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Abstract

With the evolution of multicellularity, communication among cells in different tissues and

organs became pivotal to life. Molecular basis of such communication has long been stud-

ied, but genome-wide screens for genes and other biomolecules mediating tissue-tissue

signaling are lacking. To systematically identify inter-tissue mediators, we present a novel

computational approach MultiCens (Multilayer/Multi-tissue network Centrality measures).

Unlike single-layer network methods, MultiCens can distinguish within- vs. across-layer con-

nectivity to quantify the “influence” of any gene in a tissue on a query set of genes of interest

in another tissue. MultiCens enjoys theoretical guarantees on convergence and decompos-

ability, and performs well on synthetic benchmarks. On human multi-tissue datasets, Multi-

Cens predicts known and novel genes linked to hormones. MultiCens further reveals shifts

in gene network architecture among four brain regions in Alzheimer’s disease. MultiCens-

prioritized hypotheses from these two diverse applications, and potential future ones like

“Multi-tissue-expanded Gene Ontology” analysis, can enable whole-body yet molecular-

level systems investigations in humans.

Author summary

Healthy functioning of our body relies on proper communication among its different

organs and tissues; also complex diseases typically affect more than one organ/tissue.

Therefore, there is increasing interest in building network models of genes residing in dif-

ferent tissues from multi-tissue genomic data. A major challenge, however, is to analyze

and extract biological insights from such multi-tissue or multilayer network models. In

this study, we have developed a computational approach, MultiCens, for extracting genes

in a multilayer network that are important or “central” for cross-tissue signaling. Our

analysis of a healthy human multi-organ dataset using MultiCens revealed known and

novel gene mediators of inter-organ communication. On gene networks linking distinct

human brain regions, MultiCens highlighted the disruptions to inter-brain-region
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connectivity in Alzheimer’s disease. We believe our work can encourage further applica-

tions in multi-organ systems-level modeling, ultimately strengthening our knowledge of

the interactions among organs in healthy and diseased individuals.

Introduction

For any multicellular organism with specialized tissue or organ structures, communication

among the different tissues/organs is essential for coherent integrated functioning of the whole

body. This communication can happen through canonical routes such as the nervous system

and hormonal system (or) non-canonical recently-discovered routes such as ones mediated by

fat-derived extracellular vesicles [1] and microbiota-derived metabolites in the gut-brain axis

[2]. The molecular mechanisms underlying all such inter-organ communication routes can be

represented as a network of interactions among the biomolecules residing in different tissues/

organs (and called the inter-organ communication network or ICN) [3]. Rapidly gaining inter-

est in the mapping of ICN [4] has revealed a large ICN network among secreted proteins in

model organisms like Drosophila; and detailed mechanistic characterization of specific inter-

actions in the ICN [5] has elucidated key roles played by certain ICN molecules or interactions

in healthy and disease conditions. But these experimental techniques for ICN mapping or ICN

analysis are predominantly in vivo and hence of limited use in non-model organisms including

humans, and also quite time-consuming even in model organisms (due to the potentially huge

experimental space to cover the quadratic number of all pairwise interactions among thou-

sands of biomolecules in tens of tissues of interest). As a result, the ICN is vastly under-

explored in both model as well as non-model organisms, and there is an immediate need to

accelerate mapping and analysis of ICNs in health and disease.

In this study, we propose a computational approach to rapidly map and analyze a multi-

tissue network, comprising both inter- and intra-tissue gene-gene interactions. Our work is

enabled by the recently accumulating multi-tissue genomic datasets (e.g., [6–8]), which can be

used to infer inter/intra-tissue networks using the concept of gene-gene correlation or coex-

pression. Coexpression network mapping and analysis have been done before, for instance

using the popular WGCNA method [9], and gene prioritization using network based measures

have also successfully guided downstream experiments before [10, 11]; but such studies have

mostly focused on a single tissue of interest in a healthy condition or the single most affected

tissue in a disease (e.g., [12]). Our proposed centrality framework, termed MultiCens, works in

a multi-tissue setting and offers a systematic data/computation-driven prioritization of genes

to be key regulators of inter-tissue signaling.

Specifically, a main contribution of our work is the design and application of gene centrality

measures that quantify the extent to which each gene in a tissue influences other genes at dif-

ferent levels of granularity (including all other genes in the network, all genes in another tissue,

or a query-set of genes of interest in the other tissue) via both direct and multi-hop inter-/

intra-tissue interactions. We extend traditional centrality measures like PageRank [13] that

work for a single-layer system to design new measures for a multilayer network model,

wherein each layer corresponds to a tissue and nodes (genes) can have within-layer and

across-layer connections (gene-gene interactions). We demonstrate the effectiveness of Multi-

Cens in capturing multi-hop effects using both synthetic multilayer networks as well as real-

world multi-tissue datasets; and highlight the advantages of having MultiCens measures at

multiple hierarchical levels of granularity over a recent related work [14] that considered a sin-

gle centrality measure RWR-H (Random Walk with Restart—Heterogeneous) for each node
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in a heterogeneous network, a model closely related to the multilayer network model. On a

real-world human multi-tissue gene expression dataset, MultiCens uncovers genes responsible

for inter-tissue communication via mediating hormones, specifically genes involved either in

the production/processing/release of hormones in a source tissue or those that respond to hor-

mones in the target tissues. Even with well-studied hormones such as insulin, our study identi-

fies not only known but also novel regulators of insulin signaling, including lncRNAs (long

non-coding RNAs) as well. MultiCens can also be applied to multi-brain-region gene expres-

sion datasets obtained from postmortem brain samples of Alzheimer’s disease vs. control indi-

viduals to highlight the large-scale changes in the centrality of specific genes and pathways in

Alzheimer’s disease. The diverse applications of MultiCens to find the molecular mediators of

inter-tissue hormonal signaling in healthy tissue or inter-brain-region dysregulation in disease

is promising for its broader applicability and robustness to dissect communication amongst

other functional structures within the body of humans and other species.

Materials and methods

Our MultiCens framework: Context and rationale for new centrality

measures

Recently, multilayer networks have increasingly been used [15] to model calcium waves’ prop-

agation in pancreas [16], protein interactions in multiple tissues [17], different types of eco-

logical interactions [18], and other biomedical systems [19]. So there is increasing interest in

developing methods for multilayer network analysis such as centrality. The existing methods

for finding the “importance” or “centrality” of nodes in a multilayer network model have had

promising applications; but are still not directly applicable to our multi-tissue systems biology

setting wherein centrality contributions from local intra-layer vs. global inter-layer (ICN) con-

nections need to be resolved and quantified. Specifically, these existing methods utilize only

the inter-layer degree of the nodes (Ssec method [20]), or do not distinguish between within-

layer and across-layer connections (versatility method [21], key driver analysis [7]), or work

with a popular yet restricted class of a multilayer network model called a multiplex network

(wherein the only inter-layer edges allowed are those between the same node present in differ-

ent layers) [14, 22–24], or do not delineate the local intra-layer vs. global inter-layer influence

of nodes on other nodes in a multilayer network (or a closely related network model called a

heterogeneous network). [14, 25–27].

When predicting genes involved in inter-tissue communication such as those mediated by

hormones, we need to emphasize the inter-tissue connections involving hormone-producing

or responding tissues and gene sets. Also, we rely on the hypothesis that hormonal signaling is

not simply caused by merely direct connections between hormone-producing and responding

genes; other intermediary genes within the same tissue or in other tissues play the part of

mediators in carrying these signals. Furthermore, we should be able to provide multiple levels

or granularities of centrality measures that will clarify the local intra-tissue vs. global inter-tis-

sue (ICN) contributions of a gene.. To accommodate such requirements, we propose a set of

centrality measures termed MultiCens that can capture the effect of genes at different levels:

within the same tissue, across tissues, to a specific tissue, or a query-set of genes in a particular

tissue. Capturing such contributions at different levels can have immediate applications in sys-

tems biology, including identifying genes that regulate hormonal communication between two

tissues via multiple hops of different types.

More specifically, we introduce a set of centrality measures within our MultiCens frame-

work to quantify the influence or effect a gene has at different levels of granularity, such as the

effect a gene has (i) “locally” within a tissue due to its connections to other genes in the tissue,
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or (ii) “globally” across all tissues due to within- as well as across-tissue connections, or specifi-

cally (iii) to a particular tissue, or (iv) to a query-set of genes in a particular tissue. MultiCens

measures account for the multilayer, multi-hop network connectivity of the underlying system

in a hierarchical fashion, by decomposing the overall centrality (versatility pioneered by

Domenico et al. [21]) of a gene into local vs. global centrality, and further into layer-specific
centrality specific to a tissue (referred to interchangeably as layer) or query-set centrality spe-

cific to a gene set in a tissue (see hierarchical organization in Fig 1). We prove theoretical guar-

antees on the convergence and decomposability of MultiCens measures (Theorems 1, 2), and

demonstrate empirical applications of MultiCens to simulated networks as well as real-world

healthy and disease multi-tissue datasets below. Our overall pipeline starts with a multilayer

Fig 1. Workflow of our MultiCens measures. (A) Each layer in the network represents a tissue, and connections represent gene-gene interactions (e.g., inferred from

transcriptomic data). (Created with BioRender.com) (B) Supra-adjacency matrix (M) contains within-tissue connections on the diagonal blocks (intra-layer matrix A),

and across-tissue connections on the off-diagonal blocks (inter-layer matrix C). The A, C matrices are used to compute different hierarchically-organized centralities as

shown (note: the “collectively exhaustive node-sets” mentioned actually partition all the nodes in a layer or the network; see text). The centrality vectors (x, l, and g)

have an entry for each gene in every tissue. (C) The centrality scores are used to obtain gene rankings which are further validated using different methods, and

interpreted to predict novel mediators of inter-tissue signaling.

https://doi.org/10.1371/journal.pcbi.1011022.g001
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network model (constructed for instance from transcriptomic data of a multi-tissue system),

represents it as a supra-adjacency matrix comprising two matrices (one for capturing within-

layer connections alone, and another for across-layer connections), and then uses these two

matrices to define different centrality measures (see Fig 1, and Methods sections below for def-

initions of MultiCens measures as well as a background on certain existing measures). Ranking

nodes/genes by their centrality scores can readily help predict key genes involved in inter-layer

communication, amongst other systems biology applications. We will discuss the datasets and

methodological details of two such applications of MultiCens focused in this study in Methods

sections below.

