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BACKGROUND: Exposure to traffic-related air pollution (TRAP) has been associated with increased risks of respiratory diseases, but the biological
mechanisms are not yet fully elucidated.

OBJECTIVES: Our aim was to evaluate the respiratory responses and explore potential biological mechanisms of TRAP exposure in a randomized
crossover trial.

METHODS: We conducted a randomized crossover trial in 56 healthy adults. Each participant was exposed to high- and low-TRAP exposure sessions
by walking in a park and down a road with high traffic volume for 4 h in random order. Respiratory symptoms and lung function, including forced ex-
piratory volume in the first second (FEV), forced vital capacity (FVC), the ratio of FEV| to FVC, and maximal mid-expiratory flow (MMEF), were
measured before and after each exposure session. Markers of 8-isoprostane, tumor necrosis factor-o. (TNF-a), and ezrin in exhaled breath condensate
(EBC), and surfactant proteins D (SP-D) in serum were also measured. We used linear mixed-effects models to estimate the associations, adjusted for
age, sex, body mass index, meteorological condition, and batch (only for biomarkers). Liquid chromatography—mass spectrometry was used to profile
the EBC metabolome. Untargeted metabolome-wide association study (MWAS) analysis and pathway enrichment analysis using mummichog were
performed to identify critical metabolomic features and pathways associated with TRAP exposure.

REsuLTS: Participants had two to three times higher exposure to traffic-related air pollutants except for fine particulate matter while walking along the
road compared with in the park. Compared with the low-TRAP exposure at the park, high-TRAP exposure at the road was associated with a higher
score of respiratory symptoms [2.615 (95% CI: 0.605, 4.626), p=1.2x1072] and relatively lower lung function indicators [—0.075 L (95% CI:
—0.138, —0.012), p=2.1x1072] for FEV; and —0.190 L/s (95% CI: —0.351, —0.029; p=2.4x 107>) for MMEF]. Exposure to TRAP was signifi-
cantly associated with changes in some, but not all, biomarkers, particularly with a 0.494-ng/mL (95% CI: 0.297, 0.691; p=9.5 x 107%) increase for
serum SP-D and a 0.123-ng/mL (95% CI: —0.208, —0.037; p=7.2x 10~) decrease for EBC ezrin. Untargeted MWAS analysis revealed that ele-
vated TRAP exposure was significantly associated with perturbations in 23 and 32 metabolic pathways under positive- and negative-ion modes,
respectively. These pathways were most related to inflammatory response, oxidative stress, and energy use metabolism.

ConcLusIONs: This study suggests that TRAP exposure might lead to lung function impairment and respiratory symptoms. Possible underlying mech-

anisms include lung epithelial injury, inflammation, oxidative stress, and energy metabolism disorders. https://doi.org/10.1289/EHP11139

Introduction

Respiratory disease is a major contributor to the global burden of
disease.! Ambient air pollution, especially, has been recognized
as an important risk factor for respiratory health.?= Traffic emis-
sion is the major sour ce of urban air pollution and exposure to
traffic-related air pollution (TRAP) has been associated with vari-
ous respiratory diseases worldwide.®® However, most existing
studies on air pollution and respiratory morbidity and mortality
have been observational and thus had limited ability to establish
a causal relationship between exposure and outcome.®'® Many
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studies have been conducted under controlled-exposure experi-
mental settings (e.g., by using exposure chambers to create
TRAP exposure contrast among the participants).!'~'* However,
most of these studies considered only one or two pollutants.
Meanwhile, in reality, TRAP is a mixture of air pollutants and
the main components include nitrogen oxides (NOy), carbon
monoxide (CO), fine and ultrafine particulate matter [PM
<2.5 pm in aerodynamic diameter (PM, 5) and UFP], and black
carbon (BC).">"'7 Two studies in London, UK, have examined
respiratory and cardiovascular responses to TRAP by compar-
ing participants’ health measures after walking down a busy
road and in a traffic-free area.'®'” However, their findings may
not be generalizable in other countries or regions owing to the
differences in vehicle fuel composition, levels of exposure, and
population characteristics.

The underlying mechanisms of respiratory effects caused by
TRAP have not been fully clarified. The metabolomics technique
has emerged as a powerful tool to detect molecular changes follow-
ing perturbations, such as environmental exposures, comprehen-
sively. However, few studies have fully applied this technique to
examine the molecular changes with TRAP exposure.2°~22 In addi-
tion, only one study has considered profiling metabolites in
exhaled breath condensate (EBC) samples to explore changes in
the respiratory system.2? Therefore, more evidence is warranted.

