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Abstract

Motivation: Enrichment analysis is a widely utilized technique in genomic analysis that aims to determine if there is
a statistically significant association between two sets of genomic features. To conduct this type of hypothesis test-
ing, an appropriate null model is typically required. However, the null distribution that is commonly used can be
overly simplistic and may result in inaccurate conclusions.

Results: bootRanges provides fast functions for generation of block bootstrapped genomic ranges representing the
null hypothesis in enrichment analysis. As part of a modular workflow, bootRanges offers greater flexibility for com-
puting various test statistics leveraging other Bioconductor packages. We show that shuffling or permutation
schemes may result in overly narrow test statistic null distributions and over-estimation of statistical significance,
while creating new range sets with a block bootstrap preserves local genomic correlation structure and generates
more reliable null distributions. It can also be used in more complex analyses, such as accessing correlations be-
tween cis-regulatory elements (CREs) and genes across cell types or providing optimized thresholds, e.g. log fold
change (logFC) from differential analysis.

Availability and implementation: bootRanges is freely available in the R/Bioconductor package nullranges hosted at
https://bioconductor.org/packages/nullranges.

1 Introduction

In genomic analysis, to assess whether there is a significant positional as-
sociation between two sets of genomic ranges, one must choose an ap-
propriate null model (De et al. 2014; Kanduri et al. 2018). Here, we use
the term “ranges” to denote a set of genomic features defined by se-
quence name (e.g. chromosome), starting basepair, ending basepair, and
optionally strand and other metadata variables. For example, an enrich-
ment of assay for transposase-accessible chromatin with sequencing
(ATAC-seq) peaks near certain genes may indicate a regulatory relation-
ship (Lee et al. 2020), and enrichment of genome-wide association study

(GWAS) single nucleotide polymorphisms (SNPs) near tissue-specific
ATAC-seq peaks may suggest mechanisms underlying the GWAS trait.
Such analyses rely on specifying a null distribution, where one strategy
is to uniformly shuffle one set of the genomic ranges in the genome, pos-
sibly considering a set of excluded regions where ranges should not be
placed (Ogata et al. 2022). However, uniformly distributed null sets
will not exhibit the clumping property common with genomic regions.
Using an overly simplistic null distribution that doesn’t take into ac-
count local dependencies could result in misleading conclusions. More
sophisticated methods exist, for example GAT, which allows for con-
trolling confounding factors via segmentation (Heger et al. 2013), and
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regioneR, which implements a circular shift to preserve the clumping
property (Gel et al. 2016). The block bootstrap (Politis et al. 1999) pro-
vides an alternative, where one instead generates random sets of ranges
by sampling large blocks of ranges from the original set with replace-
ment, as originally proposed for genomic data by Bickel et al. (2010) in
Genome Structure Correlation (GSC). Using the block bootstrap is
more computationally intensive than simple shuffling, and so GSC
implements a strategy of swapping pairs of blocks to compute overlaps,
while avoiding a genome-scale bootstrap.

Here, we describe the bootRanges software, with efficient vector-
ized code for performing block bootstrap sampling of genomic ranges
stored as GRanges objects in R/Bioconductor (Lawrence et al. 2013).
bootRanges is part of a modular analysis workflow, where boot-
strapped ranges can be analyzed at block or genome scale using tidy
analysis with packages including plyranges (Lee et al. 2019), and tidy-
bulk (Mangiola et al. 2021). We provide recommendations for gen-
ome segmentation and block length motivated by analysis of example
datasets. We demonstrate how bootRanges can be incorporated into
complex downstream analyses, including choosing the thresholds dur-
ing enrichment analysis and single-cell multi-omics. bootRanges is dis-
tributed as part of the nullranges R/Bioconductor package. If directly
controlling for nuisance covariates when building background sets is
of interest, the sister function matchRanges (Davis et al. 2022) may be
more appropriate, see the package documentation for an overview of
bootRanges and matchRanges.

2 Features

bootRanges offers a “segmented” block bootstrap: since the distribu-
tion of ranges in the genome exhibits multi-scale structure, we follow
the logic of Bickel et al. (2010) and consider to perform block boot-
strapping within segments of the genome, which are more homoge-
neous in their range density. A simple “unsegmented” block bootstrap
is additionally implemented but the segmented version is generally rec-
ommended. We consider various genome segmentation procedures,
segmenting on gene density, or pre-existing annotations, e.g. Giemsa
bands or published segmentations. The genome segments define large
(e.g. on the order of �1 Mb), relatively homogeneous segments from
which to sample blocks (Fig. 1A). Blocks are sampled across segments
that are in the same segmentation state (see Supplementary Material
for details). The input for the workflow is range sets x and y, with op-
tional metadata columns that can be used for computing a more com-
plex test statistic than overlaps. Given a segmentation and block length
Lb, a BootRanges object is generated, which concatenates ranges
across bootstrap iterations. This BootRanges object can be manipu-
lated with plyranges to derive the bootstrap distribution of test statistics
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algorithms are explained schematically in Supplementary Section S1.6.