Background and preliminaries

Multilayer network representation. A multilayer network is represented by G ¼ ðV;L; EÞ,
where V represent the set of n nodes which is the same across all layers, L is the set of L number

of layers, and E represents the set of inter- and intra- layer edges. The set of nodes in layer α is

represented by V ¼ fva
1
; va

2
; . . . ; vang. The total number of nodes in the multilayer network is

N = n × L. Following the convention used in [28, 29], we represent the multilayer network by a

supra-adjacency matrix M of dimension N ×N as,

Mðia; jbÞ ¼
wðia; jbÞ if ðvai ; v

b
j Þ 2 E

0 otherwise

8
<

:
ð1Þ

where w(iα, jβ) denotes the weight of edge between node i in layer α (i.e., vai whose index in

matrix M is denoted by iα) and node j in layer β.

The supra-adjacency matrix can further be decomposed to represent the network with only

intra-tissue edges by A and the network with only inter-tissue edges by C such that,

M ¼ Aþ C
A½1;1� C½1;2� C½1;3� � � �

C½2;1� A½2;2� C½2;3� . .
.

C½3;1� C½3;2� A½3;3� . .
.

..

. . .
. . .

. . .
.

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

¼

A½1;1� 0 0 � � �

0 A½2;2� 0 . .
.

0 0 A½3;3� . .
.

..

. . .
. . .

. . .
.

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

þ

0 C½1;2� C½1;3� � � �

C½2;1� 0 C½2;3� . .
.

C½3;1� C½3;2� 0 . .
.

..

. . .
. . .

. . .
.

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

Here, A represents adjacency matrices for each tissue along the diagonal, and C represents

edges between different pairs of tissues at off-diagonal entries. Both A and C are of dimension

N × N, and are composed of n × n block submatrices {A[i,i]}i=1,. . .,L and {C[i,j]}i,j=1,. . .,L;i6¼j respec-

tively as shown here and in Fig 1B.

In this work, we assume our multilayer network to be undirected; thus M, A, C, and A[i,i]

for each i are symmetric matrices. We also note here how this multilayer network model can

also represent a heterogeneous network (such as those studied earlier [14, 25–27, 30]). Hetero-

geneous network is a network model where different layers could’ve different node sets (e.g., a

gene-disease heterogeneous network would’ve genes in the first layer and diseases in the sec-

ond layer as nodes, and gene-gene, disease-disease, and inter-layer gene-disease links as

edges). To represent a heterogeneous network using a multilayer network, we can define the

node set V in each layer of the multilayer network to be the union of all distinct nodes in the

overall heterogeneous network, and let the edge set of the multilayer network be the same set

of edges in the heteregeneous network.
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Degree-based methods. Definition. Intra-layer centrality vector of a multilayer network
can be computed by the following equation.

degintra ¼ A~1 ð2Þ

where~1 is the vector of all ones.
Inter-layer degree of a node is a count (to be precise, the sum of weights) of its incident

edges that cross the layers. These edges make the backbone of layer-layer communication. The

inter-layer degree can be computed using the C matrix as follows.

Definition. Inter-layer centrality vector of a multilayer network can be computed by the fol-
lowing equation.

deginter ¼ C~1 ð3Þ

This inter-layer degree centrality vector is called Ssec score vector when the weight of each edge in
the multilayer network is given by −ln(P-value used to determine the statistical significance of
correlation between the two nodes linked by the edge in a given observational dataset).

The study that proposed this Ssec score vector [20] had used it to find prominent hormone-

encoding genes that are strongly connected in a pair of tissues.

Recently, degree and connectivity patterns such as shortest paths in multilayer networks

are being deployed to complete private data with the help of open datasets [31]. Apart from

degree-based centrality, there are methods such as PageRank centrality that can capture multi-

hop effects in a network. We will now discuss an existing framework that extends PageRank

centrality to a multilayer network.

Versatility. Domenico et al., in their seminal paper [21], described a mathematical frame-

work for centrality computation in multiplex networks. The proposed approach assigns a

ranking to the nodes based on their interconnectedness. By setting proper weights of the layers

(based on the number of nodes/edges), such a ranking method can reveal versatile nodes in

the network. For a user-defined constant p 2 [0, 1), the N-dimensional versatility vector can be

defined as follows:

Definition. Multilayer network PageRank centrality (also known as pagerank versatility
[21]) x can be defined by the following equation.

x ¼ pMxþ
ð1 � pÞ

N
~1 ð4Þ

x ¼ ðI � pMÞ� 1 ð1 � pÞ
N

~1

� �

Kindly note that we use the term versatility for this method. Versatility itself does not distin-

guish between the within-layer and cross-layer edges, thus making it unavailing to distinguish

the local vs. global effect of nodes. However, the mathematical formulation of a multilayer net-

work described in this work can be extended to define the desired centrality measures, as we

will discuss below. There exists another line of work that focuses on centrality methods for

multilayer networks with either no inter-layer edges or only restricted inter-layer edges

between identical nodes [32–35]. We model our multi-tissue datasets by more general multi-

layer networks that allow inter-layer edges between any pair of nodes.

RWR-H adapted for multilayer networks. RWR-H, a centrality measure based on the

concept of Random Walk with Restart for a heterogeneous network, was originally proposed

by Li and Patra [30] for a heterogeneous network model, and later adapted by [14, 25–27] for

multiplex, heterogeneous and multiplex-heterogeneous network models. One way to define a
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representative RWR-H centrality is to closely follow Li and Patra’s definition for a heteroge-

neous network, and adapt it to a multilayer network as given next. If eA and eC represent col-

umn-normalized versions of A and C matrices respectively (so that they can be viewed as

transition matrices of probabilities for the random walk), then RWR-H vector x is given by:

x ¼ p eMxþ ð1 � pÞx0;where
eM ¼ ð1 � lÞeA þ leC

If S is a set of seed nodes, vector x0 is set to 1/|S| for each node in the seed set and 0 for all other

nodes. At each step, the random walker can either restart from the seed nodes with probability

(1 − p), or continue with a random walk over the multilayer network (jumping either to nodes

in other layers with probability λ, or to other nodes within the current layer). The definition

above is very similar to the RWR-H presented in [14] with a transition matrix obtained using

λ = 0.5 as mentioned in the paper (we also use the same value).

Our proposed methods—MultiCens measures

Existing centrality methods based on inter-layer degrees and PageRank have revealed useful

information about the underlying system, but fail to capture certain key aspects of a multilayer

network as discussed above. Here, we harness the multilayer structure of the network to cap-

ture the effect of nodes at multiple levels such as within a layer, across layers, to a target layer,

or a query set of genes within a target layer. Capturing such effects using our centrality mea-

sures defined below can have immediate applications in several areas, including systems biol-

ogy wherein for instance we could identify genes that regulate hormonal communication

between two tissues via multiple hops (see also Fig 1).

Local centrality. A node in a layer can affect other nodes in the same layer as well as dif-

ferent layers. In order to capture the within-layer effect of a node, we define the local centrality

as follows.

Definition. Local centrality vector of a multilayer network is given by the following iterative
equation.

l ¼ pAlþ
ð1 � pÞ

n
~1 ð5Þ

Local centrality vector for a particular layer i is defined by the following iterative equation.

llayeri ¼ pA½i�llayeri þ
ð1 � pÞ

n
~
1½i� ð6Þ

where A[i] represents matrix A with all but the ith column-block entries set to 0 (note: ith column-

block of A contains the adjacency matrix of layer i), and ~1½i� is a vector with entries for the nodes
in layer i set to 1 and 0 otherwise.

It can be noticed that the local centrality of a node is defined by using only within-layer

connections due to the block diagonal form of A; thus, it does not capture any effects beyond

the layer where the node is located. This also implies that the entries of the two N-dimensional

vectors l and llayeri restricted to all layer i nodes are identical (more specifically, l with all but

its layer i nodes’ entries set to 0 is identical to llayeri defined above; this would also imply that
PL

i¼1
llayeri ¼ l).

Global centrality. Since local centrality considers the effect of only within-layer connec-

tions, we design global centrality to capture the remaining effect. The global centrality of a

node is a measure of its influence on all nodes irrespective of their layers. While computing
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this centrality score, we use both within- and across- tissue connections in the following

manner.

