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Abstract

Neuropeptides are a class of endogenous peptides that have key regulatory roles in biochemical, 

physiological, and behavioral processes. Mass spectrometry analyses of neuropeptides often rely 

on protein informatics tools for database searching and peptide identification. As neuropeptide 

databases are typically experimentally built and comprised of short sequences with high sequence 

similarity to each other, we developed a novel database searching tool, HyPep, which utilizes 

sequence homology searching for peptide identification. HyPep aligns database-free, de novo 
sequenced peptide sequences generated through PEAKS software with neuropeptide database 

sequences to identify neuropeptides based on an alignment score. HyPep performance was 

optimized using LC-MS/MS measurements of peptide extracts from various C. sapidus neuronal 

tissue types and compared with a commercial database searching software, PEAKS DB. HyPep 

identified more neuropeptides from each tissue type than PEAKS DB at 1% false discovery rate 

and the false match rate from both programs was 2%. In addition to identification, this report 

describes how HyPep can aid in the discovery of novel neuropeptides.
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Introduction:

Neuropeptides are signaling molecules that are expressed by neurons and have been 

implicated in regulation of numerous biochemical pathways, 1,2 physiological processes,3,4 

and behaviors.5,6 Precursor peptides (>90 amino acids) originating from nuclear DNA 

undergo selective cleavage to form mature, bioactive neuropeptides.7,8 The resulting 

neuropeptides are typically 3-36 amino acids long, and the function of a neuropeptide 

sequence can be altered by different post-translational modifications, or by truncations or 

cyclization.9–11 Identification and discovery of neuropeptides is important for elucidation 

of their functional mechanism, as well as establishing a foundation for disease therapeutics 

research.12–17 A crustacean animal model is often utilized for neurobiology research due 

to their well-characterized nervous system, which facilitates the elucidation of neuropeptide 

function at the neuronal circuit and systems levels.18 Mass spectrometry (MS) is well-suited 

for characterizing the full complement of neuropeptides due to its high sensitivity and 

ability to capture the expression profile of many neuropeptides simultaneously.19–22 Since 

neuropeptides undergo multiple post-transcriptional and post-translational processing events 

before arriving at their mature form, neuropeptide databases constructed from nucleotide 

sequence predictions capture only a fraction of the bioactive neuropeptide sequences. 
2,7,23 As a result, many neuropeptide databases utilized within proteomics software are 

experimentally built to contain de novo sequenced neuropeptides as well as neuropeptide 

sequences predicted from genomic or transcriptomic information.20,24,25

Although most commercial proteomics software have been developed and optimized for 

bottom-up proteomics, they are often used for performing neuropeptide identification.26–28 

The two main software approaches include a peptide-spectrum matching (PSM) approach 

where raw MS and MS/MS data are compared with in silico MS and MS/MS values 

generated from a known peptide database.26,29–32 This may involve utilizing a spectral 
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library from reference MS/MS datasets instead of theoretically generated MS/MS data.33,34 

The other approach involves processing the MS dataset with a de novo sequencing 

algorithm, such as PEAKS, and comparing the de novo sequenced peptides with 

database sequences.35–37 One of the main differences between neuropeptide databases and 

typical protein databases is that mature neuropeptide sequences are shorter than protein 

sequences due to the several proteolytic processing steps involved during neuropeptide 

biosynthesis.38–41 This is observed within our in-house crustacean neuropeptide database 

where most sequences are less than 20 amino acids long (Figure S1).6 Another unique 

database feature arises from the alternative splicing that occurs during neuropeptide 

biosynthesis, resulting in a neuropeptide database comprised of sequences with high 

similarity to each other.38–40,42–44 Additionally, due to the low neuropeptide expression 

levels in vivo, it is common for the neuropeptide fragment ion abundance within 

MS/MS spectra to be lower than that observed within bottom-up proteomics datasets.9,45 

Considering these shortcomings, low neuropeptide identification rates are observed when 

proteomics software is used for neuropeptide data analysis.20,46–48

Development of informatic methodologies optimized for neuropeptides and equipped to 

address these shortcomings include IggyPep, PRESNovo and NeuroPedia.38,39,50,51 A 

review of these methods was presented by Phetsanthad, et al.39 IggyPep and PRESNovo 

both strategically leverage neuropeptide homology or motif searching to assist in peptide 

identification, as consideration of these features has been reported to result in higher success 

rates when identifying homologs using smaller databases.40,51 HyPep is a novel database 

searching software that utilizes a sequence homology search approach for neuropeptide 

identification (Figure 1). First, LC-MS/MS data is processed through the PEAKS software 

de novo sequencing algorithm for database-free de novo sequencing. These de novo 
sequenced peptide queries are matched with database sequences and the overall match is 

scored based on the sum of subscores from four local alignment strategies. These local 

alignments consist of fixed and varying local alignments (Figure 2), and users may control 

the level of alignment stringency by changing the sliding window size (SWS) parameter 

within the varying-based local alignments.52 It is worth noting that this scoring system 

treats all mismatches equally regardless of structural similarity or amino acid related-ness 

(i.e., glutamine and glutamic acid). Weighted scoring systems, such as BLOSUM62, are 

robust because they were built upon empirically determined probabilities of amino acid 

substitutions using a comprehensive protein database.53 Until this breadth of information is 

available for neuropeptides, it is premature to implement an identical scoring system.

After sequence alignment, matching and scoring occurs within the sequence homology 

search module, matches between the de novo sequenced peptide query and neuropeptide 

database sequences are subsequently filtered based on its match score according to the 

user-defined false discovery rate (FDR) threshold. Within HyPep, there are four target-decoy 

options for calculating the FDR, which include the reverse, shuffle, random, and a novel 

target-decoy method, hybrid, which contains characteristics from both shuffle and random 

methods. Naturally, all perfect matches between de novo sequenced query and database 

sequences are reported in the final HyPep output. Imperfect sequence matches above the 

specified FDR threshold are subsequently verified within HyPep by searching the raw 

MS/MS data file and reporting the scan(s) where the isolated precursor mass and fragment 
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masses match with the theoretical database sequence mass. Since PEAKS software was used 

for generation of the de novo sequenced peptide queries used as the input for HyPep, the 

PEAKS database searching (PEAKS DB) algorithm was also used to compare neuropeptide 

identifications from Callinectes sapidus (blue crab) neuronal tissue types with HyPep, as 

they use the same input information. It is worth noting that the genome for this species was 

recently assembled, but the information was not able to be utilized in this study.54 Although 

the Comparisons between HyPep and PEAKS DB identifications at 1% FDR showed that 

HyPep identified sequences that were shorter, contained more neuropeptides originating 

from the same neuropeptide family, and overall greater number of identifications at the same 

false match rate (FMR).

Experimental Section:

Materials

Methanol (MeOH), acetonitrile (ACN), glacial acetic acid (GAA), ammonium bicarbonate, 

formic acid (FA), and all crab saline components were purchased from Fisher Scientific 

(Pittsburgh, PA). All water (H2O) used in this study was either of HPLC grade or doubly 

distilled on a Millipore filtration system (Burlington, MA), and C18 Ziptips were purchased 

from Millipore (Burlington, MA). All LC solvents were of Fisher Optima Grade.

