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Abstract

Astrocytes are recognized as more important cells than historically thought in synaptic function 

through the reciprocal exchange of signaling with the neuronal synaptic elements. The idea 

that astrocytes are active elements in synaptic physiology is conceptualized in the Tripartite 

Synapse concept. This review article presents and discusses recent representative examples that 

highlight the heterogeneity of signaling in tripartite synapse function and its consequences on 

neural network function and animal behavior.
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Introduction

Astrocytes are known to play important homeostatic roles in brain function, providing 

trophic, structural and metabolic support for neurons [1–3]. They have additionally 

been shown to display a calcium-based excitability and to be able to act as sensors 

and modulators of synaptic transmission and plasticity. Through the expression of a 

wide variety of membrane receptors expressed, astrocytes sense the synaptic activity by 

responding to different synaptically released neurotransmitters, which generally leads to the 

elevation of the astrocyte calcium levels. These calcium elevations stimulates the release 

of gliotransmitters, which acting on neuronal receptors, regulate synaptic transmission and 

plasticity [4–8]. Thus, in addition to the classical information flow between the pre- and 

postsynaptic neuronal elements of the synapse, there is a signaling exchange between these 

neuronal elements and the adjacent astrocytes. This bidirectional communication between 

astrocytes and the neuronal elements led to the concept of the tripartite synapse, which 

epitomizes the idea that synaptic function results from the interaction of three synaptic 

elements, the presynaptic terminal, the postsynaptic cell and the surrounding astrocyte. In 

this review, we will present and discuss recent paradigmatic examples that highlight the 

heterogeneity of signaling in tripartite synapse function.
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Astrocytes Sense Synaptic Activity

Astrocytes are known to express receptors for a large plethora of neurotransmitters, such as 

glutamate, GABA, endocannabinoids, dopamine, serotonin, ATP/Adenosine, acetylcholine 

or opioids [9–12]. Such diversity of receptors illustrates the ability of astrocytes to sense 

multiple neuronal signals, which can be integrated in a non-linear manner [13] to confer a 

high variability of the astrocytic responses (Fig. 1). Many of the neurotransmitter receptors 

expressed by astrocytes are G protein-coupled receptors (GPCRs), which, upon activation, 

lead to intracellular calcium elevations [14–19]. Gq GPCRs activate phospholipase C that 

generates diacylglycerol and inositol 1,4,5-trisphosphate (IP3) which, ultimately, induces 

the release of calcium from the endoplasmic reticulum through activation of IP3 receptors. 

Type 2 IP3 receptors (IP3R2) have been shown to be the main responsible of the GPCR-

mediated calcium mobilization in astrocytes [20–23]. Accordingly, in the IP3R2 knockout 

mice, which lack IP3R2, astrocyte calcium elevations in the soma are unaffected by 

neurotransmitters [24]. The relatively small calcium activity observed in restricted regions 

of the processes have been shown to have a mitochondrial origin [25–27]. In addition 

to GPCRs-mediated calcium mobilization, ionotropic receptors to glutamate and ATP are 

involved in astroglial Ca2+-signaling and neuron-glia communication [28–31]. Therefore, 

the role of ionotropic component of Ca2+ mobilization might help to explain some 

contradictory results obtained in astrocytic IP3R2 knockout-mice.

Notably, activation of Gi/o GPCRs also leads to calcium elevations in astrocytes, although 

the intracellular signaling pathways activated remains to be fully elucidated (see [32], for 

a discussion of the potential mechanisms involved). The fact that Gq GPCR activation led 

to cellular activation of both neurons and astrocytes, whereas the Gi/o GPCR activation led 

to cellular inhibition in neurons and cellular activation in astrocytes has led to suggest that 

inhibition is a specific property of neurons and may be fundamentally different between 

neurons and astrocytes [32].