Definition. For a given local centrality vector l, global centrality vector of a multilayer net-
work can be defined by the following iterative equation.

g ¼ p
h
Aþ Cð Þg þ Cl

i
þ
ð1 � pÞ

N
~1 ð7Þ

The global centrality of a node can be thought of as seeing an infinite length random walker

on that node where at each step, the random walker can do one of the following.

1. With probability p,

1. Jump to a neighboring node vn0 in the same layer with probability proportional to the

weight of the connection.

2. Jump to a neighboring node vn0 in a different layer with probability proportional to the

weight of the connection and the local centrality of vn0.

2. Restart the walk from any node in the network with probability (1 − p).

Layer-specific centrality. We are interested in finding the effect of node(s) on a specific

layer (target layer) in the multilayer network. In doing so, we define the layer-specific global

centrality (often shortened as layer-specific centrality for simplicity) as follows.

Definition. For a given local centrality vector for layer i, layer-specific centrality vector in a
multilayer network can be defined by the following iterative equation.

glayeri ¼ p Aþ Cð Þglayeri þ Cllayeri
h i

þ
ð1 � pÞ

N
~
1½i� ð8Þ

(note: the Cllayeri term effectively uses only the ith column-block of C, i.e., the block representing
all inter-layer edges that are incident to some node in layer i)

Our proposed centrality framework is highly generic, and the definition of centrality can

further be customized to capture the effect of a node on a set of nodes on a specific target layer.

We propose another refinement in the layer-specific centrality by decomposing it into multiple

query-node sets in the specific target layer.

Query-set centrality. We introduce query-set centrality that can capture the effect of a

node on a query-set of nodes present in any specific layer in the multilayer network. We begin

by defining local-set centrality, a variant of local centrality focused on a query set of nodes in a

specific layer.

Definition. For a given set of query nodes setk present in layer i, the local-set centrality vector
in a multilayer network can be defined by the following equation.

lsetklayeri
¼ pA½i�lsetklayeri

þ
ð1 � pÞ

n
~1k

layeri
; ð9Þ

where~1k
layeri

represents the vector of 10s at indices corresponding to the nodes in setk in layer i and
0 otherwise. Note that query nodes setk is restricted to be in the target layer i alone.

We use this local-set centrality to define query-set centrality as follows.
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Definition. For a given set of query nodes setk present in layer i, the query-set centrality in a
multilayer network can be defined by the following equation.

gsetklayeri
¼ p Aþ Cð Þgsetklayeri

þ Clsetklayeri

h i
þ
ð1 � pÞ

N
~1k

layeri
ð10Þ

The query-set centrality is defined in order to capture the effect of nodes on a query-set of

nodes (e.g., genes) in a specific target layer. As shown in Fig 1, our centrality equations are

based on the principle of decomposability.

Convergence of MultiCens centrality measures. We now prove the convergence of the

proposed centrality measures. The local centrality measure is similar to the Pagerank centrality

and its convergence follows from the Pagerank centrality convergence itself. Whereas, global
centrality has additional terms in the equation and we provide a proof for its convergence.

Lemma 1. For 0� p< 1, global centrality, as defined by Eq 7 always converges.
Proof. From Eq 7:

g ¼ p Aþ Cð Þg þ Cl½ � þ
ð1 � pÞ

N
~1

¼ p Aþ Cð Þ p Aþ Cð Þg þ Cl½ � þ
ð1 � pÞ

N
~1

� �

þ Cl
� �

þ
ð1 � pÞ

N
~1

¼ p pðAþ CÞ2g þ pðAþ CÞClþ ðAþ CÞ
ð1 � pÞ

N
~1 þ Cl

� �

þ
ð1 � pÞ

N
~1

..

.

¼ pkðAþ CÞkg þ p
Xk� 1

k0¼0

pk0 ðAþ CÞk
0

Cl

 !

þ
Xk� 1

k0¼0

pk0 ðAþ CÞk
0 ð1 � pÞ

N
~1

 !

The first term on the right side converges as k grows larger. The second and third terms

give rise to two geometric series generated by p(A + C). We know that (A + C) is a row stochas-

tic matrix and the product (p(A + C)) can have maximum eigenvalue, |λ0|< 1. A geometric

series generated by a matrix with eigenvalues less than 1 always converges. This completes the

proof.

Lemma 2. For 0� p< 1, glayeri defined by Eq 8 always converges.
Proof. Following the steps from Lemma 1, the layer-specific centrality (Eq 8) can be written

as:

glayeri ¼ pkðAþ CÞkglayeri þ p
Xk� 1

k0¼0

pk0 ðAþ CÞk
0

Cllayeri

 !

þ
Xk� 1

k0¼0

pk0 ðAþ CÞk
0 ð1 � pÞ

N
~
1½i�

 !

The right-hand side of the equation results in multiple geometric series, and all of them con-

verge as the number of iterations increases. This completes the proof.

Lemma 3. For 0� p< 1, lsetklayeri
defined by Eq 9 always converges.

Proof. Following the steps from Lemma 1, we can write local-set centrality (Eq 9) as:

lsetklayeri
¼ ðpA½i�Þjlsetklayeri

þ
Xj� 1

j0¼0

ðpA½i�Þj
0 ð1 � pÞ

n
~1k

layeri
; where j!1

The right side of the equation is similar to the original PageRank centrality which is known to

converge for 0� p< 1.
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Lemma 4. For 0� p< 1, gsetklayeri
defined by Eq 10 always converges.

Proof. Following the steps from Lemma 1, we can write query-set centrality (Eq 10) as:

gsetklayeri
¼ pdðAþ CÞdgsetklayeri

þ p
Xd� 1

d0¼0

pd0 ðAþ CÞd
0

Clsetklayeri

 !

þ
Xd� 1

d0¼0

pd0 ðAþ CÞd
0 ð1 � pÞ

N
~1k

layeri

 !

The right-hand side of the equation results in multiple geometric series, and all of them con-

verge as the number of iterations increases. This completes the proof.

Theorem 1 (Convergence of MultiCens). For 0� p< 1, all MultiCens centrality measures,
including local centrality, global centrality, layer-specific centrality, local-set centrality and
query-set centrality as defined by Eqs 5–10 converge.

Proof. The local centrality measure, defined by Eqs 5 and 6 is similar to the Pagerank cen-

trality and its convergence follows from the Pagerank centrality convergence itself [13].

Lemmas 1–4 prove the convergence of global centrality, layer-specific centrality, local-set

centrality and query-set centrality as defined by Eqs 7–10.

This completes the proof.

Decomposability of MultiCens centrality measures. Our centrality framework exhibits a

special theoretical property called decomposability, which in the context of a multi-tissue gene

network makes it easier to interpret our centrality measures as capturing different types of

influences of a gene on other genes in the network in a systematic fashion. For instance, we

define global centrality and local centrality in a way that they add up to the versatility in the

multilayer network, which the following proof can verify.

Lemma 5. Versatility of a multilayer network can be decomposed into local centrality and
global centrality with a scaling factor.

lþ g ¼ x ð11Þ

Proof.
From Eq 5

l ¼ pAlþ
ð1 � pÞ

n
~1

From Eq 7

g ¼ p Aþ Cð Þg þ Cl½ � þ
ð1 � pÞ

N
~1

Hence,

ðl þ gÞ ¼ p Aþ Cð Þg þ Aþ Cð Þl½ � þ ð1 � pÞð
1

n
þ

1

N
Þ~1

¼ p Aþ Cð Þ l þ gð Þ½ � þ
ðLþ 1Þð1 � pÞ

N
~1
� �

¼ ðI � pðAþ CÞÞ� 1 ðLþ 1Þð1 � pÞ
N

~1

� �

¼ ðLþ 1ÞðI � pðMÞÞ� 1 ð1 � pÞ
N

~1

� �

¼ ðLþ 1Þx

where L is the total number of layers. Since l, g, and x are centrality vectors, they are scale-
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agnostic, so the constant factor (L + 1) on the right side of the equation can be ignored. This

completes the proof.

We already noted that the local centrality vector can trivially be decomposed into the local

centrality of different layers, i.e.,
PL

i¼1
llayeri ¼ l. We now show that global centrality can also be

decomposed into layer-specific centrality and further into query-set centrality in a way that

instances of each centrality measure add up to their parent centrality measure.

Lemma 6. Global centrality of a multilayer network can be decomposed into the layer-specific
centrality of all layers, i.e.,

XL

i¼1

glayeri ¼ g ð12Þ

Proof.

XL

i¼1

glayeri ¼ p Aþ Cð Þ
XL

i¼1

glayeri þ C
XL

i¼1

llayeri

" #

þ
XL

i¼1

ð1 � pÞ
N

~
1½i�

eg ¼ p Aþ Cð Þeg þ Cl½ � þ
ð1 � pÞ

N
~1

eg ¼ g

This completes the proof.

Lemma 7. For a layer i, its local centrality vector can be decomposed into local-set centrality
of sets {setk}k=1,. . .,K, where {setk}k=1,. . .,K is a partition of all nodes in layer i.

XK

k¼1

lsetklayeri
¼ llayeri ð13Þ

Proof.

XK

k¼1

lsetklayeri
¼ pA½i�

XK

k¼1

lsetklayeri
þ
ð1 � pÞ

n

XK

k¼1

~1k
layeri

el ¼ pA½i�ðelÞ þ
ð1 � pÞ

n
~
1½i�

This equation is the same as the iterative equation defined for computing local centrality. This

completes the proof.

