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Objectives: The correlate(s) of protection against SARS-CoV-2 remain incompletely defined. Additional 

information regarding the combinations of antibody and T cell-mediated immunity which can protect 

against (re)infection is needed. 

Methods: We conducted a population-based, longitudinal cohort study including 1044 individuals of 

varying SARS-CoV-2 vaccination and infection statuses. We assessed spike (S)- and nucleocapsid (N)- 

immunoglobulin(Ig)G and wildtype, Delta, and Omicron-neutralizing antibody (N-Ab) activity. In a subset 

of 328 individuals, we evaluated S, membrane (M), and N-specific T cells. Three months later, we re- 

assessed Ab (n = 964) and T cell (n = 141) responses and evaluated factors associated with protection 

from (re)infection. 

Results: At the study start, > 98% of participants were S-IgG seropositive. N-IgG and M/N-T-cell responses 

increased over time, indicating viral (re)exposure, despite existing S-IgG. Compared to N-IgG, M/N-T cells 

were a more sensitive measure of viral exposure. High N-IgG titers, Omicron-N-Ab activity, and S-specific- 

T-cell responses were all associated with a reduced likelihood of (re)infection over time. 

Conclusion: Population-level SARS-CoV-2 immunity is S-IgG-dominated, but heterogeneous. M/N-T-cell 

responses can distinguish previous infection from vaccination, and monitoring a combination of N-IgG, 

Omicron-N-Ab, and S-T-cell responses may help estimate protection against SARS-CoV-2 (re)infection. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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It is now well-understood that exposure to SARS-CoV-2 elic- 

ts robust antibody (Ab) and T cell-mediated immune responses 

o multiple viral proteins—in particular spike (S), nucleocapsid 

N), and membrane (M) proteins [1–5] . In contrast to infection, 

he messenger RNA-based COVID-19 vaccines used widely in the 

nited States and Europe elicit responses to the viral S protein; 

he only antigenic component of these vaccines [6 , 7] . As the corre-

ate(s) of protection needed to prevent infection or severe illness 

ave yet to be clearly defined [8] , data on population-level hu- 
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oral and cellular immune responsiveness to SARS-CoV-2 remain 

mportant for understanding (i) the scope of viral exposure and (ii) 

hat proportion of the population possesses some degree of virus- 

pecific immunity. 

Although much is now known regarding population-level Ab 

esponses to SARS-CoV-2 infection, our understanding of T cell- 

ediated immunity is much less comprehensive. T-cell responses 

ave been described following both vaccination [9–13] and in- 

ection, including mild or asymptomatic cases even without se- 

oconversion [1–3 , 5 , 13–16] . However, extensive studies of T-cell 

esponses, particularly at the population level, are lacking, par- 

ially due to the labor-intensive and relatively low-throughput na- 

ure of assays designed to evaluate them, such as enzyme-linked 

mmunospot (ELISpot) and flow cytometry-based assays. To ad- 

ress this, adaptation of interferon (IFN)-gamma release assays 

IGRAs), such as those used in Mycobacterium tuberculosis and Cy- 
iety for Infectious Diseases. This is an open access article under the CC BY license 
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omegalovirus screening [17 , 18] , may aid in the detection of SARS- 

oV-2-specific T cells in a larger number of samples. Importantly, 

s both humoral and cellular responses contribute to immunity 

gainst SARS-CoV-2, a better understanding of the heterogeneous 

ombinations of immune memory which can protect against dis- 

ase may help to inform vaccination strategies, including the ad- 

inistration of additional booster vaccine doses. 