Astrocytes Regulate Synaptic Transmission and Plasticity Through the 

Release of Gliotransmitters

The astrocyte calcium signal stimulates the release of gliotransmitters through calciumand 

SNARE protein-dependent processes, probably involving vesicle exocytosis [8, 33–38]. 

While astrocytes are known to be able to release different neuroactive substances, glutamate, 

D-serine and ATP/adenosine are the gliotransmitters most clearly identified [39–42]. The 

existence of different gliotransmitters that can distinctly impact neurotransmission in 

different brain areas and circuits represents clear evidence of the heterogeneity of astrocyte-

induced synaptic regulation at tripartite synapse.

For example, it has been shown to depress excitatory synaptic transmission through 

activation of presynaptic A1 receptors in the hippocampus [43, 44] and is also responsible 

for the developmental regulation of the spike timing-dependent depression in the 

hippocampus [45]. The synaptic regulation of astrocytic ATP/adenosine has also recently 

been found in the nucleus accumbens, a key brain area involved in reward and addiction. 

Astrocytes in this nucleus respond to dopaminergic inputs from the ventral tegmental area 
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with calcium elevations that stimulates ATP/adenosine release the consequent activation of 

presynaptic A1 receptors and the depression of the excitatory synaptic transmission, which 

is a crucial synaptic event in brain reward signaling [46].

Dr. Parpura et al., in 1994 described how glutamate released from astrocytes induced 

neuronal calcium elevation in astrocyte-neuron co-cultures that, however, did not occur in 

solitary neurons [47]. Moreover, Drs. Parpura and Haydon later described that the astrocytic 

calcium stimulates glutamate release to modulate adjacent neurons at physiological levels 

[48]. Furthermore, the modulation of synaptic transmission by astrocytic glutamate has 

been widely documented in the hippocampus [49–52]. Moreover, it has also been reported 

that glutamate mediates the spike timing-dependent depression in the barrel cortex 

[53] and the synaptic potentiation in the dorsal striatum [54]. In nucleus accumbens, 

metabotropic glutamate receptor 5 (mGluR5) in astrocytes induces Ca2+ elevations with 

correlated NMDAR-dependent slow inward currents which increase the excitation, raising 

the astrocytes as potential intermediary in neuronal adaptation [55]. In the hippocampus, 

the astrocytic glutamate induces a short-term potentiation of the synaptic efficacy 

through activation of neuronal group I metabotropic glutamate receptors (mGluRs). While 

endocannabinoids (eCBs) released by neurons lead to direct homosynaptic depression by 

activating presynaptic type 1 eCB receptors (CB1Rs), they also activate these receptors in 

astrocytes, leading to the astrocyte-mediated synaptic potentiation of adjacent synapses, 

a process termed lateral regulation of synaptic transmission [52]. Moreover, astrocytic 

glutamate is also involved in some forms of synaptic plasticity. Indeed, the astrocyte-induced 

glutamate-mediated transient potentiation can become long-term potentiation when the nitric 

oxide is released by postsynaptic neuron [56]. In addition, cholinergic-induced long-term 

potentiation (LTP) has been shown to be mediated by glutamate released by astrocytes 

activated by cholinergic inputs [57].

Finally, D-serine, acting as a co-agonist of the N-methyl-d-aspartate receptors (NMDARs), 

has been found to regulate synaptic transmission and plasticity the hippocampus and barrel 

cortex [58–60]. In barrel cortex, D-serine improves the cholinergic plasticity induced by 

whisker stimulation through astrocytic muscarinic acetylcholine receptors (mAchRs) and 

mediated by NMDARs [58]. In the hippocampus, D-serine has been shown to be crucial 

for the LTP and object recognition memory task [59, 60]. However, the main source of the 

D-serine is a matter of debate. While some studies point to the neurons as origin of D-serine, 

the astrocytes have emerged as main machinery of D-serine release [42, 61]. Nevertheless, 

further investigations are needed to provide the balanced point of view.

