
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:7285 | https://doi.org/10.1038/s41598-023-34257-x

www.nature.com/scientificreports

Large scale sequence alignment
via efficient inference in generative
models
Mihir Mongia 1,4, Chengze Shen 1,3,4, Arash Gholami Davoodi 1,2, Guillaume Marçais 1 &
Hosein Mohimani 1*

Finding alignments between millions of reads and genome sequences is crucial in computational
biology. Since the standard alignment algorithm has a large computational cost, heuristics have been
developed to speed up this task. Though orders of magnitude faster, these methods lack theoretical
guarantees and often have low sensitivity especially when reads have many insertions, deletions, and
mismatches relative to the genome. Here we develop a theoretically principled and efficient algorithm
that has high sensitivity across a wide range of insertion, deletion, and mutation rates. We frame
sequence alignment as an inference problem in a probabilistic model. Given a reference database of
reads and a query read, we find the match that maximizes a log-likelihood ratio of a reference read and
query read being generated jointly from a probabilistic model versus independent models. The brute
force solution to this problem computes joint and independent probabilities between each query and
reference pair, and its complexity grows linearly with database size. We introduce a bucketing strategy
where reads with higher log-likelihood ratio are mapped to the same bucket with high probability.
Experimental results show that our method is more accurate than the state-of-the-art approaches in
aligning long-reads from Pacific Bioscience sequencers to genome sequences.

Aligning millions of DNA sequences is significant for identifying functional and evolutionary relationships
between organisms, assembling genomes, and analyzing single-nucleotide polymorphisms1,18. Many methods
have been developed for solving the sequence alignment problem over the past decades3,4,7,9–12,15. Currently, the
most popular alignment algorithms use the seed-chain alignment procedure. In this procedure a set of subse-
quences are extracted from the reference genome and indexed. Likewise a set of subsequences are extracted
from a batch of query reads. Then each query read is only compared to sections of the reference genome that
have subsequences in common. The assumption is that each read can only map to sections of the genome which
share exact subsequences with the read. This assumption, however, is violated when error rate is high and thus
the most popular alignment algorithms fail to identify a large portion of true alignments. One way to identify
more true alignments in the high error rate regime is to relax the requirement that read and genome share exactly
matching subsequences to read and genome share similar subsequences (not identical). However, methods for
speeding up alignments of reads with high error rates using this relaxation are not available.

Sequence alignment has been studied from a statistical inference perspective8,9. It has been shown that optimal
inference is equivalent to the dynamic programming solution to the sequence alignment problem. In order to
overcome the low true positive rate of existing sequence alignment methods when the error rate is high, we first
model sequence alignment as an inference problem in a latent variable generative model (Figs. 1 and 2) and
then develop “asymetrical” hashing techniques for fast inference in this model. These asymetrical hashes can
hash two reads to the same bucket or value whenever the two reads contain a pair of k-mers that are similar (but
not necessarily identical). The set of non-matching pairs used for asymetrical hashing is optimally chosen with
respect to the latent variable generative model.

In our model, we assume that pairs of sequences with high alignment scores are generated jointly from a
generative model, and pairs of sequences with low alignment scores are generated independently of each other.
Here we denote the probability that a pair of sequences X and Y are generated under the joint model as P(X,Y) .
The probability that X and Y are generated independently of each other is thus Px(X)Py(Y) where Px denotes
the marginal of P along the x variable and Py denotes the marginal of P along the y variable.

OPEN

1School Computer Science, Carnegie Mellon University, Pittsburgh, USA. 2Apple. Cupertino, California,
USA. 3University of Illinois, Urbana‑Champaign, USA. 4These authors contributed equally: Mihir Mongia and
Chengze Shen. *email: hoseinm@cs.cmu.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-34257-x&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:7285 | https://doi.org/10.1038/s41598-023-34257-x

www.nature.com/scientificreports/

Given this model, a natural algorithm to find aligned sequences is the following: for each pair of sequences
X and Y, compute CX,Y = P(X ,Y)

Px(X)Py(Y) . If CX,Y is high, then X and Y are more likely to be generated from the joint
model, rather than the independent model. Therefore, CX,Y can be used as an alignment score between X and Y.