Animals

All female blue crabs, Callinectes sapidus, were purchased from Midway Asian Foods 

(Madison, WI) and housed in artificial seawater at 35 parts per thousand (ppt) salinity, 13-16 

°C, and 8-10 parts per million (ppm) (~80-100%) O2. Crabs were anesthetized on ice for 20 

minutes and sacrificed for the collection of brain, sinus glands (SG), pericardial organs (PO), 

and commissural ganglia (CoG) as previously described.55 All dissections were performed 

in chilled (~10 °C) physiological saline (composition: 440 mM NaCl; 11 mM KCl; 13 mM 

CaCl2; 26 mM MgCl2; 10 mM Trizma acid; and pH 7.4, adjusted with NaOH).

NanoLC-ESI-Orbitrap Analysis of Tissue Samples

For each tissue type, 3 tissue samples were pooled together before sample processing. 

Tissues were extracted for neuropeptides using 90/9/1 (v/v/v) MeOH/H2O/GAA and 

desalted using Millipore Ziptips. Peptide extract was reconstituted in 0.1% FA in water 

and loaded onto a 15 cm capillary (75 μm i.d.) packed using 1.7 μm diameter Ethylene 

Bridged Hybrid C18 material with the integrated emitter tip in line with the instrument inlet. 

Untargeted neuropeptide profiling LC-MS/MS measurements were conducted on Thermo Q 

Exactive HF equipped with a Dionex Ultimate 3000 system. Mobile phase A was 0.1% FA 

in H2O and mobile phase B was 0.1% FA in can. Peptides were separated with a gradient 

elution of 10 to 20% B over 70 min and 20 to 95% B over 20 min at a flow rate of 300 

nL/min. Full MS scans were acquired in profile mode ranging from m/z 200 to 2000 at 

a resolution of 60 K. Automatic gain control (AGC) target was 1 × 106, and maximum 

injection time was 250 ms. Tandem mass spectra were acquired in centroid mode. The top 

10 most abundant precursor ions were selected for higher-energy collisional dissociation 

(HCD) fragmentation with a dynamic exclusion of 30 s. Data-dependent acquisition (DDA) 

parameters were set as resolution power of 15 K, isolation window of 2.0 Th, normalized 
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collision energy (NCE) of 30, the maximum injection time of 120 ms, AGC target of 2 × 

105, and fixed first mass of m/z 100. Each sample was injected in triplicate.

Peptide Identification and Discovery using HyPep

The algorithm and GUI were written in Python. The program is compatible with Python 

3 and was validated with Python v.3.10. HyPep is open-source and freely available at 

https://github.com/lingjunli-research/HyPep-v1.0, with a user manual and tutorial included. 

A schematic of the HyPep workflow is shown in Figure 1. Thermo RAW files from LC-

MS/MS measurements were de novo sequenced using PEAKS software (Bioinformatics 

Solutions Inc). PEAKS parameters were parent mass error tolerance = 20.0 ppm, fragment 

mass error tolerance 0.02 Da, enzyme = no digestion, variable modifications: amidation 

(−0.98 Da), oxidation (M) (+15.99 Da), pyro-Glu from E (−18.01 Da), pyro-Glu from Q 

(−17.03 Da), and max variable post-translational modifications (PTM) per peptide = 3. 

De novo sequenced peptides were filtered for average local confidence (ALC) > 50 and 

exported as de novo peptides.csv. This .csv file was loaded along with the neuropeptide 

database files into HyPep for processing. The first neuropeptide database input is a .csv 

file containing each neuropeptide sequence annotated with known PTMs and monoisotopic 

[M+H]+ mass. The second neuropeptide database input includes a folder that contains a .txt 

file of the theoretical b- and y-series fragment ions for each neuropeptide database sequence. 

Theoretical masses were generated from ProteinProspector (https://prospector.ucsf.edu/

prospector/mshome.htm). A sequence homology search (SHS) was performed by matching 

de novo sequenced peptides with neuropeptide database sequences using a local alignment 

strategy. Matches, or identifications, were scored using the SHS scoring function (Figure 2). 

Theoretical false positives below a user-defined FDR were removed from the identifications 

list by implementing a target-decoy method. As the SHS database searches of the target and 

decoy databases occur separately, the FDR is calculated as the number of hits to the decoy 

database (Ndecoy) divided by the total number of hits to the target (Ntarget) (Equation 1).56

FDR = Ndecoy

Ntarget
Equation 1

Identifications above the user-defined % FDR threshold from the SHS module were then 

verified through the included accurate mass matching (AMM) module. Both SHS and AMM 

modules are automatically performed in each HyPep run. AMM was performed at the 

peptide precursor and fragment level at the same error tolerances as those used for PEAKS 

de novo sequencing (20 ppm for precursor mass and 0.02 Da for fragment mass) to verify 

that HyPep identifications with a score less than 4 (i.e., an imperfect sequence alignment) 

were present in at least one MS/MS spectrum within the Thermo RAW file.

To determine the optimal (i.e., most sensitive) sliding window size (SWS), neuropeptide 

identifications from all SWS values (1-10) were compared. To determine the optimal 

target-decoy method, neuropeptide identifications using each target-decoy method (reversed, 

shuffled, randomized, and hybrid) method were compared.

Optimal HyPep parameters (SWS = 2 and target-decoy method = shuffled) were used for 

comparisons between HyPep and PEAKS DB. PEAKS DB parameters were the same as 
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those used for PEAKS de novo sequencing parameters. The number of identifications at 1% 

FDR threshold from both programs were compared. To assess accuracy of both programs, 

an entrapment database was constructed consisting of all sequences from the original target 

crustacean neuropeptide database appended to a database of non-crustacean neuropeptides 

that were obtained from NeuroPep.24 There were no overlapping sequences between the 

target and trap databases and there were the same number of target and trap sequences in 

the final entrapment database. Hits to the non-crustacean neuropeptides (Ntrap) divided by 

the number of hits to the crustacean neuropeptides (Ntarget) were used to calculate the FMR 

(Equation 2).57 The number of identifications assigned to the correct crustacean or incorrect 

non-crustacean sequences at 1% FDR threshold from both programs were compared.

FMR = Ntrap

Ntarget
Equation 2

For discovery of novel neuropeptides, identifications from HyPep using optimal parameters 

(SWS = 2 and target-decoy method = shuffled) at 1% FDR threshold were scanned for de 
novo sequences originating from 1) multiple MS/MS scans, 2) MS/MS scans with ALC = 99 

and 3) HyPep score < 4. Sequences and MS/MS scans were manually evaluated, and novel 

neuropeptides were reported.