Lemma 8. Layer-specific centrality of layer i can be decomposed into query-set centrality of
sets {setk}k=1,. . .,K that together partition all nodes in layer i.

X

k

gsetklayeri
¼ glayeri ð14Þ

Proof.

X

k

gsetklayeri
¼ p Aþ Cð Þ

X

k

gsetklayeri
þ C

X

k

lsetklayeri

" #

þ
ð1 � pÞ

N

X

k

~1k
layeri

eg layeri
¼ p Aþ Cð Þeg layeri

þ C
X

k

lsetklayeri

" #

þ
ð1 � pÞ

N

X

k

~1k
layeri
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By using Lemma 7:

eg layeri
¼ p Aþ Cð Þeg layeri

þ Cllayeri
h i

þ
ð1 � pÞ

N
~1½i�

This iterative equation is the same as Eq 8. This completes the proof.

Theorem 2 (Decomposability of MultiCens). In a multilayer network, versatility can be
decomposed into local and global centrality, and global centrality into layer-specific centrality of
all layers. Furthermore, layer-specific centrality of any layer can be decomposed into the query-
set centrality of sets that collectively partition the nodes in the layer.

Proof. Eq 11 presents the decomposability of versatility into local centrality and global cen-
trality. Lemma 5 provides necessary proof for the decomposability of versatility.

Eqs 12–14 present the decomposability of MultiCens centrality measures. Lemmas 6–8

collectively prove the decomposability of centrality measures defined under MultiCens

framework.

This completes the proof.

We end this section with a practical note on the number of layers L. In one application of

our centrality measures MultiCens to analyze healthy human data, we restrict our analyses to

multilayer networks of only two tissues/layers (L = 2) at once, since having more tissues leaves

us with insufficient number of overlapping samples to build a reliable correlation (coexpres-

sion) based multilayer network. Our centrality method is however designed to handle multiple

tissues/layers at once when sufficient samples are available, which is what we demonstrate in

another disease-related application. Both of these applications will be explained in detail later

in the Methods section.

Synthetic multilayer networks

To understand the working of our MultiCens measures, we generate an extensive set of syn-

thetic multilayer networks. As shown in Fig 2, we begin with a two-layered multilayer network

where each layer has 500 nodes. Following the popular ER-random graph generation model

Adding Communities on
the top of base random

multilayer network

Query Set

Directly connected
source set 1

Indirectly connected
source set 2

Other communities in
the networkB

Multilayer random
network of 500
nodes in each

layer.
Any pair of nodes

in the same or
different layers is
connected by an

edge with
probability 0.05

A

Fig 2. Synthetic multilayer network construction. (A) Synthetic network construction starts with a base random multilayer network with edge probability 0.05; (B) On

the base synthetic multilayer network, more edges are added, according to the connection strength desired, both within the selected communities (indicated by circles)

and between certain pairs of communities (indicated by thick dark edges connecting the pair; e.g. between source set 1 and source set 2). In the second layer, when only

one community, query-set, is used, we call this model as the Synthetic Multilayer Network Model 1. When another community (marked in dotted circle) is connected to

the query-set, we call this configuration Synthetic Multilayer Network Model 2.

https://doi.org/10.1371/journal.pcbi.1011022.g002
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[36], we consider all possible pairs of nodes (within and across layer) and put an edge with

probability p = 0.05. This multilayer network is called the base network, and we mark 50 nodes

in layer two as the query-set. On top of the base network, we add additional edges among the

nodes in the query-set by another ER-based process of adding random edges. To add these

additional edges, we vary this additional edge probability p (called connection strength) from

p = 0.05 to p = 1 at steps of 0.05, and obtain a network structure at each step. If a node pair, say

(i, j), gets connected in the base network and gets another edge while adding additional edges,

we assign a weight of two units to the original edge. Similarly, in the first layer, we mark a com-

munity (A community here is a set of nodes chosen at random, among which additional edges

are added in a second step to make it analogous to a network cluster or community.) of 50

nodes directly connected to the query-set, and call it source set 1. Another community of 50

nodes, source set 2, is connected to source set 1. We add another community of 50 nodes in

the second layer which is directly connected to the query-set. The connection strength within

these two communities and between source set 1 and source set 2, and between source set 1 and

query-set is varied from 0.05 to 1. In order to understand the behavior of our centrality mea-

sures under varied settings, we consider two variations in this synthetic multilayer network.

Synthetic Multilayer Network Model 1, when the second layer has only one community which

is the query-set, and Synthetic Multilayer Network Model 2 when an additional community is

also connected to the query-set. In our hormonal signaling example, query-set can be thought

of as a set of genes that respond to a hormone, say insulin in skeletal muscle tissue. Source set 1
and source set 2 can be considered as genes in the pancreas tissue that interact with the query-
set either by direct or two-hop long dense connections.

Since the tissues will have multiple other clusters of genes that are not in the proximity of

insulin-related genes, we mark three such communities of 50 nodes each. Connection strength

within these three communities and across them is also varied.

In this synthetic multilayer network structure, our goal is to understand whether genes

from source set 1 (direct connections) and source set 2 (two-hop connections) get top central-

ity-based ranks for a given query-set, across different values of connection strength.

Real-world application I: Hormone-related multilayer data, networks, and

gene ranking evaluations

Hormone-related multi-tissue data. We work with human multi-tissue datasets and use

the following resources.

1. GTEx.v8 Single-Tissue cis-QTL Data [6] This data is a result of the Genotype-Tissue

Expression (GTEx) project (GTEx_Analysis_v8_eQTL_expression_matrices.tar [37]). The

dataset contains gene expression profiles of hundreds of individuals from over 30 tissues.

The dataset is pre-processed to adjust for some known as well as derived covariates

(GTEx_Analysis_v8_eQTL_covariates.tar.gz [37]) using a linear regression model. We use

the preprocessed/adjusted data to build gene-gene coexpression networks to mitigate the

potentially confounding effect the known/derived covariates could’ve on the coexpression

relations.

2. Stanford Biomedical Network Dataset Collection [38] This dataset (PPT-Ohmnet_tissues-

combined.edgelist [39]) provides a tissue-specific protein-protein edge list for humans. The

data is derived from a global protein-protein network. In the global interactions, if a pair of

proteins is tissue-specific or if one protein is tissue-specific and the other protein is ubiqui-

tous, then the tissue information is associated with the interaction, and hence the tissue-
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specific networks are obtained. Physical protein-protein interactions experimentally sup-

port the edges in the networks.

We retrieve the hormone-producing and responding gene sets from HGv1 database [40,

41] In HGv1, the source and target genes of hormones are first retrieved in a tissue-agnostic

manner, and then through biomedical literature mining source and target tissues of a given

hormone is designated. We treat these hormone producing and responding gene sets as the

ground truth genes for hormonal signaling.

Hormone-related network construction. Gene coexpression networks are known to cap-

ture the patterns of underlying gene expression data that can reveal important biological bio-

markers, functional associations between different genes, etc. In human experiments, we make

use of the GTEx.v8 Single-Tissue cis-QTL data and compute Spearman correlation to find the

correlation coefficients between all gene pairs (within and across tissue) and use it as an edge

weight (absolute value) to signify the strength of interactions. In order to avoid the blowup in

the size of the multilayer network, we only use the top 10k varying genes in each tissue and

take the union of these genes while constructing the multilayer network.

We also use the protein-protein interaction data as described earlier, in addition to using a

gene coexpression network. For every gene-gene pair, if it is present in the protein interaction

data, we increase its weight by 1 unit (adding edge weights) and work with the resultant net-

work. In this paper and its supplementary file S1 Text, we report results on this resultant net-

work unless mentioned otherwise.

In GTEx dataset, combining multiple tissues in a network leads to fewer common samples

and, hence, a less robust network; we restrict these experiments to multilayer networks only

with two tissues (the predominant source and target tissue for a hormone; so these multilayer

networks we construct and analyze are hormone-specific). However, our network generation

mechanism as well as the MultiCens framework to compute centrality can be readily used for

any number of tissues, as we illustrate in the Alzheimer’s brain network application with four

brain regions/tissues.

Evaluation of hormone-gene predictions. In one of MultiCens’ applications, we use hor-

mone-producing set as the query-set of genes and rank all genes in the target tissue to predict

the hormone-responsive set; this process is repeated vice versa to predict hormone-producing

genes from an input query-set of hormone-responsive genes. We use the HGv1 database [40]

as ground truth and validate our gene rankings against it. We also perform disease enrichment

analysis to find that whether our centrality-based gene rankings are enriched for hormone-

related diseases using WebGestalt [42]. To obtain the enriched set of diseases for human gene

rankings, we use the WebGestalt portal and select “Homo sapiens” as the organism of interest.

Method of interest and Functional Database are set to Gene Set Enrichment Analysis (GSEA)

and disease, respectively. We select OMIM functional database and set the significance level to

0.05 FDR cutoff. We give the gene symbols, and their corresponding centrality scores as input,

and the portal returns the set of diseases enriched at the given FDR cutoff. The gene symbols

and their corresponding centrality scores are shared in Data A in S1 Text.

From the gene rankings obtained using our centrality measure, we find the support for top

protein-coding genes based on co-occurrence with hormone-related terms in the PubMed cor-

pus [43]. More information about these evaluation approaches is given below.