Here, we conducted a population-based cohort study evaluat- 

ng Ab and T-cell responses to SARS-CoV-2 among individuals aged 

6 + in Zurich, Switzerland, including individuals of varying vac- 

ination and infection statuses. In March 2022, for all study par- 

icipants (n = 1044) we evaluated total SARS-CoV-2 S- and N- 

mmunoglobulin(Ig)G Ab levels, as well as neutralizing Ab (N-Ab) 

ctivity to wildtype (WT) virus, Delta, and Omicron variants us- 

ng a surrogate neutralization assay. In a randomly selected subset 

f individuals (n = 328), we further assessed T-cell responses to 

, M, and N proteins by IGRA. To investigate longitudinal changes 

n immune responses over time we reassessed Ab (n = 964) and 

 cell (n = 141) responses 3 months later, in June 2022. Over- 

ll, we found distinct immune response patterns among partic- 

pants depending on the reported infection and vaccination sta- 

uses. Already at the beginning of the study, nearly all partici- 

ants had detectable S-IgG responses. In contrast, N-IgG and M/N- 

pecific T-cell responses increased significantly over time, despite 

xisting S-IgG, indicating viral (re)exposure. Importantly, partici- 

ants with the highest N-IgG titers and Omicron-N-Ab activity, and 

hose with IFN-gamma-producing S-reactive T cells all had signifi- 

antly reduced likelihood of (re)infection between March and June 

022. Together, our results indicate that population-level immune 

esponses to SARS-CoV-2 are S-IgG-dominated but heterogeneous. 

hey suggest a role for assessing M/N-specific T cells in estimating 

revious viral exposure and further suggest that monitoring a com- 

ination of N-IgG, Omicron-N-Ab, and S-reactive T-cell responses 

ay help to predict population-level protection against Omicron 

ARS-CoV-2 (re)infection. 

bbreviated methods 

Detailed methods and information on statistical analyses can be 

ound in the supplementary materials. 

articipant recruitment and sample collection 

Individuals aged 16 + residing in the canton of Zurich, Switzer- 

and were randomly selected by age-stratified intervals from a pop- 

lation registry and invited to participate. In total, 4875 individu- 

ls were contacted and 1044 enrolled (21.4% participation, Supple- 

entary Figure 1). Initial study visits were conducted from March 

 

st through 31 st , 2022 and second study visits (964/1044, 92.3% 

articipation, Supplementary Figure 1) were conducted from June 

 

th through July 11 th , 2022. At each visit, participants provided 

nformation regarding previous COVID-19 vaccination and positive 

ARS-CoV-2 tests. From each participant, 10 ml of venous blood 

as collected and plasma was cryopreserved before analysis of S-Ig 

nd N-Ig levels and WT, Delta, and Omicron SARS-CoV-2 N-Ab ac- 

ivity. For participants selected for T-cell assessment, an additional 

 ml of venous blood was collected and immediately used for IGRA 

nalysis. 

pike- and nucleocapsid-specific immunoglobulin G and SARS-CoV-2 

eutralizing antibody activity 

Cryopreserved plasma samples were thawed and analyzed for 

- and N-specific IgG by Luminex assay as described [19] . Mean 

uorescence intensity (MFI) values for each sample were divided 
19 
y the mean value of negative control samples to yield an MFI ra- 

io. Individuals were considered seropositive if the MFI ratio ex- 

eeded a lower limit of detection (LOD) of 6.0 [19] . Plasma sam- 

les were further evaluated for WT, Delta, and Omicron SARS-CoV- 

 N-Ab activity using a cell- and virus-free surrogate neutralization 

ssay as described [20] . Half maximal inhibitory concentration (IC) 

alues of 50.0 and 2430.0 were set as lower and upper LODs, re- 

pectively. 

nterferon-gamma release assay 

T-cell responses were assessed by IGRA from whole blood stim- 

lated overnight with overlapping 15-mer peptide pools spanning 

he entire M and N proteins (M/N pool) or the S1 domain of the 

 protein and a mix of the predicted immunodominant peptides 

rom S containing most of the S2 domain (S pool) (M, N, S1, and S

epTivator peptide pools, respectively; Miltenyi Biotec). After incu- 

ation, stimulated plasma was collected and IFN-gamma-assessed 

sing the Human IFN-gamma enzyme-linked immunosorbent as- 

ay (ELISA) assay (Human IFN-gamma DuoSet ELISA kit, R&D Sys- 

ems, Catalog DY285B, and DuoSet ELISA Ancillary Reagent Kit 2, 

&D Systems, Catalog DY008) according to manufacturer’s instruc- 

ions. 