Results and Discussion:

Optimization of HyPep Sliding Window Size

To assess the performance of HyPep, determination of HyPep parameters that produce 

optimal (i.e., most sensitive) results is necessary. HyPep identifications are scored based 

on the sum of the subscores from four local alignment strategies: forward-fixed, backward-

fixed, forward-varying, and backward-varying (Figure 2). The latter two alignment types 

were specifically designed to enable flexibility during the amino acid alignment process 

between the de novo sequence query and the neuropeptide database sequence, with 

flexibility regulated by the SWS.52,58 For example, when matching a query sequence, 

sequence A, to a database sequence, sequence B, the SWS value is the maximum number of 

consecutive amino acids that will be scanned in sequence B to search for a matching residue. 

HyPep allows SWS values from one to ten. Intuitively, the smallest SWS value should result 

in the fewest number of identifications because it offers the least flexibility and the most 

stringent matching process, though this was not observed in actuality.

Neuropeptide extracts from crustacean brain tissues were analyzed with LC-MS/MS and 

processed using HyPep. Figure 3 shows number of identifications as a function of % 

FDR at all SWS values 1-10. Overall, there is agreement in number of neuropeptide 

identifications regardless of SWS value used. The number of identifications between 1-5% 

FDR were closely examined, as these are the thresholds typically used within the proteomics 

community. The greatest number of identifications occurred when smaller SWS values (i.e., 
1-3) were used, which was unexpected as a larger SWS offers more opportunities for a 

match to occur between a de novo sequence and a database sequence. This observation 

was true in both the original, target database as well as the decoy database, implying that 
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the decrease in neuropeptide identifications as SWS increases is likely due to an increasing 

number of hits to the decoy database (i.e., decoy-hits). Since sequence query alignment and 

scoring to both target and decoy database sequences occurs prior to the FDR calculation, 

increased decoy-hits raises the score that corresponds to 1% FDR. As this score is raised, 

fewer target-hits meet this score threshold, resulting in fewer neuropeptide identifications. 

Figure 4 shows a broader comparison of the SWS values, as it includes the number of 

identifications at 1% FDR from all four neuroendocrine tissue types (Brain, CoG, SG, and 

PO) at SWS values 1-10. Both Figures 3 and 4 show that an SWS value of 2 produces a 

higher number of identifications in all tissues. Therefore, a SWS value of 2 was chosen as 

the optimal value.

Evaluation of HyPep Target-Decoy Methods

The selection of an appropriate target-decoy method for calculating the FDR in proteomics 

is an ongoing discussion and it is beyond the scope of this report to comprehensively 

compare the benefits and pitfalls of each method.56,59–65 It is unanimously agreed upon that 

the decoy database generation method and FDR calculation must be transparently described 

for each informatics tool, so that the user may adapt the most suitable target-decoy method 

for their dataset. Within HyPep, three common methods, reverse, shuffle, and random, as 

well as one novel hybrid method for decoy database generation exists (Figure S2).66,67 

Figure S3 compares the characteristics of the target (original) crustacean neuropeptide 

database with the four decoy database options. All decoy databases, including the novel 

hybrid method described in this report, meet the criteria set forth by Gygi et al., which states 

that decoy databases must contain 1) similar amino acid distribution, 2) similar sequence 

length distribution, and 3) similar number of sequences between target and decoy database, 

and 4) no peptides in common between target and decoy databases.56 Each HyPep decoy 

database sequence is identical in length to its corresponding target database sequence. Each 

reverse and shuffle decoy sequence mass is identical to its corresponding target sequence, 

and the distribution of sequence masses from the random and hybrid decoy databases are 

in good agreement with the target database (Figure S3). Based on these characteristics, 

as well as the increasing level of stochasticity inherent to the reverse, shuffle, hybrid, 

and random decoy databases, respectively, sequences from the reverse and shuffle decoy 

databases contain decoy sequences highly similar to the target sequences, and therefore 

should result in more matches between de novo sequenced queries and the decoy database 

sequences than the hybrid and randomized decoy databases. We indeed observed that the 

reverse target-decoy method produced the lowest number of identifications at 1% FDR, yet 

the shuffle decoy method produced the largest number (Figures 3, 4, and 5). Although the 

number of identifications resulting from each target-decoy method were not the same, all the 

identifications from each method are valid due to the verification step that occurs after the 

FDR calculation by the HyPep AMM module.

Shuffle or pseudo-shuffle decoy methods have been reported to overestimate the % FDR 

for analysis of tryptic-digested peptides.63,66 This speculation is amplified for neuropeptide 

analysis when considering the likelihood that a sequence from a shuffled decoy database 

not only acts as a decoy to its originating target sequence but also to multiple target 

sequences due to the highly homologous nature of neuropeptides within a family. An 
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example of the high homology within a family is shown in Figure S4, where roughly 

half of neuropeptides from the crustacean hyperglycemic hormone (CHH) neuropeptide 

superfamily contain at least 50% sequence identity to another neuropeptide. Regardless, 

because it produced the highest number of neuropeptides identified at 1% FDR, the shuffle 

target-decoy method was selected as the optimal target-decoy method. It is worth noting 

that, although the novel hybrid method for decoy database generation was not selected as the 

optimal method, we believe it contains merit for potential future informatics tools because it 

met the aforementioned criteria and therefore worth retaining within the HyPep toolkit.63

Performance of HyPep

To assess the performance of HyPep compared to other available software, the LC-MS/MS 

data from peptide extracts of brain, SG, PO, and CoG tissue types were analyzed separately 

using HyPep and PEAKS DB algorithms. PEAKS DB was selected as both HyPep and 

PEAKS DB use the same de novo sequenced peptides list as the input file. The data were 

processed with HyPep using a SWS value of 2 and the shuffle target-decoy method, while 

the PEAKS DB program uses a decoy-fusion target-decoy method.68 Since HyPep considers 

all de novo peptide sequence queries as potential full-length neuropeptide sequences, the 

decoy-fusion target-decoy method was not made available within HyPep because decoy-

fusion sequences are twice as long as sequences within the original neuropeptide database.

A threshold of 1% FDR was used for both software, with precise % FDR values from 

HyPep of 0.76% for SG, 0.79% for PO, and 1.41% for CoG, and 1.3% for brain tissues. 

All identifications from HyPep and PEAKS DB are listed in Supplemental Files 1 and 

2, respectively. HyPep resulted in more identifications than PEAKS DB software (Figure 

5A). There is relatively low agreement in identifications between the two software, as 

13-24% of PEAKS DB identifications were not found by HyPep. In order to understand this 

discrepancy, the neuropeptide family and sequence length of the identifications from both 

software were compared (Figures 5B and 5C). Across all tissues, one neuropeptide family, 

calcitonin/diapause hormone (CT/DH), was uniquely identified using PEAKS DB, while 

neuropeptides from the C-type allatostatin (AST-C), GSEFLamide, and proctolin families 

were only identified using HyPep. HyPep identified more neuropeptides within each family 

than PEAKS DB with the exception of the orcokinin family. Since one of the technical 

challenges of neuropeptide identification we sought to overcome was the ability to detect 

and differentiate between homologous neuropeptides, this observation implies that HyPep is 

better equipped to overcome that obstacle than PEAKS DB.