To address these knowledge gaps, we conducted a random-
ized, crossover study in Shanghai, China, to examine the associa-
tions of the respiratory effects associated with TRAP exposure
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and to explore the underlying mechanisms by analyzing the
metabolome in EBC.

Methods

Study Design and Participants

We initially recruited 69 healthy, nonsmoking college students
(>18 years of age) from the medical campus of Fudan University
in Shanghai, China. Students who had no history of self-reported
allergy or chronic cardiopulmonary diseases, who had lived on
campus for at least 1 y, who had no secondhand smoking exposure
in their main indoor environments (i.e., dormitory and office), and
who had not used any medication or dietary supplements in the
recent 2 months were eligible to enroll. We measured their height
and weight for calculating body mass index (BMI) and collected
their demographic and medical information through a question-
naire that included age, sex, smoking, history of disease (e.g.,
cardiorespiratory and allergic diseases, major surgeries), and
medication and dietary supplement use in the recent 2 months.
The questionnaire survey can be found in the Supplemental
Materials, “Basic Information Questionnaire.” In addition, we
conducted pulmonary function tests for all participants at enroll-
ment to screen for those with abnormal lung function or inability
in test performing. The pulmonary function test was conducted
according to the recommendation of the American Thoracic
Society/European Respiratory Society (ATS/ERS)?* using a
portable spirometer (Jaeger MasterscreenV5.01, CareFusion).
Six participants were then excluded because their lung function
test results were below the normal range [i.e., the forced expira-
tory volume in the first second (FEV)) to forced vital capacity
(FVC) ratio was <0.65 or the predicted FEV| was <75%] and
another 7 participants declined to participate. Eventually, 56 par-
ticipants were included in the trial.

Each participant was required to finish a high-and a low-
TRAP exposure session in random orders intermitted by no less
than a 14-d washout period between October and December 2019
(Figure S1). For the high-TRAP exposure session, participants
were assigned to walk on the sidewalk along North Caoxi Road,
which is located in urban Shanghai and has ~ 77,400 vehicles on
the road per day. For the low-exposure session, the participants
were led to walk in Century Park following a preassigned walk-
ing route 0.5-1.5 km away from traffic roadways.?> For feasibil-
ity, participants were divided randomly into 14 groups (1-3
persons per group) and each group was arranged to complete the
exposure sessions on different days. In each session, participants
were asked to walk at a steady pace for 15 min followed by a
30-min rest for 4 h (from 1300 to 1700 hours). To minimize noise
exposure, we provided earplugs during each walking session.

To minimize the differential exposure to TRAP prior to each
session, all the participants were asked to stay on campus for at
least 3 d before each session. To reduce the influence of other
potential confounders, all the participants were asked to provide
information that might cause short-term systemic inflammation,
including disease conditions, use of alcohol, medication and die-
tary supplements, and passive smoking, in the past 3 d prior to
each exposure session by questionnaire (Supplemental Materials,
“Information before each exposure session”). Only those who had
not taken medication, dietary supplements, consumed alcohol,
been exposed to secondhand smoke, or had symptoms of illness
within the past 3 d were allowed to participate in the upcoming ex-
posure session. To minimize possible impacts from the diet, we
also provided standardized meals and water to all participants on
the day of the exposure session.

The study protocol was registered at ClinicalTrials.gov
(NCTO04153539). The institutional review board of the School of
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Public Health, Fudan University, approved the study protocol
(IRB#2019-07-0768). All participants provided written informed
consent at enrollment.

Exposure Measures

During each exposure session, a trained staff member carried a
backpack equipped with portable devices to measure real-time air
pollution exposures. PM; s mass concentration was measured by
MicroPEM (RTI International), which is a portable one-stage
impactor equipped with an onboard micro-nephelometer. UFP
number concentration was measured by NanoTracer (XP; Oxility),
which records the number concentrations of particles with a size
between 20 nm and 120 nm every 10 s using the diffusion charging
method. BC concentration was measured using MicroAeth (AES1;
AethLabs), which detects the transmission of light at the 880-nm
wavelength through the active area of a filter (referred to as the
sensing channel) of aerosol collection. Nitrogen dioxide (NO,) and
CO were measured by dynamic baseline electrochemical sensors
based on electrochemical sensing and pair differential filter technol-
ogy, respectively (Sapiens PEK Lite Al; Sapiens Environmental
Technology Co. Ltd.).2® The meteorological variables, including
ambient temperature and relative humidity, were also collected
using a HOBO data logger (Onset Computer Corporation). The 4-h
average of pollutant concentrations for each exposure session was
calculated for the statistical analysis.