1. Recall-at-k plot: This plot can be used to validate the results visually. Both in synthetic as

well as real-world datasets, we have a set of ground truth genes that we expect to come at

the top as per their centrality scores. This can be verified by visualizing recall-at-k plots

where the x-axis reports the top k predictions and the y-axis marks the number of hits from

the ground truth at any given k.
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2. Area under recall-at-k curve: Higher recall-at-k curve implies the better performance of a

method. One way to quantify it is by calculating the area under it. We normalize the maxi-

mum possible area under recall-at-k curve to be 1 and report the area obtained by curves

corresponding to the proposed method.

3. Support from literature: The evaluation metrics discussed above require the ground truth

for evaluation. Many times, especially in biology, it is tough to have access to the complete

ground set of hormone-producing/responding genes. Continuous research like this study

pushes our knowledge boundaries, and we get access to more reliable and more complete

ground truth datasets. In order to validate the novel findings, we rely on support from liter-

ature and use the following two metrics.

a. Co-occurrence in the PubMed database: We use articles present in the PubMed data and

find the support for predicted genes. The support is calculated as an overlap between the

gene name and the hormone/disease name. The support is calculated using the following

formula.

Support ¼
H \ G
H

number of articles on PubMed� G

Where H and G denote the number of articles that mention the hormone name and

gene name, respectively, and H \ G denote the number of articles that contain both the

hormone name and gene name. While finding support for the gene-disease association,

we use articles that contain the disease name instead of hormone name. We use 27 mil-

lion as the number of articles present in the PubMed database.

b. Cosine similarity in the embedding space: We find cosine similarity between the embed-

ding vector of a gene symbol and that of a hormone or disease name. Since cosine simi-

larity can range between -1 and 1, a positive number indicates that the gene-hormone

or gene-disease association is supported in the embedded space. Our embeddings (also

called as word embeddings or embedding vectors) are from BioWordVec [44], a deep

learning model pretrained on the PubMed corpus [45].

Both these metrics use articles present in the PubMed database, but they differ because

the co-occurrence is based solely on the presence of two terms in an article, whereas

the second metric also captures the contextual dependencies in the embedding space.

Our PubMed literature analysis focuses only on the peptide hormones insulin and

somatotropin (out of all the four primary hormones considered), since we wanted to

apply an informative filter to inspect predictions that are only among genes involved in

peptide secretion. List of genes involved in peptide secretion accessed from [46]. This fil-

ter was inspired by a similar filter applied in an earlier study on endocrine interactions

[20].

Real-world application II: Alzheimer’s vs. Control multilayer data,

networks, and rankings

Multi-brain-region data—Preprocessing and correction. The covariate-adjusted tran-

scriptomic (RNA-sequencing) data with the following synapse ids—syn16795931—Brodmann

Area (BM10)—frontal pole (FP), syn16795934—BM22—superior temporal gyrus (STG),

syn16795937—BM36—parahippocampal gyrus (PHG), syn16795940—BM44—inferior frontal

gyrus (IFG), were downloaded from AD Knowledge Portal—The Mount Sinai/JJ Peters

VA Medical Center Brain Bank cohort (MSBB) study [47] (10.7303/syn3159438). The
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preprocessed data is corrected for library size differences using the trimmed mean of M-values

normalization (TMM method—edge R package) and linearly corrected for sex, race, age,

RIN (RNA Integration Number), PMI (Post-Mortem Interval), sequencing batch, exonic

rate and rRNA (ribosomal RNA) rate. The normalization procedure was performed on the

concatenated data from all four brain regions to avoid any artificial regional difference as

before [47].

The clinical (MSBB_clinical.csv) and experimental metadata

(MSBB_RNAseq_covariates_November2018Update.csv) files available on the portal are

used to classify the samples into control (CTL) and Alzheimer’s disease (AD) based on

CERAD score (Consortium to Establish a Registry for AD). CERAD score 1 was used to define

CTL samples, and 2 (‘Definite AD’) was used for defining AD samples [47]. Probable AD

(CERAD = 3) and Possible AD (CERAD = 4) samples were not considered for this study.

To mitigate the confounding effect of cellular composition on gene-gene coexpression rela-

tions, we corrected (linearly adjusted) the RNAseq gene expression data for cell type frequen-

cies of four major brain cell types: astrocytes, microglia, neuron, and oligodendrocytes. We

estimated these cell type frequencies in each brain region/tissue separately from the bulk tissue

expression of the marker genes of these cell types using a cellular deconvolution method called

CellCODE (Cell-type Computational Differential Estimation) [48]. Specifically, we used the

getAllSPVs function from the CellCODE, and provided its input arguments to select robust

marker genes that do not change between AD vs. CTL groups (specified via the mix.par argu-

ment set at 0.3) from a starting set of 80 marker genes (top 20 per cell type, obtained from the

BRETIGEA (BRain cEll Type specIfic Gene Expression Analysis) meta-analysis study [49].

Network construction and enrichment analysis of gene rankings. AD and CTL net-

works are separately constructed as before by computing the Spearman correlation between all

pairs of genes in the four brain regions and taking absolute value of these correlations as the

edge weights. To make the analysis computationally tractable, we restrict our focus to a subset

of genes as follows—identify the 9000 most varying genes in each region for both AD and CTL

populations, and then consider the union of all these gene sets as the final set of nodes in each

layer of the multilayer network. Note that a fully-connected (complete) weighted graph over

this final set of nodes is considered for computing different MultiCens scores.

We used the MultiCens query-set centrality score of all nodes in the AD (or CTL) multi-

layer network to obtain a gene ranking, and subjected the ranking to enrichment analysis with

WebGestalt as described before. Additionally, we applied two redundancy reduction methods

(affinity propagation and weighted set cover in WebGestalt) to select a subset of significantly

enriched (FDR 5%) terms that passed both methods. We used the centrality score of each of

the three brain regions other than the query brain region to find the significantly enriched

terms, considering both Reactome pathways and Gene Ontology based Biological Process

(GO-BP). Along with MultiCens query-set centrality (QC), we have further computed and

analyzed (e.g., using WebGestalt) MultiCens’ local centrality (LC) and global centrality (GC)

measures. To highlight the difference among these three centrality measures, we also com-

puted and analyzed “delta” rankings (i.e., differences in two rankings: “LC − GC”, and “GC

− QC”).

Centrality of random node sets to assess statistical significance

In synthetic benchmarks or hormone-gene prediction application discussed above, we typi-

cally compare the performance of the ranking given by a particular centrality measure to ran-

dom rankings of all nodes in the network that need to be ranked. Specifically, a ranking-based

evaluation metric of a set of nodes of interest S (e.g., recall-at-k of a ground-truth set of genes)
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computed from the actual centrality-based ranking vs. random rankings are then compared

to assess the statistical significance of the centrality scores of node(s) in S. This procedure is

equivalent to comparing the centrality scores of S to that of a random set of nodes whose size

matches the size of S.

To refine the above procedure, we can also have the random set match other properties of

S, such as the expression values or variances of the genes in S across all the samples in the

input dataset. More specifically, we can stratify genes into three classes of genes: ones with low,

medium and high variance across all input samples. We use closed intervals of 0–33, 33–66,

and 66–100 percentile-based cut-offs to classify the genes into low, medium, and high varying

categories respectively. A random gene set is now chosen such that the number of genes in

each of these three classes matches the corresponding number of genes in S. We have per-

formed this refinement for insulin-gene predictions for instance, and show that (see Fig A in

S1 Text) the ground-truth producing or responding gene set of insulin to be predicted has bet-

ter centrality than matched random sets of genes. We provide this stratified random sampling

functionality in our released code, so that it can be used to assess the statistical significance of

the centrality scores of any gene set S of interest.

Results

Capturing multi-hop effects in synthetic multilayer networks

We first evaluate MultiCens on synthetic networks that simulate a real-world application sce-

nario of identifying genes involved in tissue-tissue hormonal signaling. In this scenario, we

test if MultiCens assigns top ranks to hormone-producing genes in a hormone’s source layer,

when hormone-responsive genes in its target layer are provided as the query-set. Since

“ground-truth” hormone-producing genes could be linked to the “query” hormone-responsive

genes via a mixture of direct connections (edges) or indirect one/more-hop connections

(paths), we model our synthetic networks accordingly as a two-layered network with a fixed

query-set in layer 2, and two communities source set 1 and source set 2 in layer 1 that are

strongly connected to layer 2 by direct and multi-hop connections respectively (Fig 2A and

2B). We start with a ground truth set of nodes that has all source set 1 nodes alone, and then

replace a fraction of these nodes with nodes from source set 2 (Fig 2).