esults 

articipant demographics and overall antibody and T-cell immune 

esponses 

Of the March 2022 study participants (n = 1044, Supplemen- 

ary Figure 1, Supplementary Table 1), 45.5% were male and 54.3% 

ere female. Of them, 73.7% were aged 16-64 years and 26.3% 

ere 65 + years. A total of 93.5% reported previous SARS-CoV- 

 vaccination; 90.8% were fully vaccinated (2 + vaccine doses) 

nd 72.1% had received at least one booster (3 + vaccine doses) 

21 , 22] . In total, 32.6% of participants reported a previous SARS- 

oV-2 infection (defined as having received a positive polymerase 

hain reaction [PCR] or antigen test result) at some point from 

he pandemic start until the study visit. Older participants (65 + 

ears) were more likely to report being immunized against COVID- 

9 (odds ratio [OR] 2.87, 95% confidence interval [CI] 1.36-6.09, 

 = 0.006) and less likely to report previous infection (OR 0.44, 

.32-0.61, P < 0.0 0 01) compared to participants aged 16-64, possi- 

ly reflecting both the emphasis on vaccination for those 65 + , as 

ell as the preventive effect of vaccination on subsequent infec- 

ion. 

In total, 98.4% of participants were S-IgG seropositive and 23.2% 

ere N-IgG seropositive ( Figure 1 a) [21 , 22] . A total of 96.8%, 93.7%,

nd 89.5% of participants had detectable neutralization IC50 val- 

es to WT, Delta, and Omicron viral variants, respectively. Geomet- 

ic mean IC50 values, however, differed significantly between vari- 

nts, being highest for WT and lowest for Omicron ( P < 0.0 0 01 for

ll comparisons, Friedman test with Dunn’s multiple comparisons, 

igure 1 b). In a subset of study participants (n = 328), circulating 

-cell responses to S, or a combination of M and N proteins [14] ,

ere assessed. In total, 89.6% had detectable S-specific T-cell re- 

ponses, while 57.3% had detectable M/N-specific T-cell responses. 

eometric mean IFN-gamma production was also greater for S- 

timulation, as compared to M/N-stimulation ( Figure 1 c). Taken to- 

ether, these data indicate that, as of March 2022, nearly 99% of 

he population had previous SARS-CoV-2 antigen exposure (either 

hrough vaccination, infection, or both). As M/N proteins are not 

omponents of the vaccines available in Switzerland at the time 

6 , 7] but are present during infection, and, as M- and N-T-cell re- 

ponses are longer-lasting than N-IgG [1 , 3 , 14] , these findings fur- 
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Figure 1. Quantitative antibody and T cell Responses among participants, March 2022. (a) anti-S- and N-IgG geometric mean MFI titer ratios (n = 1044), assay LOD = 6.0. 

(b) anti-WT, Delta, and Omicron geometric mean neutralizing Ab titers (n = 1044), assay LOD 50.0-2430.0. (c) Geometric mean IFN-gamma production following S or M/N 

peptide stimulation of whole blood (n = 328). Ab, antibody; IC, inhibitory concentration; IFN, interferon; Ig, immunoglobulin; LOD, limit of detection; MFI, mean fluorescence 

intensity; M, membrane; N, nucleocapsid; N-Ab, neutralizing antibody; S, spike; TC, T cell; WT, wildtype. 
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her suggest that at least 57% of the population had been previ- 

usly infected by this time. 

