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Abstract

Advanced high-grade serous ovarian cancer (HGSC) is an aggressive disease that accounts 

for 70% of all ovarian cancer deaths. Nevertheless, 15% of patients diagnosed with advanced 

HGSC survive more than 10 years. The elucidation of predictive markers of these long-term 

survivors (LTS) could help identify therapeutic targets for the disease, and thus improve patient 

survival rates. To investigate the stromal heterogeneity of the tumor microenvironment (TME) in 

ovarian cancer, we used spatial transcriptomics to generate spatially resolved transcript profiles 

in treatment naïve advanced HGSC from LTS and short-term survivors (STS) and determined 

the association between cancer-associated fibroblasts (CAF) heterogeneity and survival in 

patients with advanced HGSC. Spatial transcriptomics and single-cell RNA sequencing data 

were integrated to distinguish tumor and stroma regions, and a computational method was 

developed to investigate spatially resolved ligand-receptor interactions between various tumor 

and CAF subtypes in the TME. A specific subtype of CAFs and its spatial location relative to a 

*Co-corresponding authors: Samuel C. Mok, PhD, Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, 
The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; Phone: 713-792-1442; 
scmok@mdanderson.org; Stephen T.C. Wong, PhD, Systems Medicine and Bioengineering Department, Houston Methodist 
Cancer Center, Houston Methodist Hospital, 6670 Bertner Ave, Room 6-211, Houston, TX 77030, USA; Phone: 713-441-5884; 
stwong@houstonmethodist.org.
†These authors contributed equally.
AUTHOR CONTRIBUTIONS
S.F.-B., Y.Z., S.T.C.W. and S.C.M., designed the study and planned the experiments. S.F.-B. conducted most of the experiments and 
analyzed the mIF data; Y.Z. analyzed the ST and scRNA-seq data. J.S., J.K.B., J.G., K.K.W. and S.T.C.W., provided intellectual 
contributions to experimental design and data analysis. S.F.-B. and Y.Z., wrote the initial draft of the manuscript. S.F-B., Y.Z., 
S.T.C.W., and S.C.M., prepared and revised the manuscript. All authors have read and agreed to the published version of the 
manuscript. The authors declare that they have no competing interests.

CONFLICT OF INTEREST
The authors declare no potential conflicts of interest.

HHS Public Access
Author manuscript
Cancer Res. Author manuscript; available in PMC 2023 November 02.

Published in final edited form as:
Cancer Res. 2023 May 02; 83(9): 1503–1516. doi:10.1158/0008-5472.CAN-22-1821.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



particular ovarian cancer cell subtype in the TME correlated with long-term survival in advanced 

HGSC patients. Also, increased APOE-LRP5 crosstalk occurred at the stroma-tumor interface 

in tumor tissues from STS compared to LTS. These findings were validated using multiplex 

immunohistochemistry. Overall, this spatial transcriptomics analysis revealed spatially resolved 

CAF-tumor crosstalk signaling networks in the ovarian TME that are associated with long-term 

survival of HGSC patients. Further studies to confirm whether such crosstalk plays a role in 

modulating the malignant phenotype of HGSC and could serve as a predictive biomarker of patient 

survival are warranted.
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INTRODUCTION

High-grade serous ovarian cancer is the major subtype of epithelial ovarian cancer and 

appears to arise from the ovarian surface epithelium or the fallopian tube epithelium 

(1). It accounts for more than 70% of ovarian cancer deaths making it the most lethal 

gynecologic malignancy (2). HGSC typically presents as aggressive advanced-stage disease 

(3) and is initially sensitive to platinum-and-taxane–based chemotherapy. However, the 

vast majority of patients with advanced HGSC (>75-80%) have recurrence after initial 

treatment, experience rapid disease progression, and die of progressively chemotherapy-

resistant disease (4,5). Nevertheless, 15% of patients diagnosed with advanced HGSC have 

overall survival (OS) durations of more than 10 years (6,7).

Reports to date have not fully established the heterogeneity of the tumor microenvironment 

(TME) in ovarian cancer and its association with clinical outcomes. The TME, which 

is composed primarily of fibroblasts, endothelial cells, lymphocytic infiltrates, and 

extracellular matrix proteins, can directly affect cancer cell growth, migration, and 

differentiation and thus presents a unique opportunity for cancer diagnosis and treatment (8). 

The immune system is an important determinant of the TME; ongoing inflammation results 

in various immunologic gene products that create a favorable microenvironment for tumor 

growth and progression (9–13), and the presence of specific immune cell types, such as 

intratumor CD8+ T cells, is associated with improved survival in patients with various types 

of cancer, including ovarian cancer (9,10,14,15). These findings suggest that immune cell 

heterogeneity plays an important role in conferring the malignant phenotypes of cancer cells. 

In addition to immune cell heterogeneity, cancer-associated fibroblast (CAF) heterogeneity 

may also play essential roles in modulating tumor growth. CAFs are characterized by their 

expression of traditional markers, including alpha-smooth muscle actin (αSMA), S100A4, 

vimentin (VIM), fibroblast activation protein (FAP), and platelet-derived growth factor 

receptor alpha (PDGFRα) and beta (PDGFRβ) (16). Differential expression of these CAF 

markers has recently been found in the TME of pancreatic cancer (17). Furthermore, TME 

has been found to contain additional CAF subtypes that have distinct biomarker expression 

profiles and cellular functions that differ from those of CAFs outside the TME (18,19). 
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However, the molecular mechanisms underlying the promotion or inhibition of cancer by 

various CAF subtypes as well as the interplay between different CAF populations and their 

spatial locations within the TME in ovarian cancer are not fully understood.