A recall-at-100 analysis shows that two existing methods, as well as MultiCens, can recover

the ground truth nodes when they are directly connected to the query-set (Fig 3A, x = 0

curves). However, as we increase the fraction of nodes from source set 2 in the ground truth,

our MultiCens query-set centrality (QC) performs increasingly better than other methods (Fig

3A). These benchmarks show MultiCens QC can rank nodes with direct as well as indirect

(multi-hop) connections to a cross-layer query-set towards the top. This good performance is

due to QC’s ability to distinguish intra- vs. inter-layer edges and importantly focus on the

query-set of nodes (unlike the existing versatility method [21], which can neither quantify

focused influence on a subset of nodes nor distinguish between different edge types); and QC’s

handling of multi-hop connectivity (unlike the existing inter-layer degree based method Ssec,
proposed in a pioneering work on data-driven discovery of endocrine hormone interactions

[20], which handles only direct interactions). In comparison to the closely related RWR-H

[14] centrality measure (see Methods), MultiCens QC performs comparably in synthetic mul-

tilayer network model 1 and better in synthetic model 2 (Fig 3B). Since there are more com-

munities in model 2 than model 1, we need to more precisely capture the influence on the

query-set in model 2. Our results with synthetic multilayer networks encourage the use of a

query set of genes whenever this information is available, and the associated QC measure, in

our MultiCens applications.
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Fig 3. Synthetic multilayer network evaluation. In both the panels, plots on the left and right are respectively obtained using Synthetic Multilayer

Network Model 1 and 2. (A) As more nodes from source set 2 become part of the ground truth (shown as increasing fraction x), our MultiCens

query-set centrality (QC) outperforms the existing methods and other MultiCens measures (local and global centrality, denoted LC and GC

respectively) to a larger extent, especially in the presence of extra communities in the query-set layer (right). We calculated inter-layer degree and

versatility using inter-layer connections to the query-set only; and let RWR-H’s seed nodes be same as the query-set. Each plot shows the
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MultiCens ranks inter-tissue signaling genes at the top

After verifying MultiCens on synthetic multilayer networks, we now apply it to human multi-

layer networks, comprising gene-gene coexpression relations inferred from a multi-tissue

dataset GTEx (Genotype-Tissue Expression [50]) and tissue-specific protein-protein interac-

tions from a repository SNAP/BioSNAP (Stanford Biomedical Network Dataset Collection

[38]) (see Methods). To validate the MultiCens-based gene rankings obtained from any

human multilayer network of interest, we use a Gene Ontology (GO) based database of hor-

mone-related genes HGv1 (Hormone-Gene version 1 [40]) as the ground truth. Our task is to

predict hormone-producing genes when only a query-set of hormone-responding genes is

given as input, and vice versa. To capture the communication paths between a hormone’s pro-

ducing and responding set of genes in the multilayer network, both sets should be sufficiently

large. Hence, we focus our evaluation on hormones with at least 10 hormone-producing and

at least 10 responding genes. Four hormones pass this threshold, and are referred to as the pri-
mary hormones. For all but one of these primary hormones, viz., for Insulin, Somatotropin,

and Progesterone, our MultiCens query-set centrality ranks the ground truth hormone-related

genes towards the top (see recall-at-k plots in Fig 4A). The complete gene ranking for these

hormones is provided in Data A in S1 Text. We provide recall-at-k plots to illustrate the per-

formance of different query-set-focused centrality measures while predicting hormone gene

relations in Fig B in S1 Text. We find that different methods offer unique insights into the bio-

logical system, with no one measure being universally effective. Overall, MultiCens query-set

centrality (QC) performs better than or comparably to other methods with some exceptions

like when predicting progesterone-responding genes.

We then expanded our application to all hormones with at least 10 genes in the hormone-

producing set or the responding set or both sets, and report such hormone’s Area Under

recall-at-k Curve or AUC in Fig 4B (see also Table A in S1 Text for results on all tested hor-

mones, and associated Fig C in S1 Text for recall-at-k curves for all tested hormones, including

recall curves for ground-truth sets smaller than 10 genes). For a majority of these hormones

(all but 5 of the corresponding 16 prediction tasks in Fig 4B), our MultiCens gene rankings

yield AUCs better than that of random rankings. When we remove SNAP-based protein inter-

actions and keep only coexpression edges in the human multilayer networks (Fig 4B; lighter

dots), performance drops slightly, but otherwise the trend of AUCs remain similar. Taken

together, these results affirm the robustness of MultiCens in ranking genes associated to hor-

monal inter-tissue signaling at the top.

MultiCens gene rankings are enriched for hormone-related diseases

The promising validation of MultiCens-based gene rankings using the ground truth HGv1

database encouraged us to test if our top-ranking genes are enriched for the corresponding

hormone-related disorders/diseases (as in our earlier literature mining study [40]). Among all

enriched disease terms at FDR 5% (Fig 5A), many of them are well-supported in the literature

such as enrichment of Type-2 Diabetes for Insulin [51], breast cancer for progesterone [52],

and colorectal cancer for somatotropin [53]. Moreover, insulin resistance leads to chronic

hyperinsulinemia, which is further associated with various types of cancer including breast,

colorectal, prostate cancer among others [54, 55], as reflected in our enrichment results.

connection strength (x-axis) against the number of ground truth nodes in the top 100 ranked nodes (y-axis). (B) Analysis of ranks based on

MultiCens QC and our closely related method RWR-H. MultiCens QC (y-axis) distinguishes nodes coming from different sets somewhat better

than RWR-H (x-axis), with this trend more clear in Synthetic Multilayer Network Model 2 than 1. Both these plots correspond to connection

strength 1 as shown in (A).

https://doi.org/10.1371/journal.pcbi.1011022.g003
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Fig 4. MultiCens on human multilayer networks: Ground-truth validation. (A) Recall (# of ground truth genes recovered; y-axis) in the top k ranked genes (x-axis)

are plotted using MultiCens query-set centrality based ranking vis-à-vis a random ranking (random curve). Only primary hormones shown here; see Fig B in S1 Text for

comparison with other methods, and Fig C in S1 Text for plots for the other tested hormones. (B) For hormones with 10 or more genes in either producing or

responding set, the smaller set is used as the query-set, and the plot reports AUC score for predicting the bigger set (marked in bold-face font in x-axis). For the four

primary hormones having at least 10 genes on both producing and responding sets, plot reports AUC for predicting both sets. See also Table A in S1 Text.

https://doi.org/10.1371/journal.pcbi.1011022.g004
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Insulin resistance in skeletal muscle leads to a condition less studied called diabetic myopa-

thy, where the strength and mass of skeletal muscle is reduced [56]. In case of somatotropin, a

growth hormone secreted by the pituitary gland, our enrichment result confirms its associa-

tion with increased colon polyps and cancer [57]. Finally, mood-related disorders typically

Fig 5. MultiCens on human multilayer networks: Prior support and novel predictions. (A) Shown are all disease gene sets based on OMIM (Online Mendelian

Inheritance in Man) that are enriched for top MultiCens centrality scores at FDR 5%, as reported by WebGestalt (see Methods; when predicting somatotropin-

responding genes in liver, no disease enrichments pass this FDR cutoff; see also Fig D in S1 Text for the other two primary hormones’ disease enrichments). (B)

Literature support for our top 10 predicted genes (ranked only among genes involved in peptide secretion) for the two peptide hormones, along with their co-

occurrence scores and similarity in embedding space with hormone-related terms. Genes with a yellow background are present in the ground truth (HGv1 database);

from the remaining genes, the green background represents genes supported by scores (co-occurrence score� 1) for either or both hormone-related terms, and white

background represents the other genes not supported by scores for both hormone-related terms. See also Table B in S1 Text for gene names corresponding to the gene

symbols shown.

https://doi.org/10.1371/journal.pcbi.1011022.g005
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associated with Norepinephrine were not enriched in our analysis, in line with the poor valida-

tion of this hormone against HGv1 ground truth; however, this hormone is an etiological fac-

tor for different cancer types [58], including the ones found in our enrichment analysis (Fig D

in S1 Text). Summarizing, for three of our four primary hormones with sufficient gene associa-

tions, our MultiCens ranking reveals meaningful disease enrichments.

PubMed literature analysis of MultiCens predictions reveals known and

novel hormone-gene links

Ground-truth databases including our HGv1 could be incomplete and miss certain genuine

hormone-gene relations. So we turn to the PubMed literature corpus to search for known vs.

novel hormone-related genes amongst the top-ranked genes returned by our MultiCens on the

hormone-specific human multilayer networks. We employ two PubMed-derived scores to

quantify the evidence for a potential link between a hormone and a gene: (i) co-occurrence or

co-mention of a hormone-gene pair in published articles in PubMed (see Methods), and (ii)

contextual similarity between a hormone and a gene in the corpus, which can also identify hor-

mone-gene pairs not co-mentioned in any publication. Text-based deep learning methods can

successfully capture the contextual similarity between two words via cosine similarity of their

corresponding word embedding vectors [45], and this is what we adopt too (see Methods).

In this literature-based analysis, we focus on peptide hormones insulin and somatotropin,

so that we can apply a filter to test predictions that are only among genes involved in peptide

secretion (see Methods). Fig 5B shows the top 10 secretory genes in the MultiCens ranking for

each hormone (when MultiCens centrality is obtained by taking the hormone-responsive

genes as the query-set) along with their co-occurrence and contextual similarity scores with

the hormone-related terms. While a few genes (yellow background) from our predictions are

already present in our ground truth HGv1, there are other genes (green background) not pres-

ent in HGv1 but whose associations are confirmed by the high PubMed-based similarity scores

with at least one of the hormone-related terms. For insulin for example, we obtain two such

out-of-ground-truth genes: LRRC8, which has been found to enhance insulin secretion in pan-

creatic β-cells in a recent study [59], with later studies confirming its role in insulin resistance

and glucose resistance [60]; similarly, EGFR gene is known to mediate diabetes-induced

microvascular dysfunction [61].