HyPep identified sequences with up to 18 amino acid residues while PEAKS DB identified 

sequences with up to 36 amino acid residues (Figure 5C). Considering the development of 

HyPep was motivated by improving identification of shorter neuropeptides, the increase in 

identification of shorter neuropeptides was promising. Since the disparity in identifications 

between HyPep and PEAKS DB would decrease if HyPep had been able to identify longer 

neuropeptides, this discrepancy is expected to decrease as algorithms used for database-

free de novo sequencing improves their capabilities for detecting longer sequences, thus 

providing a higher quality input list for HyPep. HCD fragmentation was found to be 

most compatible with current de novo sequencing software, especially regarding accurate 
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sequencing of longer peptides, so only datasets collected with HCD fragmentation were 

included in this report and compatible with HyPep.69

The accuracy of peptide identification software is an important metric that is nearly 

impossible to assess using a biological sample alone. A previously reported method 

for estimating the accuracy of database search-based identification algorithms involves 

generating an entrapment database containing sequences that are unlikely to be found 

in the sample, which are then appended to the original target database, enabling 

FMR measurements57,70. Entrapment sequences for this study included non-crustacean 

neuropeptides from the NeuroPep online database (http://isyslab.info/NeuroPep/). Figure 

6 shows the number of identifications from PEAKS DB and HyPep at 1% FDR using the 

entrapment database. HyPep produced 85, 96, 79, and 47 target identifications with 2.4, 2.1, 

2.5, and 2.1% FMR for the brain, SG, PO, and CoG tissues, respectively, while PEAKS DB 

produced 54, 50, 48, and 42 target identifications with 1.8, 2, 0, and 2.4% FMR for the same 

tissues. All identifications using the entrapment database are listed in Supplemental Files 3 

and 4 for HyPep and PEAKS DB, respectively. The approximately 2% FMR observed for 

both software aligns with the 1% FDR threshold that was used as a processing parameter 

for both software. HyPep identified more neuropeptides regardless of which database was 

used (original database or entrapment database) at comparable FDR and FMR accuracy as 

PEAKS DB.

Neuropeptide Discovery using HyPep

Neuropeptide prohormones undergo splicing at the post-transcriptional and post-

translational stages, which result in neuropeptide families containing sequences with high 

sequence similarity to one another.71 Although knowledge of genomic or transcriptomic 

sequence coupled with confirmed biosynthesis pathway and bioactivity information is ideal 

for characterization of a de novo sequenced peptide query as a neuropeptide, de novo 
sequencing can be used as a standalone tool as a starting point for discovering neuropeptides 

provided the peptide query contains a highly conserved neuropeptide sequence motif.50 

It is important to note that de novo sequencing-based discovery is only applicable for 

peptide extracts from neuropeptide-relevant samples to increase confidence. Since de novo 
sequencing algorithms typically produce tens of thousands of peptide sequences from a 

single untargeted LC-MS/MS dataset and thousands remain even after a neuropeptide motif 

filter is applied, it is necessary to narrow down the list before manual examination of the 

spectra. HyPep’s ability to find de novo sequenced peptide queries that partially match with 

entire database sequences can be utilized for neuropeptide discovery, given that the query 

sequence is associated with more than one PSM.

HyPep was used to discover neuropeptides from brain, PO, CoG, and SG tissue types. 

PEAKS conveys confidence in de novo sequence outcomes as an average local confidence 

(ALC) score, where an ALC of 99 represents a sequence with the highest level of certainty. 

As such, an ALC score threshold of 99 was used for this analysis. It is worth mentioning 

that previous reports have used lower ALC thresholds for neuropeptide discovery, thus, 

future usage of this discovery strategy may also apply less stringent ALC thresholds.48,67,72 

Table 1 lists 11 novel neuropeptides and reports their corresponding HyPep score to the 
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neuropeptide database sequences, which ranges from 2.8-3.6. The upper limit of 3.6 was 

chosen because it was the highest score that was less than 4. The lower limit of 2.8 was 

a result of processing the data through HyPep at a 1% FDR threshold during the database 

search, where 2.8 was the highest score above a 1% FDR cutoff. Most of these putative 

novel neuropeptides contain conserved sequence motifs such as carboxy-terminal arginine 

and an amidated phenylalanine (RFamide)73. One of the novel sequences, SSFSRPPamide, 

is almost a perfect match with the database sequence SSFSPRPamide, except where the 

fifth and sixth amino acids are switched. If the genomic or transcriptomic information was 

available, the variation between these two sequences could be investigated for potential 

amino acid insertion, substitution, deletion, or replacement incidences.74 Considering the 

high homology to known neuropeptide sequences and high spectral quality, these sequences 

may confidently move forward for examination of neuropeptide function.

De novo sequenced peptides were processed through HyPep and the output was filtered for 

peptides that 1) were assigned an average local confidence (ALC) score of 99, 2) peptide 

was de novo sequenced in more than one MS/MS spectrum and 3) the HyPep alignment 

score to a neuropeptide database sequence is equal to or greater than the score required for 

neuropeptide identification at 1% FDR identification.

Conclusions:

We present a novel strategy for neuropeptide identification, HyPep, that utilizes sequence 

alignment and sequence homology between de novo sequenced peptides and peptide 

database sequences. In this report, PEAKS software was used for database-free de novo 
sequencing of peptides from LC-MS/MS datasets of neural tissue extracts and processed 

with either HyPep or PEAKS DB for database searching and peptide identification. Overall, 

HyPep identified more neuropeptides than PEAKS DB from each tissue type at 1% FDR and 

at similar FMR from four neuronal tissue types within C. sapidus. The HyPep neuropeptide 

identifications contained shorter sequences and more sequences from each neuropeptide 

family than PEAKS DB. We also report our strategy for leveraging HyPep to select high 

quality de novo sequenced peptide candidates for discovery of novel neuropeptides. HyPep’s 

methodology for peptide identification and discovery may be expanded to other classes of 

endogenous peptides. Although an external limitation stems from the performance of the 

database-free de novo sequencing algorithm that is used to generate the input for HyPep, 

future directions for HyPep include optimization of the peptide feature detection algorithm 

to detect longer neuropeptide sequences, as well as capabilities for detection of a/x and 

c/z fragment ions. HyPep is open source, and the software GUI and instructions can be 

downloaded at https://github.com/lingjunli-research/HyPep-v1.0.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

MS Mass Spectrometry

MS/MS Tandem Mass Spectrometry

PSM Peptide-Spectrum Match

LC Liquid Chromatography

SWS Sliding Window Size

FDR False Discovery Rate

PEAKS DB Peaks Database Search

FMR False Match Rate

MeOH Methanol

ACN Acetonitrile

GAA Glacial Acetic Acid

FA Formic Acid

H2O Water

[M+H]+ Protonated Monoisotopic Mass

SG Sinus Glands

PO Pericardial Organs

CoG Commissural Ganglions

NaCl Sodium Chloride

CaCl2 Calcium Chloride
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MgCl2 Magnesium Chloride

NaOH Sodium Hydroxide

AGC Automatic Gain Control

HCD Higher-energy Collisional Dissociation

DDA Data-dependent Acquisition

NCE Normalized Collision Energy

GUI Graphical User Interface

PTM Post-Translational Modification

SHS Sequence Homology Search

Ntarget Hits to Target Crustacean Database

Ndecoy Hits to Decoy Database

AMM Accurate Mass Matching

Da Dalton

Ntrap Hits to Trap Non-Crustacean Database

ALC Average Local Confidence

CHH Crustacean Hyperglycemic Hormone

CT/DH Calcitonin/Diapause Hormone

AST-C Allatostatin C-Type

References:

(1). Grimmelikhuijzen CJP; Hauser F Mini-Review: The Evolution of Neuropeptide Signaling. Regul 
Pept 2012, 177, S6–S9. 10.1016/j.regpep.2012.05.001. [PubMed: 22726357] 

(2). Sahbaz BD; Iyison NB Neuropeptides as Ligands for GPCRs. In IntechOpen; InTech, 2018; pp 
77–102. 10.5772/intechopen.73504.