All devices were tested for comparability and calibrated for data
quality control. We conducted side-by-side tests on devices for each
air pollutant measurement under laboratory conditions to evaluate
the reproducibility within units in a scenario without any major
indoor pollutant sources. For each type of device, all the units were
placed on a table at the center of the lab (6 m X 5 m X 3 m) and set
to run for a continuous 24 h with a fixed data acquirement interval
(i.e., 5 min for NanoTracer, 1 min for MicroPEM, 5 min for
MicroAeth, and 1 min for Sapiens PEK Lite). We kept all the
windows and doors closed to minimize potential influence from
airflow disturbance. We conducted tests for comparability of
devices three times in total, that is, before the trial (September
2019), at the middle of the trial (November 2019), and at the end
of the trial (December 2019). To reduce the exposure misclassifi-
cation, two units showing the best interconsistency in the compa-
rability tests were used in the trial (Figures S2—-S4).

Health Measurements

Respiratory symptoms. We used a questionnaire adapted from the
Swedish Performance Evaluation System (SPES)?’ to measure the
degree of respiratory symptoms. This questionnaire requires par-
ticipants to use a scale of 05 to rate their self-perceived severity of
14 respiratory tract symptoms, including irritation of the nose,
itchy nose, dry nose, burning nose, stufty nose, running nose, itchy
throat, irritation throat, swelling throat, burning throat, urge to
cough, pressure on the chest, oppression to breath, and expectora-
tion. A higher score indicates greater symptom severity, with a
score of 0 referring to no symptoms and a score of 5 referring to a
severe symptom. The total respiratory symptom score was then
calculated by summing up the scores across the 14 symptoms. The
questionnaires were completed half an hour before and immedi-
ately after each exposure session.

Lung function test. Lung function was measured before and
after each exposure session in a lab located on campus using a port-
able spirometer (Jaeger MasterscreenV5.01; CareFusion) under
the instruction of the same trained operator. The lung function test
was conducted according to the recommendation of the ATS/
ERS.?* Specifically, participants were instructed to make three
attempts intermitted by at least 3 min and a qualified measure
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should have at least two acceptable and reproducible test results
from all attempts. The measures of lung function included in this
study were FEV, an indicator of airway obstruction; FVC, an indi-
cator of airway restriction; and maximal mid-expiratory flow
(MMEF), an indicator of small airway function. We also calculated
the ratio of FEV, and FVC (FEV,/FVC) to examine airway
obstruction.

Sample collection and analysis. EBC and peripheral blood
samples were collected before and after each exposure session
within 1 h in a lab after returning to the campus. All participants
were required to refrain from eating or drinking for at least 2 h
before the testing and specimen collection. The EBC was col-
lected by trained staff using an exhaled breath condensate collec-
tion system (Erich Jaeger GmbH) following the ATS/ERS
recommended guidelines.?® Participants were asked to rinse their
mouths before sample collection to avoid saliva contamination.
During the sample collection, participants were instructed to
breathe into the collection system using tidal breathing to ensure
that the volume of EBC was reproducible within individuals. The
collection system runs at —5°C to condense water vapor in the
exhaled breath. All EBC samples were stored at —80°C within
2 h after collection. Blood samples (5 mL) were collected by a
professional medical staff member (a clinical nurse) using the se-
rum separator tube (BD Vacutainer SST II advance) and were
processed for serum extraction immediately after collection and
then stored at —80°C until analysis.

Biomarkers in the EBC and blood samples collected before
and after each exposure session were quantified using an enzyme
linked immunosorbent assay (ELISA) according to the operating
manual provided by the manufacturers. Specifically, serum sur-
factant proteins D (SP-D) (DSFPDO; R&D Systems) and EBC
ezrin (SEB297Hu; Cloud Clone Corp.) are indicators of lung
epithelial injury, whereas EBC 8-isoprostane (516351; Cayman
Chemical) and tumor necrosis factor-o. (TNF-ot) (HSTAOOE; R&D
Systems) are markers of airway oxidative stress and inflammation,
respectively. All samples collected from the same participant were
processed in the same batch. All samples were analyzed twice
according to the protocol of the manufacturer and a blank well was
set in each batch and all samples (including the blank and standard
controls). The measured value of each well was subtracted by
the average value of the blank controls. Then means of two
duplicated samples were used as the final measurement results
in the statistical analysis. The coefficients of variation (CVs, %)
for SP-D, 8-isoprostane, ezrin, and TNF-o detection were all
<10%. The limits of detection (LODs) for SP-D, 8-isoprostane,
ezrin, and TNF-o detection were 0.123ng/mL, 0.8 pg/mL,
0.312ng/mL, and 0.049 pg/mL, respectively. Half of the LOD
was used to replace those measurements below the LOD.
Eventually, only measurements of two samples on ezrin and
TNF-a were below the LOD and were replaced.