For both hormones, we find certain novel gene predictions that are both absent in our

ground truth and have poor PubMed literature support scores (white-background genes in Fig

5B). One such novel prediction is CD74 for insulin—this gene’s role in insulin secretion and

related diseases was not well-established until the recent discovery of its participation in insu-

lin resistance [62]. Another example of a novel prediction is RFX3 for somatotropin – this

gene has no direct co-occurrence with hormone-related terms, but is known to play a role in

hydrocephalus disease [63], which is associated with deficiency in this growth hormone [64].

Based on the top centrality ranks and the above-discussed recent or indirect pieces of literature

evidence, the role of genes like CD74 and RFX3 respectively in insulin and somatotropin sig-

naling warrant further exploration and can be prioritized in future experiments. For further

details, please see Results in S1 Text.

MultiCens identifies lncRNAs as integral part of hormone signaling

networks

The role of protein-coding genes in hormonal signaling is well established, but that of long

non-coding RNAs (lncRNAs) in the endocrine system is only evolving. Uncovering lncRNA’s

association to the hormones may provide a ground for innovative treatment strategies for
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related diseases, and MultiCens provides a systematic data-driven discovery of these associa-

tions. Table 1 shows the top 5 lncRNA genes among the top 1000 MultiCens-predicted genes

in terms of tissue-specific gene rankings for each primary hormone. Table C in S1 Text pro-

vides supporting references for each predicted lncRNA (hence we do not cite all references

explicitly in the following text).

For the insulin hormone, MultiCens detected PRKCQ-AS1, a natural antisense lncRNA for

the diabetes drug-target and insulin signaling regulator PRKCQ (Protein kinase C theta). Gene

PRKCQ has higher activity in muscle from obese diabetic patients and PRKCQ-AS1 is required

to maintain a relatively constant level of PRKCQ. Recent evidence indicates that lncRNAs,

through β-cell mass modulation, affect insulin synthesis, secretion and signaling, thereby

enhancing the progression of type-2 diabetes mellitus (T2DM) [65].

MultiCens-predicted lncRNA MIR22HG is reported for instance as a hub node in a com-

petitive endogenous RNA (ceRNA) network related to T2DM, along with other cancer signal-

ing pathways.

Further, PWAR6 (Prader Willi/Angelman region RNA 6) is reported to play a major role in

the Prader–Willi syndrome (PWS) phenotype, and PWS patients are often diagnosed with

T2DM. It will be interesting to find if there is any direct link between PWAR6 and T2DM.

Somatotropin, a growth hormone secreted in the anterior pituitary gland, stimulates body

growth, and also stimulates liver and other tissues to produce Insulin-like growth factor I

(IGF-I), which in turn results in cartilage cell proliferation and bone growth [66, 67].

Reassuringly, lncRNAs predicted for association to somatotropin in liver are involved

in many liver diseases and cancer. NEAT1 (nuclear paraspeckle assembly transcript 1) is

significantly increased in non-alcoholic fatty liver disease (NAFLD) and its’ high expression is

correlated with worse survival in cancer patients. Expression of MIR210HG increases in hepa-

tocellular carcinoma (HCC) cells relative to paired adjacent normal liver tissue samples and

relative to normal liver cell line. Similarly, LINC01278 mediates HCC metastasis by regulating

miR-1258 expression.

Although lncRNAs are correlated with multiple cancers in general, their molecular mecha-

nisms in the context of hormone signaling remain inadequately understood. Our predictions

linking a hormone and its predicted lncRNA to the same cancer type can thus accelerate and

prioritize experimental investigations of these mechanisms. For instance, breast, ovary and

uterine endometrium are known targets of progesterone, and the lncRNAs with high

Table 1. Top five ranked lncRNAs by MultiCens in source and target tissues of the four considered hormones.

Insulin Somatotropin

Pancreas Skeletal Muscle Pituitary Gland Liver

1 LINC00672 ZEB1-AS1 1 LINC01588 NEAT1
2 HOXA-AS2 TNK2-AS1 2 PTPRD-AS1 ZNF528-AS1
3 PRR34-AS1 PWAR6 3 LINC01132 MIR210HG
4 MIR22HG PRRT3-AS1 4 UCA1 ALMS1-IT1
5 LINC00294 PRKCQ-AS1 5 LINC01473 LINC01278

Progesterone Norepinephrine

Ovaries Uterus Adrenal Glands Small Intestine

1 CCDC18-AS1 HAGLR 1 PGM5P4-AS1 RNF139-AS1
2 LINC00641 TAF1A-AS1 2 CCDC18-AS1 CARMN
3 MIR210HG LINC00602 3 MAGI2-AS3 SPATA41
4 LINC01016 PCAT19 4 LINC01291 GHET1
5 BEAN1-AS1 HHIP-AS1 5 TOLLIP-AS1 ATP1B3-AS1

https://doi.org/10.1371/journal.pcbi.1011022.t001
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progesterone-related query-set centrality are seen to be involved in cancer of these three

regions (see Results in S1 Text). Results in S1 Text also discusses how somatotropin’s involve-

ment in proliferation is reinforced by MultiCens-detected lncRNAs, most of which are linked

to cancer cell growth.

Finally, MultiCens yields interesting lncRNA predictions for norepinephrine, a neurotrans-

mitter which promotes vasoconstriction and controls heart rate and also effects intestinal

absorption and secretion by regulating the tone of smooth muscle. CARMN, a smooth muscle

cell-specific lncRNA, detected by MultiCens, is reported to regulate cardiac cell differentiation

and homeostasis. Further, lncRNA GHET1 has effects in development of pre-eclampsia, a diffi-

cult pregnancy indicated by high blood pressure. Based on the role of these lncRNAs, they

seem to be influenced by norepinephrine, but exact mechanism of regulation requires further

study. MultiCens therefore predicted lncRNAs, a few of which are already present in our

ground-truth database, as well as other novel ones with interesting links to hormonal signaling

and disorders.

MultiCens detects changes in brain networks between Alzheimer disease

and control populations

After recognizing the potential of MultiCens in identifying genes (both protein coding and

lncRNAs) in hormone signaling pathways in health, we employ it to understand the change in

the gene-gene network structures in disease, specifically Alzheimer’s disease (AD) relative to a

control (CTL) population. We retrieved data of 264 AD and 372 control human postmortem

RNAseq samples from Mount Sinai Brain Bank dataset [47] for four brain regions: frontal pole

(FP), superior temporal gyrus (STG), parahippocampal gyrus (PHG), and inferior frontal

gyrus (IFG). We construct one multilayer network for the AD group of individuals and

another for the CTL group, with four layers in the network representing the four brain regions,

and network nodes and edges representing respectively the genes in these brain regions and

gene-gene coexpression relations (after adjusting for covariates; see Methods). We use the

genes involved in synaptic signaling (SSG) in the PHG region as the query-set of genes (134

genes), and identify the disease-driven change in the query-set centrality-based ranking of

genes in the remaining three regions. We observed considerable shift in the ordering of these

three brain regions in the AD vs. CTL multilayer networks according to their median gene

centrality scores (see Fig 6A, STG region’s ordering for instance). In terms of individual genes,

ANKFN1, OR10AD1 and PLCD3 gain the highest positive shift in AD-based ranking in the FP,

STG and IFG regions respectively. ANKFN1 is found to be upregulated in hippocampus tissues

of AD patients [68]. Though OR10AD1 (olfactory receptor family 10 subfamily AD member 1)

is not yet connected to AD, olfactory impairments is recently reported to be one of the early

phase’ pathophysiological changes in AD [69]. PLCD3 is known to be upregulated in the AD

population along with other regulators of lipid metabolism [70]. We provide the complete

gene rankings of all three regions for AD vs. CTL networks in Data B in S1 Text.

MultiCens also offers an across-region view of gene importance in the AD or CTL multi-

layer networks. In the AD network, irrespective of brain regions, genes JMJD6, SLC5A3,

CIRBP, TARBP1 and AHSA1 are among the top ten central genes correlated with the SSG set,

of which AHSA1 (activator of HSP90 ATPase activity 1) is already known to correlated with

AD progression by promoting tau fibril formation [71]. On the other hand, CIRBP (cold

inducible RNA binding protein) shields neurons from amyloid toxicity mediated by antioxida-

tive and antiapoptotic pathways, making it a favourable molecule contending for AD preven-

tion or therapy [72]. It may be worth studying the other three genes experimentally to test

their connections to AD pathology.
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Similar to these individual genes, certain biological pathways were also enriched for top

ranks, irrespective of the brain region, in the AD network (see Fig 6B)—examples include

HSP90 chaperone cycle for steroid hormone receptors (R-HSA-3371497) pathway and nega-

tive regulation of nervous system development (GO:0051961). Heat shock protein 90 (Hsp90),

Fig 6. MultiCens on multi-brain-region networks in disease. Study of changes in MultiCens Query-set centrality based gene rankings of four-layer networks of

control and Alzheimer affected population. We rank genes of frontal pole (FP), superior temporal gyrus (STG) and inferior frontal gyrus (IFG) using MultiCens

centralities calculated using a query-set of synaptic signaling genes in parahippocampal gyrus (PHG). (A) Bar-plot showing region-wise shift of centrality scores of the

three regions. (B) Reactome pathways and Gene Ontology-based process (GO-BP) enrichment analysis of each region in control and AD state. Color map represents

the normalized enrichment score from WebGestalt. The highlighted boxes pass the 0.01 FDR cut-off. If centrality-based gene rankings of a region do not pass the 0.05

FDR cut off for an enrichment, we set the corresponding normalized enrichment score to 0.

https://doi.org/10.1371/journal.pcbi.1011022.g006
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“a molecular chaperone”, is known to induce microglial activation leading to amyloid-beta

(Aβ) clearance [73].