(3). Dickinson P; Calkins A; Stevens J Related Neuropeptides Use Different Balances of Unitary 
Mechanisms to Modulate the Cardiac Neuromuscular System in the American Lobster, Homarus 
Americanus. J Neurophysiol 2014, 113, 856–870. 10.1152/jn.00585.2014. [PubMed: 25392168] 

(4). Dickinson PS; Qu X; Stanhope ME Neuropeptide Modulation of Pattern-Generating Systems in 
Crustaceans: Comparative Studies and Approaches. Curr Opin Neurobiol 2016, 41, 149–157. 
10.1016/j.conb.2016.09.010. [PubMed: 27693928] 

(5). Nässel DR; Pauls D; Huetteroth W Neuropeptides in Modulation of Drosophila Behavior: How 
to Get a Grip on Their Pleiotropic Actions. Curr Opin Insect Sci 2019, 36, 1–8. 10.1016/
j.cois.2019.03.002. [PubMed: 31280184] 

(6). Christie AE; Stemmler EA; Dickinson PS Crustacean Neuropeptides. Cellular and Molecular Life 
Sciences 2010, 67 (24), 4135–4169. 10.1007/s00018-010-0482-8. [PubMed: 20725764] 

(7). Burbach JP What Are Neuropeptides? In Neuropeptides: Methods and Protocols; Merighi A, Ed.; 
Humana Press: New York, 2011; Vol. 789, pp 1–36. 10.1007/978-1-61779-310-3_1.

Vu et al. Page 12

J Proteome Res. Author manuscript; available in PMC 2023 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(8). Corbière A; Vaudry H; Chan P; Walet-Balieu ML; Lecroq T; Lefebvre A; Pineau C; Vaudry D 
Strategies for the Identification of Bioactive Neuropeptides in Vertebrates. Front Neurosci 2019, 
13, 1–12. 10.3389/fnins.2019.00948. [PubMed: 30740042] 

(9). Mains R; Eipper B The Neuropeptides. In Basic Neurochemistry: Molecular, Cellular and 
Medical Aspects; Siegel G, Agranoff B, Albers R, Eds.; Lippincott-Raven: Philadelphia, 1999. 
10.1007/978-1-61779-310-3_1.

(10). Abdulganiyyu IA; Kaczmarek K; Zabrocki J; Nachman RJ; Marchal E; Schellens S; Verlinden 
H; Broeck J. vanden; Marco H; Jackson GE Conformational Analysis of a Cyclic AKH 
Neuropeptide Analog That Elicits Selective Activity on Locust versus Honeybee Receptor. Insect 
Biochem Mol Biol 2020, 125, 1–14. 10.1016/j.ibmb.2020.103362.

(11). Reymond T; Delmas L; Koerber SC; Brown MR; Rivier JE Truncated, Branched, and/or Cyclic 
Analogues of Neuropeptide Y: Importance of the Pancreatic Peptide Fold in the Design of 
Specific Y2 Receptor Ligandst. J. Med. Chem 1992, 35, 3653–3659. 10.1021/jm00098a009. 
[PubMed: 1433176] 

(12). Quillet R; Ayachi S; Bihel F; Elhabazi K; Ilien B; Simonin F RF-Amide Neuropeptides and Their 
Receptors in Mammals: Pharmacological Properties, Drug Development and Main Physiological 
Functions. Pharmacol Ther 2016, 160, 84–132. 10.1016/j.pharmthera.2016.02.005. [PubMed: 
26896564] 

(13). Qin YY; Huang XR; Zhang J; Wu W; Chen J; Wan S; Yu XY; Lan HY Neuropeptide Y 
Attenuates Cardiac Remodeling and Deterioration of Function Following Myocardial Infarction. 
Molecular Therapy 2022, 30 (2), 881–897. 10.1016/j.ymthe.2021.10.005. [PubMed: 34628054] 

(14). Brothers SP; Wahlestedt C Therapeutic Potential of Neuropeptide y (NPY) Receptor Ligands. 
EMBO Mol Med 2010, 2 (11), 429–439. 10.1002/emmm.201000100. [PubMed: 20972986] 

(15). Chen XY; Du YF; Chen L Neuropeptides Exert Neuroprotective Effects in Alzheimer’s Disease. 
Front Mol Neurosci 2019, 11. 10.3389/fnmol.2018.00493. [PubMed: 30787866] 

(16). Yeo XY; Cunliffe G; Ho RC; Lee SS; Jung S Potentials of Neuropeptides as Therapeutic Agents 
for Neurological Diseases. Biomedicines 2022, 10 (2). 10.3390/biomedicines10020343.

(17). Wei P; Keller C; Li L Neuropeptides in Gut-Brain Axis and Their Influence on Host Immunity 
and Stress. Comput Struct Biotechnol J 2020, 18, 843–851. 10.1016/j.csbj.2020.02.018. 
[PubMed: 32322366] 

(18). Ache B; Atwood H; Barnes J; Beltz B; Clarac F; Cooke I; Edwards D; Fraser P; Glantz 
R; Harris-Warrick R; Johnson B; Krasne F; Kravitz E; Macmillan D; Paul D; Rathmayer W; 
Takahata M Crustacean Experimental Systems in Neurobiology; Wiese, Ed.; Springer Berlin 
Heidelberg: Berlin, 2002. 10.1007/978-3-642-56092-7.

(19). Li L; Sweedler J. v. Peptides in the Brain: Mass Spectrometry-Based Measurement 
Approaches and Challenges. Annual Review of Analytical Chemistry. 2008, pp 451–483. 
10.1146/annurev.anchem.1.031207.113053.