EBC samples collected after each exposure session were used
for metabolomic analysis in ultra-high performance liquid chroma-
tography—mass spectrometry (UHPLC-MS/MS) (Vanquish; Thermo
Fisher Scientific; and Orbitrap MS; Thermo). The detailed
description on LC-MS/MS analysis can be found elsewhere.?®
In brief, LC-MS/MS analyses were performed using an UHPLC
system (Vanquish; Thermo Fisher Scientific) with a UPLC
BEH Amide column (2.1 mm X 100 mm, 1.7 pm) coupled to a
Q Exactive HF-X (QE HFX) mass spectrometer (Orbitrap MS;
Thermo). The QE HFX mass spectrometer was used owing to
its ability to acquire MS/MS spectra in information-dependent
acquisition mode in the control of the acquisition software
(Xcalibur; Thermo). To validate the quality of measurements,
quality control samples were generated by mixing aliquots of
all samples with equal volume. The same pretreatment method

Environmental Health Perspectives

057002-3

was applied for quality control samples and samples to be tested.
Pooled quality control samples were inserted in every several sam-
ples to assess the repeatability of the instrument. ProteoWizard was
adopted to convert the raw data into the mzXML format and proc-
essed with a XCMS-based program for peak extraction. We
excluded the features with missing values >50%. Half of the mini-
mum value was used to replace each of the missing values. All data
were Pareto-scaled before statistical analysis.

Statistical Analysis

We first calculated the differences in respiratory system symptom
scores, lung function measures, and concentrations of biomarkers
(i.e., EBC ezrin, EBC 8-isoprostane, EBC TNF-a, and serum SP-D)
before and after each exposure session (i.e., adjusting for the
baseline). Then we applied linear mixed-effect (LME) models to
estimate the associations of TRAP exposure with changes in
each of the aforementioned health measures. Specifically, TRAP
exposure was first fitted as a binary indicator of exposure session
(0 for low-exposure session and 1 for high-exposure session) in
the model to compare the difference of changes in these meas-
ures under the two exposure scenarios. In addition, we fitted sep-
arate models with continuous variables of air pollutants (UFP,
BC, PM; 5, NO,, or CO) at each exposure session (i.e., averages
of pollutants concentrations over the 4-h exposure session) as
the exposure of interest. For all models, we adjusted for demo-
graphic characteristics [i.e., age (continuous variable), sex (bi-
nary variable), and BMI (continuous variable)] to control for the
potential heterogeneity between individuals, and meteorological
conditions [i.e., temperature (continuous variable) and relative
humidity (continuous variable)] to control for the potential hetero-
geneity between days. For biomarkers, we additionally adjusted for
batch number in the fixed effect terms. A random intercept for each
participant was also added into the model to account for within-
participant correlations.'*3° Last, we fitted nonlinear models for
each pollutant using a natural spline function, adjusting for the
same set of covariates. The likelihood ratio test was used to exam-
ine for possible nonlinear exposure—response relationships, and the
results suggested no statistically significant nonlinear exposure—
response relationship (Table S1). All analyses were implemented
in R software (version 3.4.4; R Development Core Team) using the
package Ime4. Effect estimates for the biomarkers were expressed
as mean absolute changes with 95% confidence intervals (Cls)
associated with TRAP exposure and per interquartile range (IQR)
increase of air pollutants.

The untargeted metabolome-wide association study (MWAS)
was conducted for EBC metabolomics. We obtained the mass-to-
charge ratio (m/z), retention time, and ion intensity for each
detected metabolic feature. Features that were detected in <50%
of the samples were excluded. Ion intensities of the remaining
features were log-transformed for normalization and were then
added into separate LME models as dependent variables to exam-
ine their associations with TRAP exposure (binary) and with
each pollutant (continuous),?! adjusting for the same set of cova-
riates. The Benjamini—-Hochberg false discovery rate (FDR) was
calculated to control for multiple comparisons, and an FDR of
<0.05 was considered statistically significant.

