
Sequence analysis

PyHMMER: a Python library binding to HMMER for

efficient sequence analysis

Martin Larralde * and Georg Zeller *

Structural and Computational Biology Unit, EMBL, Meyerhofstraße 1, Heidelberg 69117, Germany

*Corresponding author. Structural and Computational Biology Unit, EMBL, Meyerhofstraße 1, Heidelberg, Germany. E-mail: martin.larralde@embl.de

(M.L.); Structural and Computational Biology Unit, EMBL, Meyerhofstraße 1, Heidelberg, Germany. E-mail: zeller@embl.de (G.Z.)

Associate Editor: Can Alkan

Received 19 January 2023; revised 31 March 2023; accepted 12 April 2023

Abstract

Summary: PyHMMER provides Python integration of the popular profile Hidden Markov Model software HMMER
via Cython bindings. This allows the annotation of protein sequences with profile HMMs and building new ones dir-
ectly with Python. PyHMMER increases flexibility of use, allowing creating queries directly from Python code,
launching searches, and obtaining results without I/O, or accessing previously unavailable statistics like uncorrected
P-values. A new parallelization model greatly improves performance when running multithreaded searches, while
producing the exact same results as HMMER.

Availability and implementation: PyHMMER supports all modern Python versions (Python 3.6þ) and similar plat-
forms as HMMER (x86 or PowerPC UNIX systems). Pre-compiled packages are released via PyPI (https://pypi.org/pro
ject/pyhmmer/) and Bioconda (https://anaconda.org/bioconda/pyhmmer). The PyHMMER source code is available
under the terms of the open-source MIT licence and hosted on GitHub (https://github.com/althonos/pyhmmer); its
documentation is available on ReadTheDocs (https://pyhmmer.readthedocs.io).

1 Introduction

Protein similarity search and annotation is a key part of biological se-
quence analysis, allowing for the discovery of protein function from se-
quence data. Improving on Position-Specific Scoring Matrices that
were used historically to search for motifs, Profile Hidden Markov
Models (pHMMs) were introduced in HMMER (Eddy 2011) to model
protein sequence families. Since then, HMMER has become a de facto
standard for protein domain annotation, with several protein domain
databases such as Pfam (Mistry et al. 2021) or TIGRFAM (Haft et al.
2013) being distributed as pHMMs.

HMMER provides different utilities with a command line
interface (CLI), and only offers an application programming inter-
face (API) for the C language (Kernighan and Ritchie 1978). This
makes it rather cumbersome to use with modern languages such as
Python, which are now more popular among scientists (Perkel
2015). Here we describe PyHMMER, a library providing Python
bindings to the C API of HMMER using Cython (Behnel et al.
2011), allowing seamless integration of HMMER in larger Python
programs, or in Jupyter notebooks (Kluyver et al. 2016). Such
literate programming efforts help to address the reproducibility
crisis, allowing for exact versioning and reproducible scripts for
pHMM generation, among other recommended practices (Rule
et al. 2019).

2 Implementation

The original HMMER codebase is organized into several components:
a general purpose library for biological sequence manipulation named
easel, a core library specific to HMMER named libhmmer, and
dedicated CLI tools for building HMMs and performing sequence
searches (hmmbuild, hmmsearch, phmmer, etc.).

The Cython language, a superset of Python that can be compiled
into C or Cþþ extension modules, allows defining foreign function
interfaces to the library components of HMMER. Using this particu-
lar feature, we developed the pyhmmer.easel and pyhmmer.
plan7 extension modules to wrap the most relevant types from the
easel and libhmmer libraries, respectively. In both submodules
these types are exposed as Python classes, allowing the user to create
and manipulate a Sequence or an HMM object directly (Listing 1).

Classes in PyHMMER implement the relevant methods from the
Python data model: containers like TopHits or Domains support
the usual Python syntax for iterating or indexing, while file readers
support the context manager protocol to be used inside a with state-
ment and the iteration protocol to read the file content with a simple
for loop. Subclassing is supported to allow end-users to implement
additional functionalities if needed. Numeric collections, such as
VectorF which wraps a one-dimensional array of floating point
numbers, all implement the buffer protocol. They can be used

VC The Author(s) 2023. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 39(5), 2023, btad214

https://doi.org/10.1093/bioinformatics/btad214

Advance Access Publication Date: 19 April 2023

Applications Note

https://orcid.org/0000-0002-3947-4444
https://orcid.org/0000-0003-1429-7485
https://pypi.org/project/pyhmmer/
https://pypi.org/project/pyhmmer/
https://anaconda.org/bioconda/pyhmmer
https://github.com/althonos/pyhmmer
https://pyhmmer.readthedocs.io
https://academic.oup.com/


seamlessly with the entire NumPy ecosystem (Harris et al. 2020),
using the numpy.asarray function to wrap them into an ndarray
without copying the underlying data. Type hints are provided for all
public classes and functions, allowing a static analyzer such as
MyPy (https://mypy-lang.org) to detect type errors ahead of run-
time. These type annotations also make PyHMMER more pleasant
to use inside an Integrated Development Environment (IDE), where
the function signatures can be suggested and corrected
automatically.