Through binding to neuronal receptors, gliotransmitters have been shown to modulate both 

excitatory and inhibitory synaptic transmission in many brain areas [43, 46, 50, 52–54, 62–

64]. Whether different gliotransmitters are released by different astrocytes or whether single 

astrocytes can release different gliotransmitters is a relevant question for our understanding 

of the heterogeneity of both the astrocyte properties and the astrocyte-mediated synaptic 

regulation. We have recently investigated this issue by stimulating either single interneurons 

signaling to astrocytes or single astrocytes and monitoring astrocyte-mediated regulation of 

the excitatory synaptic transmission in the hippocampus. We found that single hippocampal 

astrocytes can release both glutamate and ATP/adenosine, producing a temporally distinct 
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biphasic regulation of synaptic transmission, which consists in an initial glutamate-mediated 

synaptic potentiation and a delayed adenosine-mediated synaptic depression [43]. Moreover, 

the distinct gliotransmitter release was found to be controlled by the neuronal firing 

activity, suggesting that astrocytes decode neuronal signaling to produce specific regulatory 

consequences [43].

The heterogeneity of astrocyte-induced synaptic regulation is not only manifested by 

the release of different gliotransmitters, but also by the same gliotransmitter acting on 

different neuronal receptors in specific synapses. In the amygdala, astrocytic release of 

ATP/Adenosine has been shown to distinctly impact excitatory and inhibitory synaptic 

transmission in neurons of the same amygdala subnucleus, the centromedial amygdala. 

Astrocyte activation stimulates the release of ATP/adenosine that leads to the A1-mediated 

potentiation of inhibitory synapses and A2A-mediated depression of excitatory synapses 

[64]. This differential regulation of synaptic transmission is translated into the decrease of 

firing rate of neurons of the centromedial amygdala and a decrease of the fear responses of 

mice subjected to a fear conditioning paradigm. Furthermore, ATP released by astrocytes 

induces a short-term depression of the inhibitory synaptic transmission through postsynaptic 

and extrasynaptic GABAAR down regulation in neocortex [65]. In addition, ATP-derived 

astrocytes down regulates AMPA by P2XRs and induces depression of field potential in 

CA1 of hippocampus [66] and downregulates NMDARs trafficking in excitatory terminals 

with an important role in the induction of LTP [67].

Age-dependent regulation of synaptic transmission by astrocytes represents an important 

biological variable that has been relatively understudied and deserves further attention to 

understand the full impact of astrocytes on brain function. Yet, recent studies have addressed 

the impact of signaling at tripartite synapse during brain development and aging. During 

development, critical period of synapse function maturation plays a significant role in the 

establishment of properly efficient neuronal circuits. The group of Rodriguez-Moreno has 

elegantly shown that the spike timing-dependent plasticity (STDP) in the hippocampus 

is temporally regulated. The spike timing-dependent depression shown by young animals 

become spike timing-dependent potentiation in adult mice, a maturation phenomenon that 

depends on adenosine of astrocytic origin [45, 68]. In aging, neuron-astrocyte signaling has 

been found to be largely preserved across the lifespan of mice [69], although the decline 

in the astrocyte-neuron network has been observed. It has been shown a decrease in the 

P2X, AMPA and NMDARs-mediated miniature glial synaptic currents in old mice [70] and 

astrocytic Ca2+ signaling age-related decrease that underlies to the synaptic transmission 

modulation [71]. Together all these changes define a remodeling of synaptic strength and 

information processing, contributing to a cognitive impairment. In fact, synaptic plasticity 

is severely compromised in an Alzheimer’s disease (AD) mouse animal model deficient 

of astrocyte IP3R2-mediated calcium signal at early stages of the disease, indicating that 

astrocytes and their calcium signaling play crucial roles in the AD pathology, accelerating 

the progression of synaptic plasticity dysfunction [69].
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Astrocytes Regulate Network Function and Animal Behavior

While much effort has been done to investigate the mechanisms underlying astrocytic 

regulation of synaptic transmission and plasticity and the specific their specific properties in 

certain synapses and brain regions, their impact on network function and animal behavior 

have only been initially explored. While recent reviews provide a comprehensive discussion 

on these issues (see e.g., [72, 73]), we will describe here some recent specific examples of 

the contribution of astrocytes to neural network function and behavior.