To identify the underlying biological pathways related to
TRAP exposure, we used the mummichog pathway analysis (ver-
sion 1.0.10; Python) for pathway enrichment analysis. Different
from the traditional targeted metabolomic analysis strategy, the
mummichog approach uses algorithms that leverage known meta-
bolic pathways and networks to predict the function of each metab-
olite without identifying the metabolites a priori.> This method
has been commonly used in previous studies for predicting net-
work activity from untargeted metabolomic analyses.?!33-3% We
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Table 1. Demographic characteristics of participants (n=56) in a random-
ized controlled trial of exposure to traffic-related air pollution in Shanghai,
China, 2019.

Variables Mean + SD or n (%)
Sex
Male 25 (44.6)
Female 31 (554)
Age (y) 235+2.4
BMI (kg/m?) 21.8+2.9

Note: BMI, body mass index; SD, standard deviation.

applied the mummichog approach to screen for the features that
differ significantly between high-and low-TRAP exposure sessions
or that were associated with air pollutants, under positive- and
negative-ion modes, respectively. We applied Fisher’s exact test
(FET) as an enrichment test of metabolic features on pathways,
adjusting for type I error based on a method by Berriz et al.>® An
adjusted p <0.05 from FET was considered statistically signifi-
cant. Metabolite features associated with enriched metabolic path-
ways were then annotated in the human metabolome database
(HMDB), the METLIN database, and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database.3’

Results
Descriptive Statistics

As shown in Table 1, the mean + standard deviation (SD) of the age
and BMI of participants were 23.5 +2.4 y and 21.8 +2.9kg/m?,
respectively. Among the included 56 participants, 25 were males.
No participant reported alcohol, medication and dietary supplement
use, or exposure to smoking during the study period. During the
road exposure session (i.e., high-TRAP exposure), the concentra-
tions of UFP, BC, NO,, and CO were approximately two to three
times higher than in the park exposure session (i.e., low-TRAP ex-
posure), whereas PM; 5 concentration showed a relatively smaller
difference, with only a 40% higher exposure in the road session com-
pared with the park exposure session. Temperature and relative hu-
midity were comparable in both sessions (Table 2). Spearman rank-
correlation coefficients () between the five air pollutants ranged
from 0.25 t0 0.87 (Table S2).

Respiratory Symptoms in Relation to TRAP Exposure

Overall, total respiratory symptom scores before the road and park
exposure sessions were similar (mean + SD = 1.70 +2.28 for the
road exposure session and 1.89 +3.00 for the park exposure

session, respectively; Table S3). At the end of each session, the
mean total symptom score increased by 3.21 for the road exposure
session; the scores for dry nose, itchy throat, and urge to cough had
the largest increases. However, no notable increase in total score
was found for the park exposure session. Table 3 shows changes in
the total score of respiratory symptoms related to TRAP and indi-
vidual pollutants. Compared with changes in respiratory symptom
scores before and after the park exposure session, we observed an
increase of 2.615 (95% CI: 0.605, 4.626; p=1.2 %X 10_2) in the
changes in symptoms scores for the road exposure session. In
addition, we found larger changes of symptom scores were asso-
ciated with exposure to UFP (IQR: 16,934 particles/ cm’; score
difference per IQR increase: 1.793; 95% CI: 0.113, 3.474,
p=3.9%1072), BC(IQR: 3 pg/m?; score per IQR increase differ-
ence: 2.917; 95% CI: 0.873, 4.960; p=6.2X 10_3), and NO,
(IQR: 31 ppb; score difference per IQR increase: 3.360; 95% CI:
1.252, 5.467; p=2.3% 1073) than with exposure to CO (IQR:
632 ppb; score difference per IQR increase: 1.413; 95% CI:
—0.611, 3.436; p=1.7x10"") and PM,s (IQR: 8 ug/m3; score
difference per IQR increase: 0.503; 95% CI. —0.294, 1.301;
p=2.2x107"), respectively.