A naive implementation of this natural algorithm suffers from the fact that CX,Y needs to be computed for each
pair of sequences X and Y in the database. To overcome this challenge, we further propose a bucketing method
inspired by locality sensitive hashing. In this strategy, we put each sequence X into several buckets (likewise for
Y). For each X, we compute CX,Y only for the sequences Y that are in the same buckets as X. This strategy signifi-
cantly reduces the number of sequence pairs for which CX,Y is computed, without missing true positive pairs.

In this paper, we introduce Distribution Sensitive Bucketing (DSB), a novel technique for efficient and accu-
rate alignment of large read datasets against genomes. To do this, we first formulated the sequence alignment
problem as an inference in two types of latent variable models, Hidden Markov Models (HMMs) and pair Hid-
den Markov Models (pair-HMMS). For both probabilistic models, we developed an efficient inference algorithm
and derived its complexity. We further designed a family of asymmetric bucketing functions that minimize the

Figure 1.   We model sequence alignment as an inference problem in a latent variable model. We assume the
true alignments are generated through a joint model, while random pairs are generated through independent
models. In the joint model, a latent variable H = {i,m, d}S is first sampled from a multinomial distribution.
Here, “m”, “i”, and “d” represent match/mismatch, insertion and deletion. Then sequences X̄H and ȲH are
generated based on sequence H and probability matrices Pm , Pi , and Pd . Whenever we have “m” at a position in
H, the corresponding positions in X̄H and ȲH are sampled jointly from Pm . Whenever we have “d” at a position
in H, the corresponding position in X̄H is sampled from Pd , while we have “−” for ȲH . Whenever we have “i” at
a position in H, the corresponding position in ȲH is sampled from Pi , while we have “−” for X̄H . Then sequences
X and Y are formed by removing “−” from X̄H and ȲH . For the independent model, X and Y are independently
sampled from PXr and PYr .

Figure 2.   In the joint model, a latent variable H = {i,m, d}S is first sampled, and then X̄H and ȲH are generated
based on H. X and Y are generated by removing “−” from X̄H and ȲH . Here, “m”, “i” and “d” stand for match/
mismatch, insertion and deletion.

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:7285 | https://doi.org/10.1038/s41598-023-34257-x

www.nature.com/scientificreports/

complexity. Several alignment software packages have been developed using HMM like probabilistic models1–3.
Algorithms based on HMM like probabilistic models are either slow or require heuristics1,3 with no theoretical
bound on performance. The area of asymetric bucketing is relatively underexplored4. In order to detect homolog
sequences, Mak et al.4 introduced a method that would put pairs of sequences in the same bucket if they shared
the same subsequence plus or minus a few deletions and insertions. However, Mak et al. does not consider that
computational complexity may increase due introducing this procedure and do not provide a methodology that
adjusts the subsequence length and number of indels considered to various indel probabilities.

DSB is an algorithm that given indel probabilities will generate a bucketing data structure for sequence
alignment that aims to keep sensitivity high while keeping computational complexity of sequence alignment
low. Like Mak et al., DSB will compare reads that share similar subsequences, not just identical ones. Our results
show that the DSB algorithm is at least as sensitive as competing methods in aligning reads at low error rates,
and outperforms all methods when the error rates are high. When aligning reads to distant homologs, the DSB
algorithm is 10 percent more sensitivity than the closest competitor.

For the sake of presentation clarity, we provide bodies of algorithms in Supplementary Materials and their
summaries in the main text. Additional figures and tables are also provided in Supplementary Materials.

Results
We benchmarked DSB-SA against popular alignment methods in several scenarios. The scenarios include align-
ing simulated reads against a reference genome, aligning experimental reads against corresponding genomes,
and aligning E. coli reads against reference genomes of distance homologs. In each scenario both Sensitivity and
False Positives are reported. Sensitivity is measured as the proportion of aligned regions (read to genome) in
the reference that are reported by the corresponding method. A sensitivity of 1 means that every region in the
reference is recovered while 0 means no regions in the genome are recovered.

Brief overview of distribution sensitive bucketing.  Distribution Sensitive Bucketing (DSB) consists
of the following steps (see details in the Method Section). First, a directed graph is constructed, where each sink
node represents a bucket. Then, starting from the source node, query and reference reads are mapped to one or
several buckets through the decision graph (at each node in the graph, the decision graph might route a read to
more than one direction). Finally, all the buckets are explored, and pairs of query and reference reads in each
bucket are reported as matches. In the following, DSB-HMM refers to DSB algorithm in case of HMM model
(Algorithms 1 and 2), while DSB-SA refers to DSB algorithm in case of string alignment model (Algorithms 3
and 5).