Network function results not only from the activity of glutamatergic excitatory and 

GABAergic inhibitory signals but also from the activity of neuromodulators like 

acetylcholine, dopamine or norepinephrine and cannabinoids. Astrocytes have been recently 

found to respond to these neuromodulators, suggesting that they can mediate their actions 

in the control of network activity. For example, in vivo cholinergic-induced regulation of 

LTP in hippocampus and cortex has been shown to be mediated by astrocytes [57, 58]. Han 

et al., in 2012 showed that exogenous cannabinoid induces LTD in vivo which depends 

on astroglial CB1R expression with an impairment in the spatial working memory as 

consequence of this down regulation [74]. Norepinephrine (NE) also signal to astrocytes, 

and the NE release associated with locomotor activity enhances the astrocyte calcium 

signaling as a detector of neuronal activity in different brain areas [75]. Finally, dopamine 

has been recently shown to activate astrocytes in the nucleus accumbens and regulate 

glutamatergic excitatory inputs in that region thus mediating the behavior effects of the 

psychostimulant amphetamine [46].

Cortical network function has been found to be regulated by astrocytes [76–80]. More 

recently, astrocytes in the somatosensory cortex have been shown to respond with calcium 

elevations to sensory stimulation in vivo that were associated with cortical gamma activity 

[81]. Sensory stimuli elicit a surge of neuronal network activity in the gamma range that 

was followed by a delayed astrocyte activity that dampens the steady-state of this activity. 

This sensory-evoked gamma activity increase is enhanced in IP3R2 knockout mice, in which 

astrocyte calcium signaling is impaired, and is decreased by pharmacogenetic stimulation 

of astrocytes with “designer receptor exclusively activated by designer drugs” (DREADDS), 

indicating that cortical astrocytes respond to sensory inputs and regulate sensory-evoked 

neuronal network activity maximizing its dynamic range [81]. Astrocytes in the medial 

prefrontal cortex, a key region involved in goal-directed behavior, have also found to 

alter the firing properties of cortical neurons and gamma oscillations by modulating the 

inhibition/excitation balance in that region [82]. Disrupting the astrocyte signaling in this 

network activity is manifested as working memory deficits [82].

Concluding Remarks

Since the decade of 1990, accumulating evidence of new roles of astrocytes transformed 

the idea of synapse function, establishing the tripartite synapsis concept that changed 

the view of classical neuron-neuron communication to include astrocytes as additional 

important underlying network activity and brain function through the concerted signaling 

with neurons.
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Fig. 1. 
Neuron-astrocyte signaling and lateral communication. (1) the presynaptic terminal 

releases neurotransmitter. (2) Binding of neurotransmitter to the GPCRs (mGluRs) in 

the postsynaptic neuron. (3) Increase the postsynaptic calcium via PLC and release 

of retrograde messenger eCBs which (4) bind to the GPCRs in the astrocyte, CB1R. 

(5) Induction of calcium release from the ER and astrocyte calcium increase. (6) The 

exocytosis of endosoms-containing glitransmitters through SNARE complex induces the 

gliotransmitters release and, in turn, the interaction with GPCRs in the presynaptic terminal 

of heteroneuronal synapse. (7) Later, it is triggered the modulation of neurotransmitter 

release and (8) the Induction of slow inward currents dependent on extrasynaptic 

NMDARs. (Glu glutamate; eCBs endocannabinoids; DA dopamine; NE norepinephrine; 

Ach acetylcholine)
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