Recent innovations in high-throughput analyses of patient-derived specimens may address 

the clinical challenges described above. The use of integrated “multi-omics” platforms has 

improved our understanding of how genetic changes affect the gene expression profiles 

(20–22). However, because most of the data generated with these platforms are derived from 

bulk tumor tissue, they have limited utility in the clinical management of HGSC. Previous 

studies have shown that the stroma admixture affects the interpretation and reproduction of 

molecular subtypes and gene signatures derived from bulk tissue (23). Recently, researchers 

used single-cell RNA-seq (scRNA-seq) analyses to characterize the heterogeneity of the 

HGSC TME, thereby providing valuable information about different HGSC subtypes and 

potential novel therapeutic approaches (24–26). scRNA-seq has also been integrated with 

whole-genome sequencing to reveal that mutational signatures drive site-specific immune 

evasion in HGSC (27). However, the aforementioned techniques and analyses cannot 

provide spatial information. Increasing evidence in multiple cancer types suggests that the 

spatial location of various cellular components of the TME and their position in relation to 

tumor cells, immune cells, and blood vessels can modulate anti- and pro-tumor responses 

(28–31). Single cell spatial proteomic data analysis has provided insights into the spatial 

heterogeneity of the TME of HGSC (13,32), but limited by the number of simultaneously 

labelled markers.

Spatial transcriptomics technology, which captures genome-wide readouts across biological 

tissue space, enables researchers to determine how genes are spatially expressed in the 

complex TME (33). In this study, we used spatial transcriptomics to identify spatially-

resolved CAF associated biomarkers which may have prognostic significance in HGSC. 

We integrated spatial transcriptomics with scRNA-seq to distinguish tumor and stroma 

regions. In addition, we developed a method to investigate region-specific ligand-receptor 

interactions between HGSC and neighboring CAF subregions and subsequently identified 

a ligand-receptor pair in a subtype of CAFs and their neighboring HGSC cells that has 

prognostic significance.

MATERIALS AND METHODS

Patient samples

A total of 4 frozen and 42 paraffin-embedded tumor tissue samples obtained from 

patients with advanced (stage IIIB-IV) HGSC were used in the spatial transcriptomics and 

multiplexed immunofluorescence (mIF) experiments, respectively. The clinicopathological 

characteristics of samples used in the study were summarized in supplementary table 1. 

They were collected from previously untreated patients undergoing primary cytoreductive 

surgery for ovarian cancer. All samples and clinical data were obtained from the ovarian 

cancer repository of the Department of Gynecologic Oncology and Reproductive Medicine 

under protocols approved by the University of Texas MD Anderson’s Institutional Review 

Board. Written informed consent from the patients were obtained by front desk personnel, 

and the studies were conducted in accordance with recognized ethical guidelines.
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Spatial transcriptomics

Spatial transcriptomics experiments were performed according to the manufacturer’s 

protocol (10x Genomics). Briefly, a 10-μm-thick HGSC tissue frozen section was placed 

onto a spatial transcriptomics expression slide to fit an 8 x 8 mm spatially barcoded array 

with 1007 spots, each with a diameter of 100 μm and a center-to-center distance of 200 

μm. The pooled barcoded and spatially transcribed cDNA libraries for each sample were 

sequenced using Illumina NextSeq500 flow cells at MD Anderson’s Advanced Technology 

Genomics Core. Raw output base call (BCL) files from the sequencer were demultiplexed 

into fastq files (10x Genomics).

CAF annotation

The CAF clusters were annotated if the stroma clusters significantly expressed the 

traditional CAF markers (p < 0.01). For investigating the CAF heterogeneity across samples, 

the average log fold-change of the CAF genes in each CAF cluster was computed as the 

log fold-change of the average gene expression in that CAF cluster compared to the average 

gene expression in all other clusters in that sample.

Multimodal intersection analysis

With the gene sets extracted from spatial transcriptomics and scRNA-seq modalities, the 

overlap between the region-specific (differentially expressed genes as identified in spatial 

transcriptomics data analysis above) and cell type specific gene sets (differentially expressed 

genes as identified in scRNA-seq analysis above) was computed. A hypergeometric test was 

performed to identify the significant enrichment (using a threshold of p < 1 × 10−10) of any 

specific cell type within a tumor/stroma subregion (34) using 16,522 background genes. For 

the immune cells, the hypergeometric test was performed by computing the overlap between 

the top 150 differentially expressed genes (avg_logFC>0.25, p<10-5) of the immune cell 

subtypes and the differentially expressed genes (avg_logFC >0, p<0.01) of tumor, CAF 

and other stroma clusters of ST data. The −log10(p-value) of the hypergeometric test was 

computed as the enrichment score and compared between the LTS and STS for tumor or 

CAF clusters.

Ligand receptor interaction analysis

Using the CCCExplorer modeling tool as described in Choi et al. and Yeung et al. 

(35,36), which included 2,671 ligand-receptor pairs and a comprehensive signaling pathway 

database, ligand-receptor interactions were determined at the interface between every stroma 

and tumor subregion. At each interface, only the stroma spots and tumor spots nearest to the 

interface were considered. The minimum distance of each stroma spot to the tumor, and the 

minimum distance of each tumor spot to the stroma were equal to the minimum distance 

between the ST spots, that is, 200 μm. Details of the ligand receptor interaction analysis are 

provided in the Supplementary Data.