For sensible types, the corresponding Python class also exposes
internal attributes through Python properties that can be used for
introspection. This includes some attributes that were not originally
available in the HMMER results, such as the uncorrected p-value
for each alignment (HMMER would only report the Bonferroni-
corrected P-values in the output tables). HMM objects can be modi-
fied manually, for instance to set bitscore cutoffs using an externally
computed threshold.

3 Results

The functionality of several of the CLI tools from HMMER was
rewritten as pure Python functions using the API from the pyhm-
mer.easel and pyhmmer.plan7 modules.

Computational efficiency of the new parallelization code was
benchmarked against the original implementation for the
hmmsearch task (Fig. 1b–d). It shows much better performance for
smaller target databases such as the proteome of a single microbial
species, which can be entirely loaded into memory before querying.
For extreme cases where none of the HMM or sequence databases
fit into memory, a fallback using file readers is implemented to sup-
port larger searches at the cost of I/O overhead.

The parallel section in particular was reimplemented with plain
Python threads and a different model for balancing load across
worker threads (Fig. 1a), the default number of which is chosen as
the number of physical cores to avoid resource contention. The
hmmpgmdb client was adapted to use Python sockets for network
communication, although message encoding and decoding uses the
HMMER code for consistency.

The new threading strategy reduces latency caused by the filesys-
tem as it introduces pre-fetching of query HMMs from the HMM
file while the worker threads run the one-to-many comparison pipe-
line. Modeling the speedup with Amdahl’s law (Amdahl 1967) sug-
gests that the original hmmsearch task is not taking full advantage
of multi-core machines, with only around 35% of the code being
truly parallel (Fig. 1d). In comparison, PyHMMER has �96% of
the code in parallel sections. In practice, using PyHMMER to anno-
tate a large protein set on a six-core machine reduced the runtime by
72%, totaling only 27 h where HMMER took 97 h (Fig. 1b).
Similarly, hmmscan tasks benefit from the PyHMMER paralleliza-
tion strategy, which makes it possible to annotate 1 million proteins

with 32 threads within �2.5 h compared to an estimate of >7 days
the original HMMER implementation would take.

At the time of writing, PyHMMER has already been integrated
into several projects covering various areas of bioinformatics,
including long-read transcriptome sequencing (Lienhard et al.
2021); average amino-acid identity estimation (Konstantinidis et al.
2022) or clustering of biosynthetic gene clusters (Kautsar et al.
2021).

Acknowledgements

The authors thank Sean R. Eddy and his team for the development of

HMMER, which features outstanding documentation and quality standards;

Rob Finn and Nicolo Lazzaro for their invitation to work on the jackhmmer

and hmmpgmdb re-implementations; Antonio P. Camargo and Felix Langer

for their suggestions during the early stage of development; Troy Sincomb for

fixing errors in the documentation; Valentyn Bezshapkin and Zachary Kurtz

for their contributions; and all individuals who reported issues on the GitHub

tracker.

Conflict of interest

None declared.

Funding

This work was supported by the European Molecular Biology Laboratory;

the SFB 1371 of the German Research Foundation (Deutsche

Forschungsgemeinschaft, DFG) [395357507] and the Federal Ministry of

Education and Research (BMBF) [031L0181A].

Data availability

The data underlying this article are available on GitHub at https://
github.com/althonos/pyhmmer. The datasets for benchmarking
were derived from sources free for academic and non-commercial

Listing 1 A Python code snippet demonstrating how to run hmmsearch with the

PyHMMER API. The target sequences are pre-fetched from the proteins.faa file

before running the search loop while the query HMMs are loaded iteratively from

Pfam-A.hmm. More code examples can be found at https://pyhmmer.readthedocs.

io/en/latest/examples/.

LoadHMMA

HMMA

onDB2

HMMA

onDB1

Report
HMMA

Load
HMMB

HMMB

onDB2

HMMB

onDB1

Report
HMMB

LoadHMMC

HMMC

onDB1

HMMC

onDB2

Report
HMMB

LoadHMMD

HMMD

onDB2

HMMD

onDB1

Report
HMMD

HM
M
ER

LoadHMMA Load
HMMB

Report
HMMA

HMMB

onDB

Load
HMMC

HMMA

onDB

Load
HMMD

Report
HMMB

Report
HMMC

Report
HMMD

HMMD

onDB

HMMC

onDB

Py
HM
M
ER

time
Load
HMMA

Worker 1

Main Thread

Worker 2

Worker 1

Main Thread

Worker 2

(a)

(b) (c) (d)

Figure 1 Comparison of the parallelization strategy for running hmmsearch. (a) A

summary of the job dispatching between the HMMER and the PyHMMER imple-

mentations of hmmsearch. HMMER breaks the target database into chunks and

synchronizes the queries; PyHMMER runs multiple queries in parallel threads while

using the main thread for I/O. Blocking and non-blocking inter-thread communica-

tions are shown in plain and dashed lines, respectively. (b) Runtime comparison of

hmmsearch annotation with six threads. Proteins were obtained from representative

microbial genomes contained in the proGenomes2 database (Mende et al. 2020),

and annotated with Pfam version 33.1 (Mistry et al. 2021) grouped by genome.