The across-region consistency of top-ranking genes/pathways in the AD network is not

observed in the CTL multilayer network. For example, gene CDK5R2 (Cyclin Dependent

Kinase 5 Regulatory Subunit 2) is ranked 3rd in FP, rank 224 in STG, and 2076 in IFG. Path-

way enrichments are also more region-specific in the CTL network (relative to AD network;

see Fig 6B), such as Axon guidance in FP, Cell-cell junction organization in STG, and immune

system in IFG. The intricate links between immune system and neuronal signaling is well-

appreciated.

Other enrichments that serve as a positive control to increase confidence in our MultiCens

rankings are those of biological processes like ‘regulation of trans-synaptic signaling’ in FP and

STG, and ‘synapse organization’ in IFG.

While we have described the results from query-set centrality (QC) based rankings in detail,

we also computed the local centrality (LC) and global centrality (GC) and found out the pair-

wise difference between these rankings (“delta” ranks) for the AD network. We got important

biological insights from the different centrality measures—while better ranked genes in LC are

enriched for RNA splicing, those in GC are enriched for acute inflammatory response and

Interleukin-10 signaling pathway (see Table D in S1 Text for a full list of enriched GO-BP and

Reactome pathways). Further, the distribution of LC and GC ranks for the above mentioned

GO-BPs (see Fig E in S1 Text) show that while some genes have an active role to play within

brain regions, other genes are influential in inter-brain-region connectivity. We observed a

similar trend when inspecting GC-QC delta ranks (see Table E in S1 Text and Fig F in S1

Text). Taken together, having multiple centrality values within our MultiCens framework is

advantageous in bringing out different facets (different enriched molecular pathways) of the

AD disease network.

Finally, to find out whether changes in AD-network is specific to the query pathway or sim-

ilar across pathways, we further use plaque-induced genes (PIGs, total 57 genes), prominent in

the later phase of AD, as query-set in PHG instead of the SSG set and repeat the same analysis

with MultiCens. We found predominant similarities as well as certain interesting differences

in centrality ranks between the two query gene sets. While pathways related to heat stress was

common for both query sets, synaptic signalling related process like “cell-cell junction organi-

zation” was prominent for SSG set and interleukin signaling was exclusively noted for PIG set

(see Fig G in S1 Text, Fig H in S1 Text and Results in S1 Text for a detailed discussion). In

aggregate, these results on alterations of brain networks in Alzheimer’s disease using different

query sets show how MultiCens can provide a new network-centric perspective and related

hypotheses for prioritizing experimental investigations of disease mechanisms.

Discussion

We propose a computational framework for modeling a multi-tissue system as a multilayer

network and then introduce a set of centrality measures MultiCens to capture the influence of

a gene at the tissue and across-tissue levels. MultiCens specifically harnesses the multilayer net-

work structure to decompose the overall centrality of a gene into its local/within-layer vs.

global influences, and further into the gene’s influence on a particular tissue or a query-set of

genes in that tissue. Our extensive set of experiments demonstrates the effectiveness of Multi-

Cens on both synthetic and real-world multilayer networks. For instance, with real-world net-

works learnt from multi-tissue genomic data, MultiCens revealed gene mediators of endocrine

hormonal signaling between human tissues, which were then validated via overlap with

known hormone-gene relations in HGv1 ground-truth database or in PubMed literature
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corpus, and via hormonal disease enrichment analysis. Further, out-of-ground-truth gene pre-

dictions supported by PubMed literature corpus can in turn be used to prioritize annotation

and curation efforts of ground-truth databases. Specifically, these MultiCens predictions can

be used to update the current HGv1 database and underlying GO terms with new hormone-

producing or responsive genes. In addition to predicting hormone-gene relations, when

applied to a multi-brain-region dataset, MultiCens can point to specific genes and pathways

whose centrality scores change between AD vs. CTL groups. The novel predictions/hypotheses

generated and ranked by MultiCens in both these applications can guide downstream experi-

ments, and thereby foster the emerging field of studying the whole body at the molecular

(gene) yet holistic (multi-organ/tissue) levels.

MultiCens performance in predicting hormone-gene relations depends on the quality of

the underlying network and that of the query-set. Hence, our method would have difficulty

with networks inferred from multi-tissue datasets of small sample sizes, and with poorly-stud-

ied hormones with very few known gene regulators that could be used as the query-set. We get

around the sample size issue by applying MultiCens to data from two tissues at a time (the

source and target tissue of a hormone profiled in GTEx; see Methods), rather than all tissues at

once, which suffers from small sample sizes. To work around the query-set issue, we restrict

MultiCens predictions to only hormones with sufficient query genes (i.e., at least 10 hormone-

producing or responding genes in the ground-truth database). These workarounds have

enabled MultiCens to systematically identify known as well as novel gene regulators of hor-

mone-mediated inter-tissue communication. Based on our study, experiments can be designed

to investigate the top-ranked genes to identify their roles in cross-tissue communication. In

addition to identifying the involvement of protein-coding genes in inter-tissue communica-

tion, our method recognizes potential lncRNAs that may play a crucial role in hormonal sig-

naling pathways [74]. The participation of lncRNA genes in tissue-tissue communication was

not known until very recently, and so there is limited ground-truth data to evaluate the accu-

racy and statistical significance of our hormone-lncRNA predictions. We showed the biologi-

cal significance of a few top-predicted lncRNAs alone, but couldn’t find evidence of statistical

significance when the null model is a random set of genes of matching size and variances as

the set of lncRNAs. We leave it as future work to re-assess the statistical significance of the

lncRNAs’ centrality scores using other null models.

The concept of brain gene network structure and its shift in neurodegenerative disease

such as AD is emerging rapidly. MultiCens helps to understand this shift from a new per-

spective—we specifically observe how the influence of a given set of genes in a particular

brain region on the genes of other brain regions changes in the AD population relative to the

control group. We observe the predominance of heat shock protein related pathway (HSP90

particularly) in AD gene-gene network both under the influence of synaptic signaling and

PIG related gene set. This may be AD specific change irrespective of region, or may be the

result of influence by PHG on AD pathology. Pathways and biological process specific to net-

work in CTL group are also revealed. Major repositioning of genes is seen between AD and

CTL group, expect for a few genes, particularly RBM3 (RNA Binding Motif Protein 3), which

is top ranked gene with high centrality score (>0.9) in both conditions, in all three brain

regions and in case of both the query sets. RBM3 is known to maintain neural stem cell self-

renewal and neurogenesis [75]. Does it act as a hub gene for networks linked to PHG, or is

an universal hub gene for most of the brain subnetworks? It will be interesting to find the

role RBM3 in brain gene-gene network. Results from this study will help to design specific

experiments and give us much better understanding about the brain network structures that

are conserved across regions and disease/healthy states, as well as those that are specific to

disease states.
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The encouraging results from applying MultiCens to understand hormone-gene signaling

network and brain network rewiring in AD holds promise for future applications. For

instance, MultiCens can be used for “Multi-tissue(-network)-expanded Gene Ontology” analy-

sis of a given set of genes of interest—i.e., computing MultiCens on this query gene set using

the underlying multilayer network and coupling it with enrichment analysis can reveal not

only pathways directly enriched in this query-set as is usually done, but also pathways enriched

in the (within-/across-tissue) neighborhood of this query-set. The current manuscript has

focused on gene-gene coexpression networks that are reliably inferred from large transcrip-

tomic datasets. Multi-tissue proteomic data is not available to the same extent in large cohorts

(several hundreds) of individuals. However as such datasets become more available in the

future, we can use MultiCens to analyze exclusive protein coexpression networks to elucidate

the key roles proteins play within the human body. MultiCens applications have been human-

centric in this study—our preliminary exploration of applying MultiCens to data from a differ-

ent species like mouse showed that species-specific tuning of our framework may be required,

and would be in the scope of future work. Further, MultiCens can also be extended to provide

new perspectives on existing biological network modeling studies, such as ligand-receptor and

related gene regulatory network analysis to decipher inter-cellular communication from sin-

gle-cell transcriptomic data [76–80], or tau pathology spread in AD via brain connectome net-

works [81]. Thus, applicability of MultiCens to study biological systems is manifold.

Beyond the field of biological networks, our measures represent an advance in the overall

field of network centrality as well. For instance, compared to existing studies: (a) that are pri-

marily based on either direct inter-layer interactions [20], or handle multi-hop connectivity

but fail to distinguish between within- vs. across-layer interactions [7, 21], MultiCens accounts

for the multilayer multi-hop network connectivity structure of the underlying system; (b) on

multiplex network centrality [14, 22–24], our MultiCens measures work for the more general

class of multilayer networks (of which multiplex networks is a popular yet restricted sub-class);

(c) on a RWR (Random Walk with Restart) based centrality score for each node of a heteroge-

neous or multilayer network [14, 25–27], we provide different informative MultiCens scores

for each node at different global vs. local levels of granularity. For these reasons and the diverse

applications we’ve demonstrated above, we believe our work on multilayer centrality opens up

several future application areas in multi-organ systems-level modeling, a field that has been

dominated so far by whole-body metabolic models [2] but onto which multi-organ gene net-

work models like the ones proposed in this study can be integrated.
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