3 Application

3.1 Test for association between SNPs and peaks
We first applied bootRanges to determine the significance of the overlap
of liver ATAC-seq (Currin et al. 2021) with SNPs associated with total
cholesterol, bootstrapping the SNPs to assess significance. While the
observed overlap was significant across many combinations of various
segmentation methods and Lb according to typical P-value cutoff, the
variance of the bootstrap statistics distribution and the resulting z score
varied across segmentation choice, though varying more across block
length (Fig. 2A and B). The effect of segmentation may be stronger in
other contexts. We used the z score to measure the distance between the
observed statistics and bootstrap distribution in terms of standard devia-
tions. Overlap rate was defined as the proportion of SNPs that had
peaks within 10 kb. That the variance of the overlap rate in Fig. 2A for
the unsegmented bootstrap was larger than for the segmented cases and
increased with Lb indicated that the density of ranges varies along the
genome and that bootstrapping with respect to a genome segmentation
may be a more appropriate choice (Bickel et al. 2010). The decreasing
trend using pre-defined segmentation from Roadmap Epigenomics indi-
cated too many short segments, where Lb is too close to Ls for effective
block randomization. To chose an optimal segmentation, we noted
those for which the variance of the bootstrap distribution becomes sta-
ble as Lb increases (Fig. 2A). To choose an optimal Lb range, two
aspects were considered: (i) we sought a minimum value of a scaled ver-
sion of the change in the variance of bootstrap statistics distribution
across Lb, as recommended previously (Bickel et al. 2010), and (ii) we
assessed whether the distribution of inter-range distances was preserved,
when comparing to the original ranges (Supplementary Section S1.5).
Here, Ls � 2 Mb and Lb 2 ½300kb;600kb� was shown to be a good
range for segment and block lengths (Supplementary Fig. S2A–C, and
Supplementary Section S2.2). The scientific conclusion of this example
was that liver ATAC-seq peaks were much closer to total cholesterol
SNPs than expected even when placing blocks of SNPs to match a gen-
ome segmentation. Shuffling of genomic ranges (Supplementary Section
S1.3) resulted in a much higher z ¼ 18:5, compared to z � 4 consistent
with previous conclusions that shuffling may overestimate significance
leading to misinterpretation of enrichment.

3.2 Choosing thresholds for enrichment analysis
We demonstrated using bootRanges to motivate the choice of data-
driven thresholds during enrichment analyses. We tested this on a
dataset of differential chromatin accessibility and gene expression
(Alasoo et al. 2018; Lee et al. 2020) and the liver ATAC-seq. A gen-
eralized linear model with penalized splines was fit to the overlap
count over gene logFC, both for the original data and to each of the
generated null sets. Conditional densities of splines fit to null sets
were computed at various thresholds to reveal how the threshold
choice would affect the variance of the bootstrap density and the
resulting z score (Fig. 2C). The observed enrichment with respect to
bootstrapped ranges varies over the logFC threshold. Instead of
picking an arbitrary logFC cutoff, these analyses suggested that
SNPs with -log10 (P-value) > 8 and genes with jlogFCj > 2 were
sets where the z score reflected strong separation of the observed

Figure 1. Schematic overview of the segmented block bootstrap for assessing signifi-

cance of an observed statistic. (A) In each bootstrap sample, new sets of ranges are

created by resampling blocks of length Lb, with replacement, from the original set

y. Color represents genome segmentation states, such that blocks may be sampled

across chromosomes, from within the same segmentation state. (B) Workflow for

testing association between ranges in x and y, e.g. counting the number of overlap-

ping ranges. First, R bootstrap samples of y are generated and stored as a

BootRanges object. Then, the bootstrap distribution of test statistics (e.g. count of

overlaps) between x and BootRanges is computed. Finally, the observed overlap

statistic between x and y is compared to the bootstrap distribution.

Figure 2. Parameter selection and overlap analysis. (A) Variance of the rate of over-

laps and (B) z score for the overlap, for different segmentations and Lb on the liver

dataset. (C) GAM predicted curves for observed (black line) and bootstrapped data

(densities), for the overlap count over gene logFC. Conditional densities are colored

by the z score for the overlap.
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statistic from the bootstrap statistic distribution (Supplementary Fig.
S3).

3.3 Identification of gene-promoter pairs by single-cell

multi-omics
We applied bootRanges to single cell multiome ATAC-seq and
RNA-seq, to assess the correlation (q) of log counts for the two
modalities for all pairs of genes and peaks, across 14 cell types
(pseudo-bulk). Across all genes, we observed q ¼ 0:33, which was
significantly higher than the bootstrap correlation mean
(Supplementary Fig. S4A, qR ¼ 0:007). As expected, RNA and
ATAC measured at local peaks had similar cell-type-specificity.
Additionally, the average gene-peaks correlation per gene can be
computed and compared to a bootstrap distribution to identify
gene-promoter pairs that were significantly correlated across cell
types (Supplementary Fig. S4B and C).

3.4 Simulation and timing
To assess the accuracy of the bootstrap distribution in capturing the
true null distribution, we generated a simulation in which there was
no true association between x and y. We compared the bootstrap
distribution using bootRanges with that using shuffling. Details are
provided in Supplementary Section S2.1. Given that there is no true
association, we would expect false positive rate (FPR) �a, the
threshold for significance, if the randomization method was success-
fully approximating the data generating distribution for y. We found
that bootRanges could achieve an FPR near a. Shuffling however
generated a distribution of statistics with similar mean as the origin-
al distribution, but with much lower variance. Therefore, the FPR
for shuffling in this simulation was relatively high and would lead to
overestimation of the significance of the overlap (Supplementary
Fig. S1).

To compare speed, we ran bootRanges and GSC on ENCODE
kidney and bladder ChIP-seq. The average time to block bootstrap
the genome using bootRanges was 0.30 s and 0.37 s with overlap
computation. A comparable analysis with GSC took 7.56 s.

4 Conclusion

bootRanges efficiently generates null models of genomic ranges pre-
serving local genomic correlations, and can be used easily in com-
bination with other range-based tools such as plyranges. Its
versatility allows for the exploration of various hypotheses related
to any type of feature in genomic analysis, including investigating
gene regulation that is specific to certain cell types.

Data availability

bootRanges is distributed in the nullranges R/Bioconductor package,
while all of the R scripts and data used in this article are available at
the following GitHub repository: https://github.com/Wancen/boot
Rangespaper.

Supplementary data

Supplementary data is available at Bioinformatics online.
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