(20). Romanova E. v.; Sweedler J. v. Peptidomics for the Discovery and Characterization 
of Neuropeptides and Hormones. Trends Pharmacol Sci 2015, 36 (9), 579–586. 10.1016/
j.tips.2015.05.009. [PubMed: 26143240] 

(21). Hummon AB; Amare A; Sweedler J. v. Discovering New Invertebrate Neuropeptides Using 
Mass Spectrometry. Mass Spectrom Rev 2006, 25 (1), 77–98. 10.1002/mas.20055. [PubMed: 
15937922] 

(22). Rubakhin SS; Churchill JD; Greenough WT; Sweedler J. v. Profiling Signaling Peptides in Single 
Mammalian Cells Using Mass Spectrometry. Anal Chem 2006, 78 (20), 7267–7272. 10.1021/
ac0607010. [PubMed: 17037931] 

(23). Hökfelt T; Broberger C; David Xu Z-Q; Sergeyev V; Ubink R; Diez M Neuropeptides-an 
Overview; 2000; Vol. 39. 10.1016/S0028-3908(00)00010-1.

(24). Bin Y; Zhang W; Tang W; Dai R; Li M; Zhu Q; Xia J Prediction of Neuropeptides from 
Sequence Information Using Ensemble Classifier and Hybrid Features. J Proteome Res 2020, 19 
(9), 3732–3740. 10.1021/acs.jproteome.0c00276. [PubMed: 32786686] 

(25). Wang Y; Wang M; Yin S; Jang R; Wang J; Xue Z; Xu T NeuroPep: A Comprehensive Resource 
of Neuropeptides. Database 2015, 2015. 10.1093/database/bav038.

Vu et al. Page 13

J Proteome Res. Author manuscript; available in PMC 2023 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(26). Akhtar MN; Southey BR; Andrén PE; Sweedler J. v.; Rodriguez-Zas SL Evaluation of Database 
Search Programs for Accurate Detection of Neuropeptides in Tandem Mass Spectrometry 
Experiments. J Proteome Res 2012, 11 (12), 6044–6055. 10.1021/pr3007123. [PubMed: 
23082934] 

(27). Fu Q; Li L De Novo Sequencing of Neuropeptides Using Reductive Isotopic Methylation and 
Investigation of ESI QTOF MS/MS Fragmentation Pattern of Neuropeptides with N-Terminal 
Dimethylation. Anal Chem 2005, 77 (23), 7783–7795. 10.1021/ac051324e. [PubMed: 16316189] 

(28). Ma B; Zhang K; Hendrie C; Liang C; Li M; Doherty-Kirby A; Lajoie G PEAKS: 
Powerful Software for Peptide de Novo Sequencing by Tandem Mass Spectrometry. Rapid 
Communications in Mass Spectrometry 2003, 17 (20), 2337–2342. 10.1002/rcm.1196. [PubMed: 
14558135] 

(29). Eng JK; Jahan TA; Hoopmann MR Comet: An Open-Source MS/MS Sequence Database Search 
Tool. Proteomics 2013, 13 (1), 22–24. 10.1002/pmic.201200439. [PubMed: 23148064] 

(30). Eng JK; McCormack AL; Yates JR An Approach to Correlate Tandem Mass Spectral Data of 
Peptides with Amino Acid Sequences in a Protein Database. J Am Soc Mass Spectrom 1994, 5 
(11), 976–989. 10.1016/1044-0305(94)80016-2. [PubMed: 24226387] 

(31). Eng JK; Fischer B; Grossmann J; MacCoss MJ A Fast SEQUEST Cross Correlation Algorithm. J 
Proteome Res 2008, 7 (10), 4598–4602. 10.1021/pr800420s. [PubMed: 18774840] 

(32). May D; Fitzgibbon M; Liu Y; Holzman T; Eng J; Kemp CJ; Whiteaker J; Paulovich A; McIntosh 
M A Platform for Accurate Mass and Time Analyses of Mass Spectrometry Data. J Proteome 
Res 2007, 6 (7), 2685–2694. 10.1021/pr070146y. [PubMed: 17559252] 

(33). Lam H; Deutsch EW; Eddes JS; Eng JK; King N; Stein SE; Aebersold R Development and 
Validation of a Spectral Library Searching Method for Peptide Identification from MS/MS. 
Proteomics 2007, 7 (5), 655–667. 10.1002/pmic.200600625. [PubMed: 17295354] 

(34). Ulanga U; Russell M; Patassini S; Brazzatti J; Graham C; Whetton AD; Graham RLJ 
Generation of a Mouse SWATH-MS Spectral Library to Quantify 10148 Proteins Involved in Cell 
Reprogramming. Sci Data 2021, 8 (1), 118. 10.1038/s41597-021-00896-w. [PubMed: 33903600] 

(35). Ma B; Johnson R De Novo Sequencing and Homology Searching. Molecular and Cellular 
Proteomics. February 2012. 10.1074/mcp.O111.014902.

(36). Tran NH; Zhang X; Xin L; Shan B; Li M De Novo Peptide Sequencing by Deep Learning. 
Proc Natl Acad Sci U S A 2017, 114 (31), 8247–8252. 10.1073/pnas.1705691114. [PubMed: 
28720701] 

(37). Medzihradszky KF; Chalkley RJ Lessons in de Novo Peptide Sequencing by Tandem 
Mass Spectrometry. Mass Spectrom Rev 2015, 34 (1), 43–63. 10.1002/mas.21406. [PubMed: 
25667941] 

(38). Kim Y; Bark S; Hook V; Bandeira N NeuroPedia: Neuropeptide Database and Spectral Library. 
Bioinformatics 2011, 27 (19), 2772–2773. 10.1093/bioinformatics/btr445. [PubMed: 21821666] 

(39). Phetsanthad A; Vu NQ; Yu Q; Buchberger AR; Chen Z; Keller C; Li L Recent Advances in Mass 
Spectrometry Analysis of Neuropeptides. Mass Spectrom Rev 2021. 10.1002/mas.21734.

(40). Pearson WR An Introduction to Sequence Similarity (“homology”) Searching. Curr Protoc 
Bioinformatics 2013, No. SUPPL.42. 10.1002/0471250953.bi0301s42.

(41). Hook V; Funkelstein L; Lu D; Bark S; Wegrzyn J; Hwang SR Proteases for Processing 
Proneuropeptides into Peptide Neurotransmitters and Hormones. Annu Rev Pharmacol Toxicol 
2008, 48, 393–423. 10.1146/annurev.pharmtox.48.113006.094812. [PubMed: 18184105] 

(42). Fu Q; Christie AE; Li L Mass Spectrometric Characterization of Crustacean Hyperglycemic 
Hormone Precursor-Related Peptides (CPRPs) from the Sinus Gland of the Crab, Cancer 
Productus. Peptides (N.Y.) 2005, 26 (11), 2137–2150. 10.1016/j.peptides.2005.03.040.