mpacts of infection and vaccination on antibody and T-cell responses 

We next assessed the impacts of infection and vaccination 

n Ab titers and T-cell responses by multivariable linear regres- 

ion. Increasing age (65 + vs 16-64) was associated with lower S- 

nd N-IgG titers, lower anti-WT, -Delta, and -Omicron-N-Ab activ- 

ty, and lower S-T cell responses ( Figure 2 ). Previous SARS-CoV- 

 infection and receiving an increasing number of vaccine doses 

ere both associated with increased S-IgG titers, anti-WT, Delta, 

nd Omicron-N-Ab activity, and S-T-cell responses ( Figure 2 ). Pre- 

ious infection was also associated with increased N-IgG titers 

nd M/N-T-cell responses ( Figure 2 ). Participants were stratified 

nto four groups: infected/vaccinated (n = 285 Ab, 80 T cell 

ested), uninfected/vaccinated (n = 686 Ab, 229 T cell tested), 

nfected/unvaccinated (n = 53 Ab, 14 T cell tested), and unin- 

ected/unvaccinated (n = 15 Ab, 3 T cell tested) ( Figure 3 a and

). In general, Ab and T-cell response patterns were more simi- 

ar between vaccinated participants, compared to infected partic- 

pants. S-IgG and N-Ab tended to be higher in vaccinated individu- 

ls (both previously infected and uninfected, Figure 3 a), and these 

id not correlate with N-IgG responses ( Figure 3 b). In contrast, N- 

gG and M/N-T-cell responses were higher among previously in- 

ected individuals (both vaccinated and unvaccinated, Figure 3 a 

nd b). As expected, the lowest overall responses were observed in 

ninfected/unvaccinated individuals. Due to the low sample num- 

er, there were insufficient data to assess the T-cell correlation pat- 

erns for this group ( Figure 3 a and b). 

ongitudinal responses and protection from (re)infection 

A total of 964 participants returned for a second study visit, 

 months later, in June 2022 (Supplementary Figure 1, Supple- 

entary Table 1). In total, 141 were assessed for T-cell responses 

118 longitudinally from March and an additional 23 not evalu- 

ted for T cell responses in the March round; Supplementary Ta- 

le 1). At this time, 6.4% of participants were unvaccinated, 2.4% 

ad received a single vaccine dose, 17.1% had received two doses, 

nd 74.1% had received three or more doses. Nineteen individu- 

ls (2.0% of the study population) received an additional vaccina- 

ion between March and June, all of which were second or booster 
20 
oses. Of returning participants, 16.0% (154/964) reported a posi- 

ive SARS-CoV-2 PCR or antigen test (infection) between March and 

une. Of participants reporting infection between March and June 

n = 154), 14.3% (n = 22) were repeated infections (the same par- 

icipant also reported infection before March) and 85.7% (n = 132) 

ere new infections (the same participant did not report infection 

efore March). In total, 45.4% (n = 438) of the population reported 

t least one SARS-CoV-2 infection from the beginning of the pan- 

emic through June 2022. 

In total, 98.8% of participants were S-IgG seropositive (simi- 

ar to March) and 36.7% were N-IgG seropositive (increasing from 

arch; P < 0.0 0 01, two-sample test of proportions). Geometric 

ean MFI ratio titers for both S-IgG and N-IgG increased between 

arch and June ( Figure 4 a; S-IgG P < 0.0 0 01, N-IgG P < 0.0 0 01,

ilcoxon matched-pairs signed rank test). A total of 97.2% and 

2.3% of participants had detectable S- and M/N-T cell responses, 

espectively; significantly more than in March ( Figure 4 a and b, S 

 = 0.043, M/N P = 0.001, Fisher’s exact test) and geometric mean 

FN-gamma production among the overall population was higher 

or both in June ( Figure 4 b, S P = 0.05, M/N P = 0.053, Mann-

hitney test). M/N-T cell responses tended also to be higher in 

he longitudinal subset, though this was not statistically signifi- 

ant ( P = 0.109, Wilcoxon matched-pairs signed rank test). Be- 

ween March and June, 0.4% (4/948) of those who were seropos- 

tive for S-IgG became seronegative while 50% (8/16) of those who 

ere seronegative became seropositive. For N-IgG, 32.3% (72/223) 

f those who were seropositive became seronegative and 27.4% 

203/741) of those who were seronegative became seropositive. Of 

ndividuals tested longitudinally for T cell responses, 1.9% (2/107) 

f those positive for S-T cells in March were negative in June, while 

1.8% (9/11) of those negative in March were positive in June. In 

otal, 13.3% (8/60) of those positive for M/N-T cells in March were 

egative in June, while 58.6% (34/58) of those negative in March 

ere positive in June. Of note, only 59.1% (120/203) of individu- 

ls that became N-IgG seropositive and 29.4% (10/34) of individ- 

als that became M/N-T cell positive reported infection. As N-IgG 

eropositivity and/or M/N-T cell positivity could only be due to in- 

ection in this population, these findings indicate substantial un- 

erreporting of infections and highlight the importance of immune 

onitoring effort s in underst anding SARS-CoV-2 exposures. 