Statistical analysis

A non-parametric Wilcoxon rank sum test was used to detect differences in the mean 

intensities/stroma area ratios and positive cells/total cells ratios between LTS and STS 
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samples in the mIF experiments, and to identify the differentially expressed genes in 

the spatial transcriptomics and scRNA-seq data analyses. A p-value less than 0.05 was 

considered statistically significant. For the analyses of differentially expressed genes of ST 

and scRNA-seq, adjusted p-value was computed based on bonferroni correction using all 

genes in the dataset.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the 

Supplementary Materials. The scRNA-seq datasets were downloaded from GEO database 

under accession GSE118828 (37) and GSE158722 (38). Other raw data are available upon 

reasonable request from the corresponding author.

Additional Methods are available in Supplementary Data

RESULTS

Generation of spatially resolved RNA-seq profiles of HGSC tumors

Spatial transcriptomics analysis was performed on four samples of treatment-naïve advanced 

HGSC (Fig. 1A). Each spatial transcriptomics spot captured approximately 20-50 cells. 

After alignment of fastq file using Cell Ranger (10x Genomics), an average of 3,400 

distinct genes were detected in each spot. Each sample was then loaded into R Seurat 

package and normalized by SCTransform. Clustering was then performed by FindClusters 

(R Seurat) based on the shared nearest-neighbor modularity optimization algorithm (39) 

using the first 10 dimensions of principal component analysis. Differentially expressed 

genes with significantly higher expression in each spatial transcriptomics cluster than others 

were identified (p < 0.01, Wilcoxon rank sum test and average log fold-change > 0) 

(Supplementary Fig. 1A, B and Supplementary Table 2). Publicly available scRNA-seq data 

from Shih et al. (37) were analyzed and used to define differentially expressed genes for the 

major cell types. (Fig. 1B, Supplementary Table 3).

With the differentially expressed genes extracted across the scRNA-seq and spatial 

transcriptomics modalities, the overlap between each pair of cell type-specific and region-

specific gene sets was computed by multimodal intersection analysis (MIA) (34). A 

hypergeometric test was performed to assess significant enrichment using a threshold of 

p < 10−10 (Fig. 1C); for example, tumor clusters were assigned if the enrichment p-value 

of any of the epithelial cell types Ep_1 (SPON1+), Ep_2 (SST+), Ep_3 (ATHL1+), or 

Ep_4 (TPPP3+) (Supplementary Table 2) in that cluster was lower than 10−10. Stroma 

clusters were assigned if they were not tumor clusters. From the MIA map, we observed 

the infiltration of immune cells in some tumor clusters (e.g., B cells were enriched in 

clusters LTS#1_c5 and LTS#1_c2). The similarity among clusters across the four samples 

was measured by Pearson correlation of the differentially expressed genes and is presented 

in the correlation heatmap (Supplementary Fig. 1C).

A second publicly available scRNA-seq dataset from Azizi et al. (40) was analyzed and used 

to define differentially expressed genes for the immune cell types and MIA analysis was 

then performed as described above (Supplementary Fig. 2). Top differentially enriched cell 
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types in the tumor compartment were CD8+EM, B_cells1, NK1, CD4+CM among the T/B 

cells subgroup and Monocyte1, mDC and pDC1 among myeloid cell types. CAF clusters 

did not reveal any difference in the presence of immune cells between STS and LTS. These 

findings suggest that LTS samples have an enrichment of tumor infiltrating immune cells 

compared to STS samples.

Overrepresentation analysis of selected gene ontology (GO) biological process terms 

showed the difference between tumor and stroma clusters (Fig. 1D and Supplementary 

Fig. 3). Tumor clusters were highly enriched with metabolic processes (e.g., cellular/RNA 

metabolism), cellular respiration, and cell cycle processes. Stroma clusters were highly 

enriched with biological processes of cell motility/migration, extracellular matrix 

organization/disassembly, vasculature development, and immune responses (Fig. 1D and 

Supplementary Fig. 3).

Identification and mapping of tumor and stroma cell clusters

To verify the accuracy of our tumor/stroma classification by enrichment analysis of spatial 

transcriptomics RNA-seq data, the normalized expression of major tumor and stroma 

markers was mapped for each sample and overlaid them on the H&E images. We confirmed 

that the normalized expression of the tumor markers WFDC2, MUC16, and CLDN4 was 

localized to the tumor regions and that the normalized expression of COL1A1, VIM, and 

FN1 was restrained to the stroma regions (Fig. 2A and Supplementary Fig. 4).

After the clustering of spatial transcriptomics spots, we discovered a high level of 

heterogeneity among the four tumor samples and annotated the tumor and stroma clusters 

(Fig. 2B). Tumor clusters STS#1_c2 and STS#2_c1 (identified in patients STS#1 and 

STS#2) were characterized by the increased expression of CDK1 (Supplementary Table 

2), one of the most important regulators of cell cycle progression in mammalian cells. 

Moreover, tumor clusters STS#1_c2 and STS#2_c0 expressed high levels of LGR5 

(Supplementary Table 2), which promotes cancer cell mobility, tumor formation, and 

epithelial-mesenchymal transition through the activation of Wnt/β-catenin signaling. In 

contrast, neither CDK1 nor LGR5 were detected in any of tumor clusters in patients LTS#1 

and LTS#2. Moreover, most of the tumor clusters in all four samples expressed WFDC2, a 

gene commonly overexpressed in ovarian carcinomas compared with normal ovarian tissues 

(41).