TRAP Exposure and Lung Function

We found no notable differences in lung function measures before
the road and park exposure sessions (Table 4). Compared with
those measured before the exposure sessions, we observed lower
FVC, FEV, and MMEF in our participants after the road exposure
session, whereas no drastic changes were found between all lung
function measures before and after the park exposure session.
After adjusting for all covariates in LME models, we found TRAP
exposure was associated with lower FEV| and MMEF (Table 3).
For example, compared with lung function changes in the park ex-
posure session, FEV; and MMEF decreased by 0.075 L (95% CIL:
—0.138, —0.012; p=2.1x107%) and 0.190 L/s (95% CI: —0.351,
—0.029; p = 2.4 x 1072) after the road exposure session.

In addition, among specific air pollutants, we found that NO, was
significantly associated with a decline in three of the four measures of
lung function. For example, an IQR (31 ppb) increase of NO, was
associated with a 0.035-L (95% CI: —0.107, 0.036; p=3.4 x 1071),
0.071-L (95% CI: —0.135, —0.007; p=3.2x 107%), 0.878 (95% CI:
—1.630, —0.125; p=2.6 x 1072), and 0.203-L /s (95% CI: —0.369,
—0.036; p=2.0x 1072) decrease in FVC, FEV|, FEV,/FVC, and
MMETF, respectively. We also found most effect estimates of other air
pollutants on lung function measures were negative; however, their
associations were suggestive or null. For example, an IQR
(16,934 particles/ cm?®) increase of UFP was associated with a

Table 2. Exposure conditions in high (road)- and low (park)-traffic-related air pollution (TRAP) exposure sessions for n =56 adults participating in a random-

ized crossover trial in China.

Variable Group Mean SD Min P25 P50 P75 Max
UFP (particles/cm?) Road 33,467 6,678 24,555 28,651 31,608 35,564 49,885
Park 14,996 4,549 8,123 11,695 14,603 17,488 24,460
BC (ug/m?) Road 4 1 3 4 4 5 9
Park 2 0 1 1 1 2 3
NO; (ppb) Road 44 9 23 39 45 49 59
Park 14 3 8 11 14 15 21
CO (ppb) Road 948 196 676 804 928 1,053 1,521
Park 333 156 41 234 296 450 654
PM, 5 (ng/m?) Road 27 19 11 17 22 26 98
Park 19 9 6 13 18 20 56
Temperature (°C) Road 22 4 12 20 22 24 26
Park 22 3 13 21 22 24 25
Relative humidity (%) Road 42 10 25 38 41 46 69
Park 49 13 31 40 46 54 79

Note: BC, black carbon; CO, carbon monoxide; IQR, interquartile range; max, maximum; min, minimum; NO,, nitrogen dioxide; P25, 25th percentile; P50, 50th percentile; P75, 75th

percentile; PM, s, fine particulate matter; SD, standard deviation; UFP, ultrafine particles.
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Figure 1. The identified metabolic pathways associated with TRAP and individual air pollutants in positive-ionization mode (POS) and negative-ionization
mode (NEG) based on the untargeted metabolome-wide association study (MWAS) conducted for exhaled breath condensate (EBC) metabolomics in a
randomized crossover trial in China (n =56 adults). TRAP exposure was fitted as a binary indicator of exposure (low/high); individual pollutants were modeled
as continuous variables. The linear mixed-effect models and the mummichog pathway analysis (version 1.0.10; Python) were applied for pathway enrichment
analysis. Fisher’s exact test (FET) as an enrichment test of metabolic features on pathways was applied, and an adjusted p <0.05 from FET was considered
statistically significant. p-Values are shown in Table S4. Note: BC, black carbon; CO, carbon monoxide; NO,, nitrogen dioxide; PM, s, fine particulate matter;
TCA, tricarboxylic acid; TRAP, traffic-related air pollution; UFP, ultrafine particles.

Based on the enriched metabolic pathways, we further confirmed
27 of them were associated with TRAP (Table 5). Most of these
features were endogenous metabolites related to inflammatory,
oxidative stress, and energy metabolism. For example, we found
metabolites related to inflammation and oxidative stress, includ-
ing leukotriene B4, 13-hydroxyoctadecadienoic acid, hypoxan-
thine, uric acid, and L-arginine, increased after the road exposure
session and with individual pollutants. Meanwhile, metabolites
that were suggested to have anti-inflammation and anti-oxidative
stress properties (e.g., y-linolenic acid) were found to be reduced
after the road exposure session. Moreover, metabolites related to
energy metabolism (e.g., fumarate, succinate, p-glucose, lactate,
pyruvate) were also found to increase after the road exposure ses-
sion and with higher UFP and BC concentrations.