Overall, we observed three dominant immune response pat- 

erns, representing over 90% of study participants, which were: 

roup I: S-IgG + /N-IgG + /S-T cell + /M/N-T cell + (positive for all
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Figure 2. Factors associated with March 2022 S- or N-IgG, N-Ab titers, or S- or M/N-T cell IFN-gamma levels. Multivariable linear regression modeling was used to assess the 

relationship between gender (female vs male), age group (65 + vs 16-64 years), reporting a previous SARS-CoV-2 infection (positive polymerase chain reaction or antigen test) 

(yes vs no), and the number of COVID-19 vaccine doses received (1, 2, 3 + vs 0), and S- or N-IgG, N-Ab mean fluorescence intensity ratio titers, or S- or M/N-T cell IFN-gamma 

levels (natural logarithm-transformed). ∗P > 0.05, ∗∗ P > 0.01, ∗∗∗ P > 0.005. CI, confidence interval; IFN, interferon; Ig, immunoglobulin; M, membrane; N, nucleocapsid; N-Ab, 

neutralizing antibody; S, spike; TC, T cell; WT, wildtype. 
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actors), group II: S-IgG + /N-IgG-/S-T cell + /M/N-T cell + (positive 

or everything except N-IgG;), and group III: S-IgG + /N-IgG-/S-T 

ell + /M/N-T cell- (only S-IgG and S-T cell positive). In March, we 

bserved 17.7%, 36.3%, and 34.2% of participants in group I, group 

I, and group III, respectively. This was similar in June, with 30.5%, 

9.0%, and 23.4% of participants in group I, group II, and group III, 
21 
espectively (Supplementary Figure 2A and B). Interestingly, only 

.2% of those in group I reported an infection between March and 

une compared to 26.6% of those in group II and 21.9% of those in 

roup III, potentially suggesting superior protection by the group 

 combination of immune responses. To evaluate which immune 

esponse components might be capable of providing protection 
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Figure 3. Antibody and T cell responses among participants by infection and vaccination status, March 2022. (a) Quantitative Ab and T cell responses. Log10 anti-S- and 

N-IgG geometric mean fluorescence intensity titer ratios, anti-WT, Delta, and Omicron geometric mean neutralizing Ab titers, and geometric mean IFN-gamma production 

following S or M/N peptide stimulation of whole blood. (b) Correlation between Ab and T cell responses. Top left: infected and unvaccinated individuals (n = 53 Ab tested, 

14 T cell tested), top right: infected and vaccinated (n = 285 Ab tested, 80 T cell tested), bottom left: uninfected and unvaccinated (n = 15 Ab tested, 3 T cell tested), bottom 

right: uninfected and vaccinated (n = 686 Ab tested, 229 T cell tested). Values represent Spearman correlation coefficients for indicated Ab and T cell response pairs. Crosses 

indicate pairs with insufficient data for analysis. Ab, antibody; IFN, interferon; Ig, immunoglobulin; M, membrane; N, nucleocapsid; N-Ab, neutralizing antibody; S, spike; TC, 

T cell; WT, wildtype. 
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gainst (re)infection, we assessed whether an individual’s levels of 