Each command was run once on an Intel i7-10710U processor with six physical

cores. (c) Average runtime and (d) speedup of hmmsearch implemented in

PyHMMER compared to HMMER. Proteins of 10 different species were down-

loaded from proGenomes and annotated with Pfam version 35.0. Shown are the

averages of three runs on an Intel Xeon E5-2683 processor with 16 physical cores.

More benchmarks can be found at https://pyhmmer.readthedocs.io/en/latest/bench

marks.html.

2 Larralde and Zeller

https://mypy-lang.org/
https://github.com/althonos/pyhmmer
https://github.com/althonos/pyhmmer
https://pyhmmer.readthedocs.io/en/latest/examples/
https://pyhmmer.readthedocs.io/en/latest/examples/
https://pyhmmer.readthedocs.io/en/latest/benchmarks.html
https://pyhmmer.readthedocs.io/en/latest/benchmarks.html


use: proGenomes 3 (https://progenomes.embl.de), Pfam 33.1
(https://www.ebi.ac.uk/interpro/).

References

Amdahl GM. Validity of the single processor approach to achieving large scale

computing capabilities. In: Proceedings of the April 18–20, 1967, Spring

Joint Computer Conference, AFIPS ’67 (Spring). New York, NY:

Association for Computing Machinery, 1967, 483–5.

Behnel S, Bradshaw R, Citro C et al. Cython: the best of both worlds. Comput

Sci Eng 2011;13:31–9. https://doi.org/10.1109/MCSE.2010.118.

Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011;7:

e1002195. https://doi.org/10.1371/journal.pcbi.1002195.

Haft DH, Selengut JD, Richter RA et al. TIGRFAMs and genome properties in

2013. Nucleic Acids Res 2013;41:D387–95. https://doi.org/10.1093/nar/

gks1234.

Harris CR, Millman KJ, van der Walt SJ et al. Array programming with NumPy.

Nature 2020;585:357–62. https://doi.org/10.1038/s41586-020-2649-2.

Kautsar SA, van der Hooft JJJ, de Ridder D et al. BiG-SLiCE: a highly scalable

tool maps the diversity of 1.2 million biosynthetic gene clusters.

GigaScience 2021;10:giaa154. https://doi.org/10.1093/gigascience/giaa154.

Kernighan BW, Ritchie DM. The C Programming Language. Englewood

Cliffs, NJ: Prentice-Hall, 1978.

Kluyver T, Ragan-Kelley B, Perez F et al. Jupyter Notebooks—A Publishing

Format for Reproducible Computational Workflows. In: Loizides F and

Schmidt B (eds.), Positioning and Power in Academic Publishing: Players,

Agents and Agendas. Amsterdam, The Netherlands: IOS Press, 2016,

87–90.

Konstantinidis K, Ruiz-Perez C, Gerhardt K et al. FastAAI: efficient estimation

of genome average amino acid identity and phylum-level relationships using

tetramers of universal protein. Research Square 2022. https://doi.org/10.

21203/rs.3.rs-1459378/v1.

Lienhard M, Van den Beucken T, Claiment F et al. Long-read transcriptome

sequencing analysis with IsoTools Genetics. bioRxiv 2021. https://doi.org/

10.1101/2021.07.13.452091.

Mende DR, Letunic I, Maistrenko OM et al. proGenomes2: an improved data-

base for accurate and consistent habitat, taxonomic and functional annota-

tions of prokaryotic genomes. Nucleic Acids Res 2020;48:D621–5. https://

doi.org/10.1093/nar/gkz1002.

Mistry J, Chuguransky S, Williams L et al. Pfam: the protein families database

in 2021. Nucleic Acids Res 2021;49:D412–9. https://doi.org/10.1093/nar/

gkaa913.

Perkel JM. Programming: pick up Python. Nature 2015;518:125–6. https://

doi.org/10.1038/518125a.

Rule A, Birmingham A, Zuniga C et al. Ten simple rules for writing and shar-

ing computational analyses in Jupyter Notebooks. PLoS Comput Biol 2019;

15:e1007007. https://doi.org/10.1371/journal.pcbi.1007007.

PyHMMER: a Python library binding to HMMER for efficient sequence analysis 3

https://progenomes.embl.de
https://www.ebi.ac.uk/interpro/
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1093/nar/gks1234
https://doi.org/10.1093/nar/gks1234
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1093/gigascience/giaa154
https://doi.org/10.21203/rs.3.rs-1459378/v1
https://doi.org/10.21203/rs.3.rs-1459378/v1
https://doi.org/10.1101/2021.07.13.452091
https://doi.org/10.1101/2021.07.13.452091
https://doi.org/10.1093/nar/gkz1002
https://doi.org/10.1093/nar/gkz1002
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1038/518125a
https://doi.org/10.1038/518125a
https://doi.org/10.1371/journal.pcbi.1007007