(43). Dircksen H; Tesfai LK; Albus C; Nässel DR Ion Transport Peptide Splice Forms in Central 
and Peripheral Neurons throughout Postembryogenesis of Drosophila Melanogaster. Journal of 
Comparative Neurology 2008, 509 (1), 23–41. 10.1002/cne.21715. [PubMed: 18418898] 

(44). Buck LB; Bigelow JM; Axel R Alternative Splicing in Individual Aplysia Neurons Generates 
Neuropeptide Diversity. Cell 1987, 51, 127–133. 10.1016/0092-86748790017-1. [PubMed: 
3652207] 

Vu et al. Page 14

J Proteome Res. Author manuscript; available in PMC 2023 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(45). Russo AF Overview of Neuropeptides: Awakening the Senses? Headache 2017, 57, 37–46. 
10.1111/head.13084. [PubMed: 28485842] 

(46). Hui L; Cunningham R; Zhang Z; Cao W; Jia C; Li L Discovery and Characterization of 
the Crustacean Hyperglycemic Hormone Precursor Related Peptides (CPRP) and Orcokinin 
Neuropeptides in the Sinus Glands of the Blue Crab Callinectes Sapidus Using Multiple Tandem 
Mass Spectrometry Techniques. J Proteome Res 2011, 10 (9), 4219–4229. 10.1021/pr200391g. 
[PubMed: 21740068] 

(47). Stemmler EA; Bruns EA; Cashman CR; Dickinson PS; Christie AE Molecular and 
Mass Spectral Identification of the Broadly Conserved Decapod Crustacean Neuropeptide 
PQIRYHQCYFNPISCF: The First PISCF-Allatostatin (Manduca Sexta- or C-Type Allatostatin) 
from a Non-Insect. Gen Comp Endocrinol 2010, 165 (1), 1–10. 10.1016/j.ygcen.2009.05.010. 
[PubMed: 19467234] 

(48). Phetsanthad A; Roycroft C; Li L Enrichment and Fragmentation Approaches for Enhanced 
Detection and Characterization of Endogenous Glycosylated Neuropeptides. Proteomics 2022. 
10.1002/pmic.202100375.

(49). Kou Q; Xun L; Liu X TopPIC: A Software Tool for Top-down Mass Spectrometry-Based 
Proteoform Identification and Characterization. Bioinformatics 2016, 32 (22), 3495–3497. 
10.1093/bioinformatics/btw398. [PubMed: 27423895] 

(50). DeLaney K; Cao W; Ma Y; Ma M; Zhang Y; Li L PRESnovo: Prescreening Prior to de Novo 
Sequencing to Improve Accuracy and Sensitivity of Neuropeptide Identification. J Am Soc Mass 
Spectrom 2020, 31 (7), 1358–1371. 10.1021/jasms.0c00013. [PubMed: 32266812] 

(51). Menschaert G; Vandekerckhove TTM; Baggerman G; Landuyt B; Sweedler J. v.; Schoofs 
L; Luyten W; van Criekinge W A Hybrid, de Novo Based, Genome-Wide Database Search 
Approach Applied to the Sea Urchin Neuropeptidome. J Proteome Res 2010, 9 (2), 990–996. 
10.1021/pr900885k. [PubMed: 20000637] 

(52). Zhang X; Kahveci T A New Approach for Alignment of Multiple Proteins. Pacific Symposium 
on Biocomputing 2006, 11, 339–350. 10.1142/9789812701626_0031.

(53). Eddy S Where Did the BLOSUM62 Alignment Scorematrix Come From? Nat Biotechnol 2004, 
22 (8), 1035–1036. 10.1038/nbt0804-1035. [PubMed: 15286655] 

(54). Bachvaroff TR; McDonald RC; Plough L. v.; Chung JS Chromosome-Level Genome Assembly 
of the Blue Crab, Callinectes Sapidus. G3 2021, 11 (9), 1–11. 10.1093/g3journal/jkab212.

(55). Gutierrez GJ; Grashow RG Cancer Borealis Stomatogastric Nervous System Dissection. Journal 
of Visualized Experiments 2009, No. 25. 10.3791/1207.

(56). Elias JE; Gygi SP Target-Decoy Search Strategy for Increased Confidence in Large-Scale Protein 
Identifications by Mass Spectrometry. Nat Methods 2007, 4 (3), 207–214. 10.1038/nmeth1019. 
[PubMed: 17327847] 

(57). Feng X. dong; Li L. wei; Zhang J. hong; Zhu Y. ping; Chang C; Shu K. xian; Ma J Using the 
Entrapment Sequence Method as a Standard to Evaluate Key Steps of Proteomics Data Analysis 
Process. BMC Genomics 2017, 18. 10.1186/s12864-017-3491-2. [PubMed: 28056769] 

(58). Proutski V; Holmes EC SWAN: Sliding Window Analysis of Nucleotide Sequence Variability. 
BIOINFORMATICS 1997, 14 (1998), 467–468. 10.1093/bioinformatics/14.5.467.

(59). Elias JE; Gygi SP Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics. 
Methods Mol Biol 2010, 604, 55–71. 10.1007/978-1-60761-444-9_5. [PubMed: 20013364] 

(60). Gupta N; Bandeira N; Keich U; Pevzner PA Target-Decoy Approach and False Discovery Rate: 
When Things May Go Wrong. J Am Soc Mass Spectrom 2011, 22 (7), 1111–1120. 10.1007/
s13361-011-0139-3. [PubMed: 21953092] 

(61). Lam H; Deutsch EW; Aebersold R Artificial Decoy Spectral Libraries for False Discovery Rate 
Estimation in Spectral Library Searching in Proteomics. J Proteome Res 2010, 9 (1), 605–610. 
10.1021/pr900947u. [PubMed: 19916561] 

(62). Keich U; Tamura K; Noble WS Averaging Strategy To Reduce Variability in Target-
Decoy Estimates of False Discovery Rate. J Proteome Res 2019, 18 (2), 585–593. 10.1021/
acs.jproteome.8b00802. [PubMed: 30560673] 

(63). Kim H; Lee S; Park H Target-Small Decoy Search Strategy for False Discovery Rate Estimation. 
BMC Bioinformatics 2019, 20(1). 10.1186/s12859-019-3034-8.

Vu et al. Page 15

J Proteome Res. Author manuscript; available in PMC 2023 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(64). Keich U; Noble WS Progressive Calibration and Averaging for Tandem Mass Spectrometry 
Statistical Confidence Estimation: Why Settle for a Single Decoy? In Lecture Notes 
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics); Springer Verlag, 2017; Vol. 10229 LNCS, pp 99–116. 
10.1007/978-3-319-56970-3_7.

(65). Levitsky LI; Ivanov M. v.; Lobas AA; Gorshkov M. v. Unbiased False Discovery Rate Estimation 
for Shotgun Proteomics Based on the Target-Decoy Approach. J Proteome Res 2017, 16 (2), 
393–397. 10.1021/acs.jproteome.6b00144. [PubMed: 27959540] 

(66). Lee S; Park H; Kim H Comparison of False-Discovery Rates of Various Decoy Databases. 
Proteome Sci 2021, 19 (1). 10.1186/s12953-021-00179-7.

(67). Cao Q; Yu Q; Liu Y; Chen Z; Li L Signature-Ion-Triggered Mass Spectrometry Approach 
Enabled Discovery of N- And O-Linked Glycosylated Neuropeptides in the Crustacean Nervous 
System. J Proteome Res 2020, 19 (2), 634–643. 10.1021/acs.jproteome.9b00525. [PubMed: 
31875397] 

(68). Zhang J; Xin L; Shan B; Chen W; Xie M; Yuen D; Zhang W; Zhang Z; Lajoie GA; Ma B 
PEAKS DB: De Novo Sequencing Assisted Database Search for Sensitive and Accurate Peptide 
Identification. Molecular and Cellular Proteomics 2012, 11 (4). 10.1074/mcp.M111.010587.