Heterogeneity of stroma subclusters

Analysis of the stroma clusters from patients STS#1 and STS#2 showed that the stroma 

clusters STS#1_c0 and STS#2_c4, which were located near the tumor edge, expressed 

high levels of COL1A1 and periostin (POSTN), whereas stroma clusters STS#1_c1 and 

STS#2_c3, which were located distant from the tumor edge, expressed high levels of 

COL1A1 and CD36 (Fig. 2B, left panel). Stroma clusters STS#1_c4 and STS#2_c2, 

which were closely surrounded by tumor clusters, expressed high levels of periostin. In 

contrast, high levels of periostin were identified in only a single stroma cluster, LTS#1_c7, 

surrounding the tumor cluster LTS#1_c5 in patient LTS#1 and in a single stroma cluster, 

LTS#2_c0, surrounding the tumor cluster LTS#2_c5 in patient LTS#2. In addition, only 
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stroma cluster LTS#2_c4 in patient LTS#2 expressed CD36 (Fig. 2B, right panel). These 

data suggest both intra- and inter-stromal heterogeneity among HGSCs. Moreover, tumors 

derived from patients STS#1 and STS#2 were distinct from those derived from patients 

LTS#1 and LTS#2. Indeed, survival analysis demonstrated that patients LTS#1 and LTS#2 

were long-term survivors (LTSs) with overall survival durations of more than 120 months, 

whereas patients STS#1 and STS#2 were short-term survivors (STSs) with overall survival 

durations of less than 24 months. Furthermore, tumor samples from LTSs had lower levels of 

stromal periostin and CD36 expression.

To further elucidate stromal heterogeneity and the relationship between traditional CAF 

markers and the stroma clusters, we assessed the expression of traditional CAF markers, 

including αSMA (ACTA2), S100A4, VIM, FAP, PDGFRα (PDGFRA), and PDGFRβ 
(PDGFRB), in the stroma clusters we identified. Because we demonstrated that stromal 

CD36 and periostin were associated with STS (samples STS#1, STS#2) (Fig. 2B), which 

indicated a more aggressive phenotype of the stroma clusters, we included these markers in 

our CAF gene panel. Only 2 of the 6 stroma clusters in both the LTS samples (LTS#1 and 

LTS#2) expressed the traditional CAF markers, whereas all the stroma clusters in the STS 

samples (STS#1 and STS#2) expressed the CAF markers (Fig. 3A). These findings suggest 

these stroma clusters are enriched with CAFs in the tumor tissue and only a small percentage 

of stroma clusters in LTS tumors are enriched with CAFs. The stroma clusters that did not 

express CAF markers may be enriched with quiescent fibroblasts, mesenchymal cells, or 

other stromal cell types. In the two STS samples, the CAF clusters expressed a different set 

of CAF markers, and most expressed a majority of the eight CAF markers. In contrast, in 

the two LTS samples, all the stroma clusters that had CAF marker expression expressed a 

minority of the eight CAF markers. (Fig. 3A–C and Supplementary Fig. 5). These findings 

suggest intra- and inter-tumor CAF heterogeneity in HGSC and that tumors with enriched 

CAF clusters expressing multiple CAF markers may be associated with short-term survival.

Next, we examined the spatial distribution of various CAF clusters and the key molecules 

used for their annotation relative to the tumor clusters by plotting the average expression 

of each CAF marker as a function of the distance to tumor (Supplementary Fig. 5C). 

CAF clusters in the neighborhood of the tumor clusters (e.g., STS#1_c0, STS#1_c4, and 

LTS#1_c7) expressed high levels of periostin (Fig. 3B, C and Supplementary Fig. 5). 

Furthermore, CAF clusters located distant from the tumor clusters (e.g., STS#1_c1 and 

LTS#2_c4) expressed high levels of CD36. These findings suggest that spatially resolved 

CAF subpopulations in the ovarian TME may play different roles in conferring the 

malignant phenotypes of the tumor cells.

Prognostic significance of CD36 and periostin

Because the spatial transcriptomics data demonstrated that the overall periostin and CD36 

expression levels in the CAF clusters of the 2 STS samples were markedly higher than those 

in the 2 LTS samples, we performed multiplexed immunofluorescence (mIF) analysis to 

quantify the spatial expression of periostin and CD36 in an independent set of 42 advanced 

HGSC cases (16 LTS and 26 STS) to verify our findings. Measuring the mean intensity 

of the selected markers in only the stroma areas demonstrated that STS samples had 
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significantly higher periostin expression levels near the stroma-tumor interface than LTS 

samples did (p = 0.0069) (Fig. 4A, B), suggesting spatially resolved periostin expression 

may serve as a prognostic marker. In addition, CD36 expression levels in the stroma areas 

distant from the tumor clusters were markedly higher in STS samples than they were in LTS 

samples, but this difference was not statistically significant (p = 0.0675) (Fig. 4C, D).

To validate the presence of a unique set of CAFs in STS samples compared to LTS samples 

and to validate our spatial transcriptomics findings showing that STS samples have markedly 

increased CAF clusters expressing all three markers (VIM, αSMA, and PDGFRB), we 

performed mIF analysis of these markers. We calculated the density of typical CAFs, 

expressing VIM, αSMA, and PDGFRB, by normalizing their number with the total number 

of stromal cells. We found a significantly higher density of αSMA+VIM+PDGFRβ+ cells in 

the stroma of STS samples than in the stroma of LTS samples (p < 0.001) (Fig. 4E, F). The 

density of αSMA+VIM+ (PDGFRβ−) cells, which represent myofibroblasts, did not differ 

between the STS and LTS samples (p = 0.25) (Fig. 4E, G). These results suggest that the 

spatially resolved CAF subpopulations expressing POSTN and αSMA, VIM, and PDGFRB 

in the ovarian TME may play a major role in conferring a more aggressive type of HGSC 

with decreased overall survival.