- and N-IgG, N-Ab, and S- and M/N-T cells in March were associ- 

ted with infection between March and June ( Figure 5 , Supplemen- 

ary Table 2). As vaccination is expected to influence SARS-CoV-2- 

pecific immune responses, individuals vaccinated between March 

nd June (n = 19) were excluded from the analysis. Individually, 

ncreasing S-IgG (area under curve [AUC] 0.57, 95% 0.52-0.61), N- 

gG (AUC 561, 95% 0.59-0.64), WT-N-Ab (AUC 0.66, 95% 0.62-0.70), 

elta-N-Ab (AUC 0.67, 95% 0.63-0.71), Omicron-N-Ab (AUC 0.67, 

5% 0.63-0.72), and S-T cell (AUC 0.54, 95% 0.51-0.66) responses 

ere all significant but not strong predictors for remaining un- 

nfected (i.e., not reporting a positive SARS-CoV-2 PCR or antigen 

est) between March and June (Supplementary Table 2). Using a 
22 
ultivariable logistic regression model, we found that individuals 

ith the highest N-IgG titers (MFI ratio titers above 10; the top 

3% of the population) had an 84% reduced odds of infection be- 

ween March and June (OR 0.16, 95% 0.03-0.85, P = 0.031; com- 

ared to the lowest 33%). Those with the highest Omicron-N-Ab 

ctivity (IC50 titers above 360; the top 25% of the population) had 

 94% reduced odds of infection (OR 0.0 6, 0.00 6-0.60, P = 0.017; 

ompared to the lowest 25%), while having S-T cells was associ- 

ted with a 60% reduced likelihood of infection (production of ≥25 

o < 65 pg/ml IFN-gamma, OR 0.39, 0.17-0.92, P = 0.030; compared 

o the lowest 25%). Together, increasing N-IgG titers, Omicron-N- 

b, and S-T cell responses were predictive of not reporting an in- 

ection between March and June (AUC 0.73, 95% 0.66-0.79, Sup- 
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Figure 4. Quantitative antibody and T cell Responses, June 2022. (a) S- and N-IgG geometric mean MFI ratio titers (n = 964). (b) Geometric mean IFN-gamma production 

following S or M/N peptide stimulation of whole blood (n = 141). IFN, interferon; Ig, immunoglobulin; M, membrane; MFI, mean fluorescence intensity; N, nucleocapsid; S, 

spike; TC, T cell; WT, wildtype. 
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lementary Table 2). Therefore, we find that N-IgG, Omicron-N-Ab, 

nd S-specific T cells are associated with protection from Omicron 

re)infection, and monitoring a combination of these responses 

ay aid in the assessment of population-level immunity against 

micron SARS-CoV-2 (re)infection. 

iscussion 

Although Ab responses among individuals in the Zurich area, 

nd throughout Switzerland have been well-described [21–24] , 

uch less is known regarding population-level T cell responsive- 

ess to SARS-CoV-2. Here, we utilized an IGRA based on a short- 

erm culture of whole blood with SARS-CoV-2-specific peptides 

o assess T cell responses, which demonstrated good concordance 

ith an ELISpot assay that we used previously [14] . We found that 

y June 2022, 97% and 72% of study participants had S- and M/N- 

pecific T cells, respectively. In comparison, 99% of participants 

ere S-IgG seropositive, and slightly less than 40% were N-IgG 

eropositive. That S-specific Ab and T cell responses were higher 

n general than N-specific Ab and M/N-specific T cell responses is 

onsistent with the high vaccination coverage in the population 

 > 90% fully vaccinated), as vaccines available in Switzerland con- 

ained S, but not M or N antigens [6 , 7] . Furthermore, the half-life

f S-IgG is substantially longer than that of N-IgG [14 , 25 , 26] , con-

istent with our observation that the fraction of participants who 

ere initially seropositive in March but became seronegative by 

une was greater for N-IgG (14.1%) compared to S-IgG (1.2%). The 

igher percentage of M/N-T cell positivity compared to N-IgG pos- 

tivity is worth noting and may be due to (i) the use of both M-

nd N-peptides in the IGRA, (ii) that the half-lives of circulating 

- and N-specific T cells are longer than that of N-IgG [1 , 3 , 14] , (iii)

