals, they are at particular risk of the adverse effects of air 

pollution and temperature. It also eases comparability of results within the group in terms 

of their ex-miRNA profiles. While we did have a larger sample size than most previous 

literature in this area, it might still be possible that we did not have enough power to detect 

the effects of our exposures for some of the ex-miRNAs we studied. We were also not able 

to assess all of our sequenced ex-miRNAs as they were found to be non-detectable in a 

large portion of the samples. This limits our ability to look at the full range of ex-miRNAs. 

A larger sample size would resolve this problem. We also did not assess hemolysis as 

part of our processing procedure. Moreover, our model assumed no residual or unmeasured 

confounding, which cannot be verified. Our study has also several strengths. We used 

ex-miRNAs as our outcome of interest which could serve as biomarkers of disease(Eckhardt 

et al., 2022b). We used high-resolution spatiotemporal models to assign exposure and looked 

at ambient temperature as an exposure of interest, which has not been done in previous 

epidemiological studies looking at extracellular miRNA. We used a long-established cohort 

with extensive follow-up. We had a rich history on the participants and were able to use 

follow-up visits for those with multiple samples to provide time-varying confounders. 

We could also account for the longitudinal nature of the data by using a method which 

approximated a random intercept. Our quantile regression accounted for the potential non-

normal distribution of the residuals and allowed us to look at multiple quantiles. Quantile 
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regression is also robust to outliers and makes no distributional assumption about the ex-

miRNAs. Finally, we also used multiple databases to identify relevant miRNA-mRNA-gene 

interactions and biological pathways/diseases.

5. Conclusions

Short-term exposure to air pollution and temperature were associated with alterations in 

the ex-miRNA profiles of elderly men in the Normative Aging Study. The ex-miRNAs 

identified were associated with mRNAs and genes which are involved in pathways that 

affect numerous health outcomes. The results of this study add to the literature which look at 

the molecular effects of exposure to environmental factors such as air pollution and ambient 

temperature.
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Figure 1. 
The number of unique miRNAs that were significantly altered after exposure to air 

pollutants and ambient temperature in each (A) time window and (B) quantile
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Figure 2. 
Significant associations between exposure and ex-miRNAs by exposure time window which 

were significant in at least two quantiles
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Figure 3. 
Significant changes in outcome quantile levels in response to exposures among ex-miRNAs 

which had at least two significant associations for the same exposure and in the same time 

window
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Figure 4. 
IPA microRNA Target Filter Results for select ex-miRNAs
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Table 1.

Demographic Characteristics for Study Population at Baseline (1999–2015)

N=734 Individuals

Variable N(%) or Mean (SD)

Age (years) 72.7 (6.9)

Race White 713 (97.1%)

Black 14 (1.9%)

Hispanic White 5 (0.7%)

Hispanic Black 1(0.1%)

Diabetes Yes 102 (13.9%)

No 632 (86.1%)

Alcohol Consumption (≥2/Day) Yes 136 (18.5%)

No 598 (81.5%)

Ever Smoker No 224 (30.5%)

Yes 504 (68.7%)

Smoking pack-years 21.3(26.6)

Education (years) 15.0 (2.9)

Body Mass Index (kg/m 2 ) 28.2 (4.1)

Number of Samples 1 274 (37.3%)

2 206 (28.1%)

3 196 (26.7%)

4 56 (7.6%)

5 2 (0.3%)
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Table 2.

Same-Day Exposure Distribution

Variable
Minimum

10th 

Percentile
25th 

Percentile Mean Median
75th 

Percentile
90th

Percentile Maximum

PM25 (μg/m3) 0.27 3.84 5.40 9.65 8.11 11.93 17.46 56.34

NO2(ppb) −0.24* 9.16 15.41 25.10 23.97 34.03 42.07 76.22

O3(ppb) 4.41 16.68 23.99 33.96 31.65 42.18 53.76 94.30

Mean Daily 
Temperature (K) 257.90 273.05 278.89 285.66 286.20 292.90 297.12 305.70

*
Prediction models may occasionally result in negative exposure values.
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Table 3.

Same-Day Exposure Correlations

Exposures Mean Daily Temperature (K) NO2 (ppb) O3 (ppb) PM25 (μg/m3)

Mean Daily Temperature (K) 1 −0.29 0.49 0.19

NO2(ppb) −0.29 1 −0.19 0.34

O3(ppb) 0.49 −0.19 1 0.30

PM25(μg/m3) 0.19 0.34 0.30 1
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Table 4.

KEGG Pathways Associated with All Exposure Time Windows*

Fatty acid biosynthesis Hippo signaling pathway

Fatty acid metabolism Colorectal cancer

Prion diseases Prostate cancer

ECM-receptor interaction Pancreatic cancer

Proteoglycans in cancer Transcriptional misregulation in cancer

p53 signaling pathway Adherens junction

Hepatitis B Cell cycle

Pathways in cancer Oocyte meiosis

Glioma Protein processing in endoplasmic reticulum

Viral carcinogenesis Signaling pathways regulating pluripotency of stem cells

Steroid biosynthesis Arrhythmogenic right ventricular cardiomyopathy (ARVC)

Chronic myeloid leukemia RNA transport

mRNA surveillance pathway Epstein-Barr virus infection

Bladder cancer Melanoma

FoxO signaling pathway Small cell lung cancer

Thyroid hormone signaling pathway Ubiquitin mediated proteolysis

Focal adhesion Shigellosis

Lysine degradation RNA degradation

Bacterial invasion of epithelial cells MicroRNAs in cancer

Renal cell carcinoma Purine metabolism

TGF-beta signaling pathway Glutathione metabolism
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