We benchmarked DSB-SA against MHAP5, Minimap26, DALIGNER7, BlasR8, MMSeqs29, GraphMap10, CD-
HIT11, and Winnowmap12. MHAP is the state of the art algorithm for aligning reads with high insertion, deletion,
and mismatch rates, that is based on compressing sequences to their representative fingerprints and detecting
overlaps by estimating Jaccard’s similarity using min-wise hashing13. Minimap2 is a general-purpose alignment
program for mapping DNA reads to reads/large reference databases, that is based on collecting and indexing
minimizers in a hash table6. DALIGNER is based on an efficient and highly sensitive filter that predicts points
between pairs of reads that are likely to have a significant local alignment passing through them7. BlasR first
finds clusters of short exact matches between the read and the genome using a suffix array, and then perform a
more detailed alignment of the regions where reads are matched8. MMSeqs2 is a sensitive and fast alignment
program that utilizes k-mer matching and ungapped alignment to speed up mapping without losing sensitivity9.
GraphMap is a fast and sensitive reads mapping program which is designed to analyze sequence data with high
error such as nanopore sequencing data10. CD-HIT is a clustering algorithm that group reads together based on
their pair-wise similarity11. Winnowmap is a direct descendent of Minimap2, and it uses weighted frequently
occurring k-mers to reduce excessive false positives12.

Benchmarking DSB‑HMM in matching simulated data.  In this experiment, we compared the per-
formances of DSB-HMM (Algorithms 1 and 2) against the brute force search (Algorithm 4). Data is simulated
from a HMM with hidden state ht ∈ {0, 1} for 0 ≤ t ≤ T and the following parameters:

where Ptrans represents the transition matrix of the hidden states, i.e. Ptrans(i, j) = P(ht+1 = j | ht = i) and Pemit
represents the emission probabilities, i.e. Pemit(i, j | h) = P(xt = i, yt = j | ht = h) . Here, ǫ is the error rate, and
δ is the probability of transition to an alternative state. In hidden state 0, the HMM mostly generates matching
nucleotides whereas in hidden state 1 the HMM generates mostly mismatching nucleotides.

We first simulate the hidden states using the transition probabilities, and then simulate data using the emis-
sion probabilities for various values of ǫ and δ . We run for 1000, 2000, 5000, 10 000, 50 000, 100 000, and
here T = 2000 . The brute force algorithm has a quadratic growth in complexity with respect to the number of
sequences N, while our method has a sub-quadratic complexity (Fig. S1).

(1)Ptrans =

[

1− δ δ

δ 1− δ

]

(2)
Pemit(xt , yt | ht = 0) =

[

0.5− ǫ ǫ

ǫ 0.5− ǫ

]

Pemit(xt , yt | ht = 1) =

[

ǫ 0.5− ǫ

0.5− ǫ ǫ

]

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:7285 | https://doi.org/10.1038/s41598-023-34257-x

www.nature.com/scientificreports/

Benchmarking DSB‑SA in aligning simulated reads against genomes.  We benchmarked the dif-
ferent methods in mapping N = 5000 PacBio simulated reads against the E. coli reference genome. We used
recommended settings for all methods. The reads are simulated using PBSIM14 and the E. coli reference genome,
with a mean length of 700 bps. Figure 3 shows the sensitivity, the percentage of reads mapped correctly to the
genome.

We observe that DSB-SA maintains high sensitivity as the error rate increases. BlasR has a lower sensitivity
compared to DSB-SA, and its performance decreases substantially for higher error rates. DALIGNER, Minimap2,
Winnowmap and MMSeqs2 show similar low sensitivity across different error rates. The false positive rate for
all methods is nearly zero (Fig. 4).

Figure 3.   Benchmarking different methods on mapping simulated reads against the genome. We use PBSIM
to simulate PacBio reads from the E. coli reference genome. Indel and substitution errors are introduced, and
the error rate on reads is the sum of these errors. In this experiment, we simulated the reads with an average
length of 700 bps and average read errors from 0.25 to 0.45. Sensitivity versus error rate for DSB-SA, Minimap2,
Winnowmap, DALIGNER, BlasR, MMSeqs2, and GraphMap are shown. Details of the PBSIM simulation are
provided in the Supplementary Note 4.