hat some individuals develop only M- and N-T cell responses after 

nfection [14] , and, (iv) that previous exposure to endemic human 

oronaviruses (HCoV)-229E, -NL63, -OC43, and -HKU1 can generate 

ow levels of T cells cross-reactive to SARS-CoV-2 [2 , 4 , 5] . Our find-

ngs, however, indicate that assessing SARS-CoV-2 M/N-T cells is 

ikely a more sensitive method for evaluating viral exposure com- 

ared to N-IgG and that monitoring M/N-T cells may help to assess 

opulation-level “hybrid immunity” in areas where vaccines based 

olely on S (as opposed to whole-virus vaccines which contain all 

roteins [27] ) are predominately used. 
23 
An additional takeaway from our findings is that most individ- 

als had more than one type of virus-specific memory response 

nd that protection was not clearly mediated only by a single sub- 

et. The most common patterns, representing over 90% of the study 

opulation, belonged to three groups: group I, positive for all as- 

essed responses, group II, positive for everything except N-IgG, 

nd group III, positive only for S-IgG and S-T cells. All of these 

atterns included S-IgG, but nearly 95% of those in group I did 

ot report an infection between March and June compared to 73- 

8% of those in groups II and III. Furthermore, despite high S-IgG 

eropositivity already in March 2022, the percentage of partici- 

ants with detectable N-IgG titers and M/N-T cells increased sig- 

ificantly by June 2022, indicating continued viral (re)infections, 

ven among individuals with some level of S-specific immunity. 

n assessing potential mediators of protective immunity, we found 

hat having high N-IgG titers and/or high Omicron-N-Ab activity 

ere both protective against Omicron SARS-CoV-2 infection. Be- 

ause the half-life of N-IgG is relatively short at approximately 60- 

0 days [14 , 25 , 26] , individuals with high titers were likely recently

nfected—perhaps in the 3-6 months before March. It would also 

ake sense that these individuals were infected with the Omi- 

ron variant, which was responsible for > 99% of reported COVID- 

9 cases in late January 2022 in Switzerland [28] . As recent infec- 

ion may contribute to a state of “trained immunity” [29] with en- 

anced baseline activation of the innate immune system, we spec- 

late that N-IgG is likely not a sole mediator of protection in and 

f itself but may serve as a marker for a persisting “antiviral” state 

hich, in turn, limits reinfection. We additionally found that S- 

 cells were associated with a reduced likelihood of infection. S- 

eactive T cells are known to be generated following SARS-CoV-2 

nfection and vaccination [ 1–3 , 9–15 ], and individuals can possess 

re-existing memory T cell responses generated from previous en- 

emic human coronavirus exposure [2 , 4 , 5] . Though the role of S-T

ell responses as a correlate of protection against SARS-CoV-2 is 

ot completely clear [8] , it is known that T cell-mediated immu- 

ity is more cross-reactive than corresponding Ab responses [30] . 

urthermore, it has been observed in animal models that, in the 

bsence of Ab responses, protection from SARS-CoV-2 can be me- 

iated solely by T cell immunity [31] , and, similarly, we recently 

bserved that individuals can clear SARS-CoV-2 infection in the ab- 

ence of detectable Ab responses [14] , highlighting the importance 

f this subset in protection from infection. 
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Figure 5. Factors associated with reporting a SARS-CoV-2 infection between March and June 2022. Multivariable logistic regression modeling was used to assess the rela- 

tionship between gender (female vs male), age group (65 + vs 16-64 years), quantiles of S- or N-IgG, N-Ab Titers, or S- or M/N-T cell IFN-gamma levels in March 2022, and 

reporting a previous SARS-CoV-2 infection (positive polymerase chain reaction or antigen test) (yes vs no) in June/July 2022. For S- and N-IgG MFI ratio titers, individuals 

were assigned to one of three expression quantiles ( < 33%, 33-67%, 67 + % of all participants); for N-Ab IC50 values, and S- and M/N-T cell IFN-gamma levels, individuals 

were assigned to one of four expression quantiles ( < 25%, 25- > 50%, 50- > 75%, 75 + % of all participants). Corresponding MFI ratios/IC50 titers/IFN-gamma levels are listed 