Discussion

In this study, we conducted a randomized crossover trial to
explore respiratory responses related to TRAP exposure among
healthy adults. After comparing changes before and after the road
and park exposure sessions, we found TRAP exposure was asso-
ciated with higher respiratory symptom scores and lower lung
function. Further, biomarkers related to lung epithelial injury, air-
way inflammation, and oxidative stress increased after exposure
to TRAP. Metabolomics analysis in EBC samples identified met-
abolic signals and pathways closely related to inflammation, oxi-
dative stress, and energy metabolism (Figure 2). We also found
UFP, BC, NO,, and CO, but not PM, 5, were significantly associ-
ated with changes in respiratory health markers, and NO, had
stronger associations with changes in respiratory symptom scores
and lung function measures.

Respiratory Symptoms and Lung Function Changes Related
to TRAP Exposure

Previous epidemiological studies have found that exposure to
TRAP was associated with respiratory symptoms.>$—+° However,
those studies were mostly observational and focused on vulnera-
ble populations (e.g., children, asthmatics) in Europe. Therefore,
it may not be feasible to directly compare their results with our
findings. A previous randomized, crossover trial in the UK
assessed the effects on respiratory and cardiovascular responses
of TRAP exposure among healthy elderly and elderly with
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chronic lung or heart disease, and it found short-term exposure to
TRAP was associated with symptoms in the respiratory tract
(e.g., cough, sputum, wheeze) and lower lung function.!®
Consistent with our results, that UK study also illustrated that the
benefits of walking exercise on lung function might be offset by
TRAP exposure among adults. '

Similarly, we found a significant decrease in lung function
following acute TRAP exposure. These lung function changes
indicate airway obstruction (manifested by a significant decrease
in FEV; and no significant change in FVC) and small airway
changes (manifested by a significant decrease in MMEF). MMEF
has been considered a sensitive physiological marker of small air-
way function decline.*! Therefore, the observed declined MMEF
associated with TRAP exposure suggests TRAP exposure might
be associated with early pathophysiological impairment of small
airways among healthy adults.*?

Potential Biological Mechanisms of TRAP-Related
Respiratory Effect

We found significant changes of serum SP-D and EBC ezrin
associated with TRAP exposure. Both serum SP-D and EBC
ezrin are biomarkers of airway epithelial damage. SP-D regulate
airway surface tension.**** Previous studies in humans have sug-
gested SP-D were inversely associated with lung function. 346
Ezrin is related to the integrity of the airway epithelial barrier by
maintaining the normal morphology and intercellular adhesion of
epithelial cells.*”*® We hypothesize that the increase of serum
SP-D and decrease of EBC ezrin after the road exposure session
suggests that TRAP exposure might compromise the alveolar epi-
thelial integrity and impair airway epithelial lining, which can
further impair lung function and lead to respiratory symptoms.
Our airway metabolomic analysis showed that TRAP expo-
sure was associated with increased metabolites in oxidative
stress pathways, including hypoxanthine, uric acid, linoleate,
13-hydroxyoctadecadienoic acid (13-HODE), and methionine.
Hypoxanthine was oxidized to xanthine and uric acid by xan-
thine oxidase, and this process could produce reactive oxygen
species (ROS).** ROS can further activate lipid oxidation
phospholipase A2, which then hydrolyzes phospholipids to pol-
yunsaturated free fatty acids (e.g., linoleic acid).’® Linoleic
acid can be converted into 13-hydroperoxyoctadecadenoic acid
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Figure 2. Possible mechanisms underlying the respiratory effects of TRAP exposure identified in this randomized crossover study in China (n =156 adults).
Note: 13-HODE, 13-hydroxyoctadecadienoic acid; 13-HPODE, 13-hydroperxyoctadecadienoic acid; 13-OxoODE, 13-oxooctadecadienoic acid; EBC, exhaled
breath condensate; FADH,, reduced form of flavin adenine dinucleotide; FEV, forced expiratory volume in the first second; FVC, forced vital capacity;
iNOS, inducible nitric oxide synthase; MMEF, maximal mid-expiratory flow; NADPH, reduced form of nicotinamide adenine dinucleotide phosphate; p, phos-
phate; PLA2, phospholipase A2; ROS, reactive oxygen species; SP-D, surfactant proteins D; TCA, tricarboxylic acid; TNF-o, tumor necrosis factor-o; TRAP,

traffic-related air pollution; XOR, xanthine oxidoreductase.