Crosstalk signaling network analysis

To characterize region-specific ligand-receptor interactions between CAFs and tumor cells, 

crosstalk signaling network analysis was performed (see Methods and Supplementary 

Methods). For each tumor and CAF cluster in each sample, we selected only the nearest 

neighboring spots on the interface and performed ligand-receptor analysis (Fig. 5A). In 

total, 84 and 50 distinct ligand-receptor pairs at the stroma-tumor interfaces of STS and 

LTS samples were identified, respectively (Supplementary Fig. 6–8). For example, we 

found APOE (ligand; on CAF) and LRP5 (receptor; on tumor) at the STS#1_c0-STS#1_c2 

interface and the STS#2_c4-STS#2_c5 interface; and found THBS2 (ligand; on CAF) 

and CD47 (receptor; on tumor) at the STS#1_c0-STS#1_c6 interface (Fig. 5B,C and 

Supplementary Fig. 9). The region-specific ligand-receptor interaction networks between 

adjacent stroma and tumor subregions are shown in Fig. 5D. Sixty distinct ligand-receptor 

pairs were identified and pooled from the stroma-tumor interfaces between every stroma 

and tumor cluster in sample STS#1 (Fig. 5E). For example, each of the stroma ligands 

(APOE, THBS2, FN1) may bind to a more than one receptor of tumor. On the other hand, 

tumor receptors, such as ITGB1, and ITGB8 likely receive signals from multiple stromal 

ligands in sample STS #1 (Fig. 5E). The ligand-receptor interaction pattern on the stroma-

tumor interfaces clearly showed between-sample differences (Fig. 5E, Supplementary Fig. 

6–8). Searching for ligand-receptor pairs that have been shown to be associated with 

cancer patient prognosis, and metastatic process, we identified 9 ligand-receptor pairs 

associated with STS samples (APOE-LRP5, THBS2-CD47, PLAU-PLAUR, WNT10A-

FZD5/FZD7, TGFB1-ENG/ACVRL1, IGF1-IGF1R, SEMA3C-NRP2) and 1 ligand-receptor 

pair associated with LTS samples (A2M-LRP1) (Fig. 5B, C and Supplementary Fig. 9).

Because the ligand-receptor pair APOE-LRP5 was found in the subcluster interface of 

both STS samples, we used mIF analysis to validate the presence of this interaction in 
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tumor samples obtained from the same cohort of LTS patients (n = 16) and STS patients 

(n = 26) used for CD36 and periostin staining as described above. Tissue samples were 

stained for COL1A1, LRP5, and APOE. The number of LRP5+ cells and the mean intensity 

of APOE expression was calculated at the stroma-tumor interface. Spearman correlation 

analysis revealed a significant positive correlation between LRP5+ cell density and APOE 

expression intensity at the stroma-tumor interface of STS samples (r = 0.5904, p = 0.0015) 

(Fig. 6A, B) but not LTS samples (r = −0.2843, p = 0.2678) (Fig. 6A, C). Moreover, no 

correlation between LRP5+ cells in tumor areas and APOE expression intensity in stroma 

areas (excluding the stroma-tumor interface area) in either STS or LTS samples was found 

(r = −0.07487, p = 0.7162 and r = −0.2279, p = 0.3774, respectively) (Supplementary Fig. 

10A). Furthermore, there was no significant correlation between APOE expression intensity 

and LRP5+ cells in either the tumor or stroma areas of STS samples (r = −0.1241, p = 

0.5458 and r = −0.3464 and p = 0.0830, respectively) or LTS samples (r = −0.3088, p = 

0.2273 and r = −0.1029 and p = 0.6943, respectively) (Supplementary Fig. 10B, C). These 

data suggest that significant APOE-LRP5 crosstalk occurs at the stroma-tumor interface 

only, and that such crosstalk plays a crucial role in modulating the malignant phenotype of 

HGSC, which could serve as a predictive biomarker of patient survival.

To determine the functional role of APOE-LRP5 crosstalk in modulating the malignant 

phenotype of HGSC, HGSC cells expressing high levels of endogenous LRP5 were treated 

with physiological levels of purified APOE. A panel of HGSC cell lines was first screened 

for LRP5 expression by qRT-PCR (Supplementary Fig. 11A). OV90 cell line expressing 

highest levels of endogenous LRP5 was selected for further studies. The results showed that 

APOE-treated OV90 cells has a significantly higher growth rate than the control, and the 

stimulating effect of APOE was abrogated in OV90 cells transfected with LRP5-specific 

siRNAs compared to those transfected with the control siRNA (Fig. 6D–E), In contrary, the 

stimulating effect of APOE was not observed in OVCA433, which expressed low levels of 

endogenous LRP5 (Supplementary Fig. 11A and Fig. 6F). These findings suggest that LRP5 

mediates the growth stimulating effect of APOE in HGSC cells, and APOE-LRP5 crosstalk 

could play a crucial role in modulating the survival of HGSC cells.