next to each variable. ∗P > 0.05, ∗∗∗P > 0.005. CI, confidence interval; IC, inhibitory concentration; IFN, interferon; Ig, immunoglobulin; M, membrane; MFI, mean fluorescence 

intensity; N, nucleocapsid; N-Ab, neutralizing antibody; S, spike; TC, T cell; WT, wildtype. 
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Some limitations to our study include, first, that we relied on 

elf-reported SARS-CoV-2 infections based on receiving a positive 

CR or antigen test result. Although false positive results are possi- 

le, it is also likely, because many individuals use self-tests, which 

ave limited sensitivity especially early in infection, that true in- 

ections are under-reported. Similarly, we observed that a sub- 

tantial fraction—20% (3/15)—of participants that reported being 

ninfected/unvaccinated had detectable S- or N-IgG titers, which 

e would expect only in response to SARS-CoV-2 antigen expo- 

ure. Due to this misclassification, the associations between im- 

unological markers and infections and their discriminative prop- 

rties (AUC) are likely biased toward the null and, thus, under- 

stimated. An additional limitation was the low number of un- 

nfected/unvaccinated individuals, and as we collected T cell data 

nly from a subset of individuals, we did not have sufficient data 
24 
o thoroughly assess this group, which represents an interesting 

mmune “baseline”. Furthermore, in terms of the assays used, we 

ssessed only IFN-gamma as a measure of T cell activity. Stud- 

es have demonstrated that interleukin (IL)-2-producing T cell re- 

ponses are also generated in SARS-CoV-2 infection and vaccina- 

ion [5 , 16] . It would be valuable to test the IGRA approach in eval-

ating IL-2 responses in further studies. In addition, we limited our 

 cell analysis to the three dominant antigens for cellular immune 

esponses (S, M, and N), and furthermore, for experimental fea- 

ibility, S1 and S2 domains, as well as M and N responses, were 

ooled, although they have been shown in other studies to exhibit 

ome distinct behaviors [1 , 2 , 14 , 16] . We cannot exclude the impor-

ance of subdominant T cell responses against other viral antigens 

n some of the participants, which may have led to an underes- 

imation of T cell responses. Another limitation is that, although 
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[  
he IGRA results had a high degree of concordance with ELISpot 

ssay (Supplementary Methods, Supplementary Figure 3A and B), 

hey did not strongly correlate. This is not unexpected, though, as 

GRA measures total IFN-gamma output in pg/ml which could be 

roduced by few specific T cells, while ELISpot assesses only the 

umber of IFN-gamma-producing cells without taking the amount 

f IFN-gamma produced by individual cells into account, making it 

ifficult to compare values from these two assays directly. Further- 

ore, we used a surrogate assay to indirectly quantify neutraliz- 

ng activity by measuring competitive inhibition of trimeric SARS- 

oV-2 S protein binding to the angiotensin-converting enzyme 2 

eceptor. However, this assay showed high sensitivity compared 

o live virus assays during validation [20] and permitted simulta- 

eous assessment of neutralization against WT-SARS-CoV-2, Delta, 

nd Omicron variants. 

Nevertheless, we provide here population-level estimates of cel- 

ular immunity as well as factors that may be associated with pro- 

ection from Omicron SARS-CoV-2 infection. Our results suggest 

hat, while most individuals possess anti-S-IgG, these responses 

n and of themselves are likely not a good predictor of protec- 

ion from (re)infection. In terms of estimating what fraction of the 

opulation has been infected with SARS-CoV-2, monitoring M/N- 

eactive T cells responses may be helpful. However, to assess what 

raction of the population might be protected from (re)infection 

ith Omicron SARS-CoV-2, our data suggest that monitoring a 

ombination of anti-N-IgG, Omicron-N-Ab, and S-reactive T cells 

ay be beneficial. Our findings indicate a pattern where co- 

orrelates of protection, rather than simply S-IgG, are likely impor- 

ant for mediating long-term protective immunity against SARS- 

oV-2 and future variants and provide important information for 

olicymakers regarding vaccination strategy in the case of chang- 

ng disease epidemiology. 
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