(69). Muth T; Renard BY Evaluating de Novo Sequencing in Proteomics: Already an Accurate 
Alternative to Database-Driven Peptide Identification? Brief Bioinform 2018, 19 (5), 954–970. 
10.1093/bib/bbx033. [PubMed: 28369237] 

(70). Vaudel M; Burkhart JM; Breiter D; Zahedi RP; Sickmann A; Martens L A Complex Standard 
for Protein Identification, Designed by Evolution. J Proteome Res 2012, 11 (10), 5065–5071. 
10.1021/pr300055q. [PubMed: 22489649] 

(71). Southey BR; Rodriguez-Zas SL Alternative Splicing of Neuropeptide Prohormone and Receptor 
Genes Associated with Pain Sensitivity Was Detected with Zero-Inflated Models. Biomedicines 
2022, 10 (4). 10.3390/biomedicines10040877.

(72). Delaney K; Li L Data Independent Acquisition Mass Spectrometry Method for Improved 
Neuropeptidomic Coverage in Crustacean Neural Tissue Extracts. Anal Chem 2019, 91 (8), 
5150–5158. 10.1021/acs.analchem.8b05734. [PubMed: 30888792] 

(73). Findeisen M; Rathmann D; Beck-Sickinger AG RFamide Peptides: Structure, Function, 
Mechanisms and Pharmaceutical Potential. Pharmaceuticals 2011, 4 (9), 1248–1280. 10.3390/
ph4091248.

(74). Iengar P An Analysis of Substitution, Deletion and Insertion Mutations in Cancer Genes. Nucleic 
Acids Res 2012, 40 (14), 6401–6413. 10.1093/nar/gks290. [PubMed: 22492711] 

Vu et al. Page 16

J Proteome Res. Author manuscript; available in PMC 2023 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The workflow for HyPep analysis begins with processing LC-MS/MS data through 

PEAKS de novo sequencing program. De novo sequenced peptides are loaded into HyPep. 

HyPep performs a sequence homology search (SHS) between de novo sequenced query 

and neuropeptide database sequence and sequence matches above a false discovery rate 

threshold are reported. In parallel, LC-MS/MS data undergo precursor ion deconvolution 

through TopFD within TopPIC Suite49. Deconvoluted precursor masses are loaded into 

HyPep. HyPep performs accurate mass matching (AMM) between intact neuropeptide 

database sequences and deconvoluted precursor masses. Then, HyPep searches MS/MS 

scans where the isolated precursor corresponds to a deconvoluted precursor mass and 

contains fragment ions pertaining to the neuropeptide sequence. The filtered results from the 

SHS module are compared with the results from the AMM module and database sequences 

identified in both modules are reported as a final output.
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Figure 2. 
HyPep’s sequence homology search (SHS) algorithm contains four local alignment 

strategies where each produce a subscore that is calculated by taking the number of amino 

acid matches divided by the average amino acid length of the aligned sequences. All de 
novo sequenced peptide queries are aligned with all neuropeptide database sequences using 

all four local alignment strategies and the subscores from each alignment are summed 

to produce the final HyPep score for each identification. Forward-fixed involves aligning 

sequences starting on the N-terminus and backward-fixed aligns them on the C-terminus. 
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Forward-varying also aligns the sequences on the N-terminus, but a sliding window size 

(SWS) is incorporated to allow amino acids from one sequence to match with amino 

acids from the other sequence in cases where amino acid rearrangements have occurred. 

Backward-varying follows the same process but aligns the sequences on the C-terminus.
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Figure 3. 
Neuropeptide identifications as a function of % FDR from C. sapidus brain tissue processed 

using HyPep, which contains four target-decoy methods to calculate % FDR. Decoy 

databases can be generated using either shuffle, reverse, random, or hybrid decoy methods 

for FDR calculation (Figure S1). Insets show magnification at 0.5-1.5% FDR. Each color 

represents different sliding window sizes (SWS). For each target-decoy method, the same 

decoy database was used for neuropeptide identification using SWS values 1-10.
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Figure 4. 
Four tissues from C. sapidus (brain, sinus glands, pericardial organs, and commissural 

ganglia) were processed using HyPep parameters at SWS values 1-10 and four target-decoy 

methods (reverse = diamond, circle = shuffle, x = random, and triangle = hybrid). The 

number of identifications for each tissue using each SWS value and each target-decoy 

method are reported at threshold of 1% FDR.
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Figure 5. 
Comparison of the number of neuropeptides identified using PEAKS DB and HyPep from 

four tissue types (brain, sinus glands (SG), pericardial organs (PO), and commissural ganglia 

(CoG)) from C. sapidus. 1% FDR threshold was set for both software. Neuropeptides 

were examined for (A) overlapping and unique sequences, (B) sequences from different 

neuropeptide families, and (C) lengths of neuropeptide sequences. AST: allatostatin; CPRP: 

crustacean hyperglycemic hormone precursor-related peptide; CT/DH: calcitonin/diapause 

hormone; PDH: pigment dispersing hormone; sNPF: short neuropeptide F.
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Figure 6. 
Accuracy of neuropeptide identification from HyPep and PEAKS DB was evaluated by 

processing four tissue types from C. sapidus (brain, sinus glands (SG), pericardial organs 

(PO), and commissural ganglia (CoG)) through both programs. An entrapment database 

containing both crustacean neuropeptides and non-crustacean neuropeptides was used, and 

the number of total identifications and false identifications were reported at 1% FDR.
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Table 1.

Putative novel neuropeptide sequences that were discovered in four tissue types from C. sapidus.

Novel Neuropeptide Tissue Type Homologous Neuropeptides from Database HyPep Score

AGHKNYLRF(Amidated) Brain, PO, SG, CoG GAHKNYLRF (Amidated) 3.333

DARTPALRLRF(Amidated) Brain, SG, CoG DGRTPALRLRF(Amidated) 3.636

DARTPALRLRF SG DGRTPALRLR F(Amidated) 3.636

(Pyro-glu)ERNFLRF(Amidated) PO ELNFLRF(Amidated) 3.429

HLSSLLR Brain, PO, SG HYSSLLR(Amidated) 3.429

HLSSLLR(Amidated) SG HYSSLLR(Amidated) 3.429

HYGSLLR SG HYSSLLR(Amidated) 3.429

IMFDELDRS CoG NFDEIDRSA 2.824

QHKNYLRF(Amidated) CoG KHKNYLRF(Amidated) 3.5

RNNFLRF(Amidated) SG, PO GNNFLRL(Amidated) [SG]
KNEFIRF(Amidated) [PO]

3.429 [SG]
2.857 [PO]

SSFSRPP(Amidated) SG SSFSPRP(Amidated) 3.143
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