DISCUSSION

In this study, spatial transcriptomics technology was used to characterize CAF heterogeneity 

in advanced-stage HGSC. We found the absence of specific CAF subtypes in the tumor 

tissue of patients with advanced HGSC to be associated with survival durations of more than 

10 years. Furthermore, specific ligand-receptor interactions between various tumor and CAF 

clusters in STS samples compared with those in LTS samples were identified.

Although most ovarian cancer patients have a median survival duration of less than 

5 years, approximately 15% of patients survive more than 7 years (7). These patients 

are generally defined as long-term survivors (LTSs) (42). In previous studies, multiple 

transcriptome analyses of LTS samples were performed to identify conserved genomic 

signatures associated with long-term survival; however, each study identified different gene 

sets, most likely because of the use of heterogenous patient cohorts and the use of bulk 

tissue samples with various amount of stromal tissue (23). The gene sets identified may not 
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represent the biology of the tumor that contribute to long-term survival. In the present study, 

to eliminate the confounding factors associated with patient survival, we included only 

optimally debulked, advanced-stage, treatment-naïve HGSC samples. The use of a spatially 

resolved transcriptomic platform can also eliminate the issue of tissue heterogeneity among 

different specimens.

Our spatial transcriptomics analysis demonstrated the presence of different tumor clusters 

represented by different transcriptome signatures within a tumor tissue, suggesting high 

levels of heterogeneity not only among different HGSC samples but also within single 

HGSC samples. For example, several tumor clusters identified in STS but not in LTS 

samples expressed high levels of CDK1 and LGR5, respectively, which suggests that a 

cluster of tumor cells with CDK1 or LGR5 expression in the tumor tissue of an STS sample 

expressing one of these genes may play a role in conferring the malignant phenotype of 

HGSC in STSs. Indeed, several studies have shown that CDK1 dysregulation leads to robust 

tumor growth, chromosomal instability, and a high rate of tumor cell proliferation (43). 

Furthermore, other studies have demonstrated that LGR5 expression levels are positively 

correlated with cancer stem cell traits, shorter survival times, and chemoresistance (44,45).

Increasing evidence suggests that the stromal component of the TME plays an important 

role in ovarian cancer development. In HGSC patients, the high number of stromal cell 

types in the ovarian TME is significantly associated with poor survival (46,47). Recently, 

Stur et al. used spatial transcriptomics to identify spatially resolved biomarkers that can be 

used to differentiate between HGSC patients whose disease has a poor or excellent response 

to chemotherapy (48). They demonstrated the importance of the stromal component and 

the presence of different clusters as drivers of poor response (48). However, the clusters 

they identified were not annotated, and the expression of marker genes in the clusters were 

not validated at the protein level. Nevertheless, the authors demonstrated the feasibility of 

using spatial transcriptomics to identify predictive markers of treatment response. In the 

present study, our spatial transcriptomics analysis of treatment-naïve STS and LTS samples 

demonstrated high levels of both intra- and inter-stromal heterogeneity among HGSCs. 

Annotated stroma clusters, which were identified predominantly in STS samples, had high 

levels of both periostin and CD36 expression as well as high levels of COL1A1 expression. 

We were able to validate these findings in a larger cohort of patients using mIF analysis, 

which revealed a significantly higher level of periostin protein expression in a specific 

stroma compartment of STS samples than in that of LTS samples. Markedly higher levels 

of CD36 protein expression were also observed in STS. Periostin, a component of the 

extracellular matrix, is expressed by fibroblasts in normal tissue and by those in the stroma 

of various primary tumors. Periostin is also required for cancer stem cell maintenance, 

and blocking its function prevents metastasis (49). Periostin is also associated with poor 

prognosis and platinum resistance in epithelial ovarian cancer (50). CD36 fuels tumor 

metastasis and therapy resistance by enhancing lipid uptake and fatty acid oxidation. It also 

attenuates angiogenesis by binding to thrombospondin 1 and thereby inducing apoptosis 

or blocking the VEGFR-2 pathway in tumor and endothelial cells. Moreover, CD36-driven 

lipid metabolic reprogramming and functions in tumor-associated immune cells lead to 

tumor immune tolerance and cancer development (51). Therefore, the overexpression of 
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periostin and CD36 in the stromal compartment could contribute to the malignant phenotype 

of HGSC in STS.

To further investigate whether the stromal heterogeneity we identified represents different 

CAF populations, we assessed the expression of canonical CAF markers in the stroma 

clusters we identified. Stroma clusters in STS samples expressed all traditional CAF 

markers, including αSMA (ACTA2), S100A4, VIM, FAP, PDGFRα, and PDGFRβ, 

suggesting that these clusters represent CAF clusters. However, most stroma clusters in 

LTS samples expressed only αSMA and VIM but no other CAF markers, suggesting that 

these clusters represent myofibroblasts rather than canonical CAFs. Validation studies using 

mIF confirmed that the density of CAFs expressing αSMA, VIM, and PDGFRB in LTS 

samples was significantly lower than that in STS samples, indicating that the absence of 

CAF clusters that express all the canonical CAF markers can be used to predict long-term 

survival (Fig. 7). Although several reports identify CAF subtypes associated with poor 

immune infiltration and patient survival, in HGSC there is a lack of consensus markers 

to define CAF subtypes (16,46,47,52). Our results are in line with findings from previous 

studies, which demonstrated the association of some of the CAF markers we used with poor 

immune infiltration and patient survival (16,46,47,52). To our knowledge, our study shows 

for the first time an in-depth characterization of the CAF subtypes with spatial context in 

HGSC TME at both mRNA and protein levels.