(13-HPODE) and 13-HODE by lipoxygenases, and the latter is
a potential biomarker for oxidative stress-affecting lipids.>® In
this study, we also consistently found that TRAP exposure was
associated with higher levels of EBC 8-isoprostane, a bio-
marker of oxidative stress,’' further supporting the elevated
oxidative stress associated with TRAP exposure.

In addition, our data also linked TRAP exposure with two
inflammation-related pathways, the leukotriene metabolism and
the arginine and proline metabolism. Consistently, we found
higher levels of EBC leukotriene B4 (a lipid molecule with pro-
inflammatory properties) and a slight increase of EBC TNF-o af-
ter exposure to high levels of TRAP, indicating that TRAP expo-
sure can increase airway inflammation.>?

We also observed higher EBC glucose, pyruvate, lactate, suc-
cinate, and fumarate after exposure to TRAP. These metabolites
are related to energy metabolism, which is essential to cell func-
tion and survival. More specifically, the observed increases in
these metabolites might suggest up-regulated energy metabolism
and activated anaerobic glycolysis in airway epithelial cells. It is
possible that energy metabolic rewiring is a potential pathway
leading to airway epithelial injury. Consistent with our findings, a
recent animal study also found an increased metabolic rearrange-
ment from the TCA cycle to glycolysis as a manifestation of met-
abolic alteration in lung tissue after PM, 5 exposure.>3

Pollutant-Specific Associations with the OQutcomes

We found that PM, s concentration had a smaller difference
between the road and park exposure sessions compared with the
other pollutants, which is consistent with previous findings.'3-5*
Unlike the other pollutants, PM; 5 can be from both local sources
and regional transportation.> In this study, traffic is the main factor
contributing to the differential levels of PM, s exposure between
the road and park sessions. Therefore, when regional transportation
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dominates, the differences in PM, 5 concentrations contributed by
the local sources may be masked by the background level >
Among all the pollutants considered in the analysis, NO,
appeared to have the strongest associations with lung function,
especially with decreased MMEF, suggesting NO, may impair
small airway function. Unlike the other water-soluble gaseous
pollutants, NO, hydrolyzes slowly in the airway and can reach
bronchioles and alveoli and cause mucous edema in the small air-
ways.>’° In addition, we found BC and UFP were associated
with lung function decline, which was consistent with previous
findings in London.'®!® We found BC and UFP were also associ-
ated with changes of biomarkers and metabolic pathways related
to oxidative stress and inflammation. Previous studies have
reported similar associations of these two pollutants from traffic
sources with oxidative stress and inflammation in the respiratory
system.®®-°! We did not observe significant associations of PM, s
with any outcome measures, which is in line with prior findings
based on the same study design.'®!° One possible reason for the
null associations of PM; s might be that the difference in PM; s
exposure levels between the road and the park groups was small.

Strengths and Limitations

The randomized crossover trial design of this study can effec-
tively minimize the possibility of unmeasured confounding.
Moreover, the combination of the subclinical indicators and the
omics technique allowed us to comprehensively investigate the
global molecular responses of the respiratory system related to
TRAP exposure. Moreover, our metabolomic analysis was based
on the EBC samples, which can reflect the local changes in the
respiratory tract after exposure to TRAP.

Our study also has several limitations. First, although we con-
trolled for multiple confounders through the randomized cross-
over study design,®>®3 residual confounding was still possible
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under the complex real-life environment. For example, without
blinding, participants may differentially report respiratory symp-
toms between these two exposure sessions. In addition, although
we considered only participants who lived on the same campus
for at least 1 y to reduce the influence of long-term air pollution
exposure, early life air pollution exposure (e.g., exposure during
childhood) may have long-term impacts on lung function.
Second, all outcome measurements were conducted only once
right after each exposure session. Therefore, the delayed effects
of TRAP exposure on respiratory health were not considered.
Finally, although the effects of the single traffic-related pollutant
were examined, our ability to identify the independent effects of
each pollutant was limited by the strong correlation (Spearman
r=0.25-0.87) among these pollutants. Only healthy young adults
were included in this study; therefore, our findings may not be
generalizable to other susceptible populations with preexisting
conditions.

Conclusion

In this randomized crossover study, we found short-term expo-
sure to TRAP exposure was associated with respiratory symp-
toms and airway impairment. Airway biomarkers and EBC
metabolomic analysis suggested TRAP exposure can lead to lung
epithelial injury, airway inflammation, oxidative stress, and
energy metabolism disturbance. These findings provide evidence
for the adverse respiratory health effects of TRAP exposure and
insights into the potential biological mechanisms.
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