The immune system is also an important component of the TME. Recent studies 

demonstrated that CD8+ tumor-infiltrating lymphocytes (TILs) are associated with improved 

overall survival in several solid tumors, including ovarian cancer (10,11,53). Other 

prognostically favorable lymphocyte subsets include CD4+ T cells, memory B cells, and 

plasma cells. These lymphocyte subsets appear to work cooperatively, as the highest 

patient overall survival rates are associated with tumors containing all four cell types (12). 

Our spatial transcriptomics analysis revealed higher densities of CD4+ central memory, 

CD8+ effector memory, monocytes, NK, B, myeloid DCs and plasmacytoid dendritic cells 

infiltrated in the tumor compartment of LTS than those in STS. These findings together 

with the identification of specific CAF subtypes in STS suggest that SMA+VIM+PDGFRB+ 

CAFs in STS could create a barrier that hampers immune cells to infiltrate into the tumor 

mass leading to immune evasion (Fig. 7).

We characterized region-specific ligand-receptor interactions by analyzing crosstalk 

signaling in neighboring spots at the stroma-tumor interface. Crosstalk analysis methods 

have been designed for use with both cell-specific RNA-seq data (e.g., CCCexplorer (35)) 

and single-cell RNA-seq data (54,55). For spatial transcriptomics data, however, there is a 

lack of systemic approaches for analyzing the cell-cell crosstalk. In this study, we developed 

and applied a method for identifying region-specific ligand-receptor interactions at the 

stroma-tumor interface. The method can also be used to analyze crosstalk between other cell 

types (e.g., between tumor cells and immune cells, between cells in the immune stroma, 

between different tumor cells). Using this method and subsequent validation studies by mIF, 

we found a significant positive correlation between LRP5+ cells and APOE intensity in 

only STS samples in which this ligand-receptor pair is exclusively expressed at the stroma-

tumor interface. Further functional studies demonstrated that LRP5 mediates the growth 
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stimulating effect of APOE in HGSC cells. These findings suggest that a strong crosstalk 

signaling network between tumor-derived LRP5 and CAF-derived APOE may confer a 

more aggressive phenotype of the HGSC, which contribute to poorer patient survival rates 

(Fig. 7). Indeed, increased levels of LRP5 have been linked to metastasis in various tumor 

types (56–58). Moreover, APOE has been reported to be required for cell proliferation 

and survival in ovarian cancer and has been associated with aggressive biology and poor 

prognosis in colorectal cancers (59,60).

One of the limitations in the present study was that only 4 samples (2 STS samples and 

2 LTS samples) were used in the initial spatial transcriptomics analysis. However, mIF 

analysis in a larger cohort of independent samples validated our findings, suggesting that 

our analytical methods were robust and stringent. The study had a small sample size owing 

to the rarity of treatment-naïve LTSs with advanced HGSC available (7). The use of spatial 

transcriptomics platforms with a more homogenous patient cohort will certainly increase the 

likelihood of identifying reliable prognostic or predictive biomarkers of advanced HGSC.

In conclusion, our spatial transcriptomics analysis revealed high levels of inter- and 

intratumor CAF heterogeneity, and novel spatially resolved CAF-tumor crosstalk signaling 

networks in the ovarian TME that are associated with long-term survival in patients 

with advanced HGSC (Fig. 7). Further elucidating the association between these spatially 

resolved biomarkers and long-term survival could contribute to our understanding of ovarian 

cancer pathogenesis and thereby improve the survival of patients with advanced HGSC.
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SIGNIFICANCE

Generation of spatially resolved gene expression patterns in tumors from ovarian cancer 

patients surviving more than ten years allows the identification of novel predictive 

biomarkers and therapeutic targets for better patient management.
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Fig. 1: Spatial transcriptomics analysis of four HGSC patient samples.
A. Schematic of the analysis workflow. The spatial transcriptomics data from our ovarian 

cancer patient samples were integrated with scRNA-seq data from publicly available 

datasets. Each spatial transcriptomics tissue cryosection was mounted onto a spatially 

barcoded microarray. The spots on the microarray were sequenced and clustered based on 

the gene expression in multiple regions. The scRNA-seq data were also clustered, which 

generated multiple cell types and their specific gene sets. MIA was performed to identify the 

overlap between region-specific genes and cell type–specific genes, and a hypergeometric 
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test was performed to determine whether the overlap was significant. The −log10(p-value) of 

the test was used to estimate the enrichment of a cell type in that region. The region-specific 

ligand-receptor interactions between adjacent stroma and tumor clusters were analyzed. B. 
Top, clustering of scRNA-seq data (n=1,156 cells; data from GSE118828). scRNA-seq data 

were analyzed and used to define differentially expressed genes for the major cell types. 

For each cell type, genes whose expression was statistically higher in the cells annotated 

to that cell type in comparison with their expression in the remaining cells were identified 

(p < 0.00001, Wilcoxon rank sum test, average log_fold-change > 0.25). Bottom, heatmap 

of the top 15 differentially expressed genes in each cluster. C. The MIA map of all scRNA-

seq–identified cell types and spatial transcriptomics-defined regions. Each element in the 

matrix was computed for all pairs of cell types and tissue regions. The hypergeometric test 

identified tumor clusters as those enriched with any of the Ep_1, Ep_2, Ep_3, or Ep_4 

cell types with a p-value of less than 1 × 10−10. A cluster was identified as a stroma 

cluster if it was not a tumor cluster. The bar at the bottom indicates the region type. D. 
Overrepresentation analysis of the DAVID Gene Ontology gene sets. The bar at the bottom 

indicates tumor and stroma clusters, which are highlighted in magenta and blue, respectively.

Ferri-Borgogno et al. Page 19

Cancer Res. Author manuscript; available in PMC 2023 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: Spatial transcriptomics of HGSC and mapping of clusters.
A. Spatial expression of marker genes on a representative spatial transcriptomics sample. 

Left, H&E staining; the tumor outline identified by MIA (black) is overlaid on the tumor 

regions. Right, normalized spatial expression of the tumor and stroma markers; the black 

outline indicates the tumor outline the same as that in the left panel. B. Top, H&E 

staining. Bottom, Clustering of spatial transcriptomics spots by gene expression. Clusters 

are annotated by marker genes of tumor and stroma, the top differentially expressed genes, 

and MIA enrichment analysis of Fig. 1. Samples are grouped as STS samples (left) and 
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LTS samples (right). For each cluster, density plots show the minimum distance from each 

stroma spot to the tumor spots. The mean +/− standard deviation for the density distribution 

is shown at the top of each plot.
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Fig. 3: Heterogeneity of CAFs.
A. Heatmap of the average log fold-change of CAF gene expression in the stroma clusters. 

The average log fold-change was computed as the log fold-change of the average expression 

of a gene between a cluster and all the other clusters of the sample. The average log 

fold-change was set to 0 if the p-value was larger than 0.01 (Wilcoxon rank sum test). B. 
Mapping of CAF clusters in an STS sample (left) and an LTS sample (right). C. Spatial 

expression of selected CAF genes in an STS sample (left) and an LTS sample (right).
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Fig. 4: Validation of CAF subclusters.
A-D. mIF staining of markers of stroma subclusters in paraffin-embedded HGSC tissue: 

periostin (POSTN; A-B) and CD36 (C-D). A, C. Scale bar for two left panels is 100μm, for 

right panels is 50μm. Black square in H&E image indicates the enlarged region in the mIF 

panels. Orange lines represent the tumor boundary, while blue lines represent the stroma 

boundary. E-G. mIF staining of markers of CAF subclusters. Scale bar for panel E is 150μm. 

Data represented as mean ± SD and two-tailed unpaired Student’s t test have been used to 

compare STS (n = 26) and LTS (n = 16) samples and considered significant if P < 0.05.
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Fig. 5: Region-specific ligand-receptor interactions between stroma and tumor.
A. Illustration of the method used to identify the region-specific ligand-receptor interactions. 

Left, Different stroma-tumor interfaces in a sample. Right, the method identifies the 

ligand-receptor pairs at each interface. B, C. Representative nearest-neighbor interactions 

between tumor and stroma subregions. Top, Localization of nearest-neighbor spots of the 

tumor subregion (orange) and stroma subregion (gray). Red outlining indicates the tumor 

area of the sample. Bottom, the expressions of the ligand (left)-receptor (right) pairs are 

localized near the interface shown in the top panel. D. Nearest-neighbor interaction networks 
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between tumor and stroma subregions in all four samples. Pink and blue indicate tumor 

and stroma subregions, respectively. The node size is proportional to the number of spots 

in a subregion, and the width of the edges between nodes is proportional to the number of 

ligand-receptor pairs. E. Alluvial plot of all ligand-receptor pairs between tumor and stroma 

in a representative sample. Sixty ligand-receptor pairs were identified and pooled from all 

the interfaces between every stroma and tumor subregion.
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Fig. 6: Validation of ligand-receptor cross-talk at the stroma-tumor interface.
A. mIF staining of the ligand-receptor pair APOE-LRP5 in paraffin-embedded HGSC 

tissues. Scale bar for two left panels is 100μm, for right panels is 50μm. Black square 

in H&E image indicates the enlarged region in the mIF panels. Orange lines represent 

the tumor boundary, while blue lines represent the stroma boundary. B, C. Spearman’s 

correlation analysis between LRP5+ cells and APOE expression intensity in the stroma-

tumor interface area in STS samples (B) and LTS samples (C). Two-tailed Student’s t 

test have been used to compare STS (n = 26) and LTS (n = 16) samples and considered 
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significant if P < 0.05. D. Relative mRNA expression of LRP5 in a HGSC cell line (OV90) 

24h after siRNA transfection. E, F. MTT assay after 48h treatment with APOE protein or 

control buffer with OV90 (E) or OVCA433 cell lines (F). Three independent experiments 

were conducted, and data represented as mean ± SD and two-tailed unpaired Student’s t test 

have been used for data analysis (unless otherwise indicated) and considered significant if P 

< 0.05.
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Fig. 7: Schematic summarizing the TME complexity of long- and short-term ovarian cancer 
survivors.
Spatial transcriptomics revealed an enrichment of CD4+ central memory (CD4+ CM), CD8+ 

effector memory (CD8+ EM), monocytes, natural killer (NK), B, myeloid DCs (mDCs) and 

plasmacytoid dendritic cells (pCDCs or pDCs) infiltrated in the tumor of LTS compared to 

STS. In contrast STS appear to contain a higher level of SMA+VIM+PDGFRB+ CAFs as 

well as more crosstalk between APOE and LRP5 at the tumor-stroma interface, which could 

hamper the infiltration of tumor cells and increase tumor cell proliferation and survival. 

Copyright used with the permission of The Board of Regents of the University of Texas 

System through The University of Texas MD Anderson Cancer Center.
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