Figure 4.   Benchmarking the false positive rate of different methods on mapping simulated reads against the
genome. We use PBSIM to simulate PacBio reads from the E. coli reference genome. Indel and substitution
errors are introduced, and the error rate on reads is the sum of these errors. In this experiment, we simulated
the reads with an average length of 700 bps and average read errors from 0.15 to 0.40. False positive rate of all
methods is nearly zero.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:7285 | https://doi.org/10.1038/s41598-023-34257-x

www.nature.com/scientificreports/

Benchmarking DSB‑SA in aligning pacbio reads to distant homologs.  In this experiment, we
compared the performances of DSB-SA with various methods on mapping PacBio reads of the E. coli genome
to two genomes of related species. The ground truth is inferred by aligning the reads against the genomes with
LALIGN15. LALIGN is a brute force method that finds all local alignments between given queries and targets.
We use default settings for DALIGNER, BlasR, MMSeqs2, GraphMap and Winnowmap, and PacBio preset for
Minimap2. Figure 5 illustrates the sensitivity of the examined methods.

With the exception of MMSeq2, DSB-SA is significantly more sensitive than the other methods (Fig. 5a).
While DSB-SA is nearly as sensitive as MMSeq2, it produced three orders of magnitude fewer false positives
(Fig. 5b). Runtimes for all the methods are shown in Table 1. False negatives and true positive rates for all meth-
ods are shown in Supplementary Tables S1, S2, and S3.

Benchmarking DSB‑SA in aligning PacBio reads to corresponding genomes
We benchmarked DSB-SA against other methods in mapping PacBio reads of S. Cerevisiae, chromosome 12 of
H. Sapiens, and chromosome 12 of M. Musculus to their respective genomes (Fig. 6). DSB-SA is significantly
better than all the other methods with exception of MMSeq2 and DALIGNER. DSB-SA is comparable (or bet-
ter) than MMSeq2 and DALIGNER, and produces significantly fewer false positives. False negatives and true
positive rates for all methods are shown in Supplementary Tables S4, S5, and S6.

Figure 5.   Comparison of sequence alignment methods in (a) sensitivity and (b) false positives. Here, Pacbio
reads from E. coli are searched against the genome of Citrobacter and G. endobia to assess the power of various
methods in identifying distant homologs.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:7285 | https://doi.org/10.1038/s41598-023-34257-x

www.nature.com/scientificreports/

Table 1.   Runtime/memory analysis of various methods for mapping PacBio long reads of E. coli to the E. coli
genome. The runtime is recorded in seconds (s), and the memory usage is recorded in megabytes (MB).

E. coli

runtime (s) memory (MB)

LALIGN 1587806.20 -

DSB-SA 174.22 2022.54

Minimap2 1.79 71.14

DALIGNER 11.92 761.04

BlasR 482.95 104.89

MMSeqs2 64.80 8314.44

GraphMap 102.53 369.94

Winnowmap 1.41 60.05

Figure 6.   Comparison of (a) sensitivity and (b) false positives of various sequence alignment methods. Here,
Pacbio reads from S. Cerevisiae, H. Sapien, and M. Musculus are searched against their respective genomes.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:7285 | https://doi.org/10.1038/s41598-023-34257-x

www.nature.com/scientificreports/

Discussion
In recent years, various efficient methods have been introduced for aligning large number of reads against
reads/genomes. However, majority of these techniques are limited to the cases where reads are mapped to close
homologs (low mutations, insertions and deletions) and they do not generalize to alignment of reads to distant
homologs. Furthermore, most of the methods that are used in practice use heuristics to speed up alignment.

Many approaches also use decision trees to solve the string alignment problem. The main contribution of the
presented work is in modeling the string alignment problem as a statistical inference problem and applying a
general hashing strategy for efficient inference. Since we use pair-HMMs to model the joint distribution of aligned
reads, the final hidden state of a pair of aligned reads can be a deletion, insertion, or match/mismatch. Thus, there
are three pairs of subsequences that are predecessors of a sequence pair (note that in traditional HMM, there is
only a single predecessor). Thus the hashes for pair-HMMs are decision graphs (Fig. S4) rather than decision trees.

The sequence alignment problem has been modeled as a statistical inference problem, and dynamic program-
ming solutions have been proposed to achieve optimal inference. Since these statistical models can be param-
eterized by different insertion, deletion, and mutation rates, the dynamic programming solutions are capable
of discovering alignments between distant homologs. Still dynamic programming is very slow and runtime
grows linearly with the size of reference. Inspired by locality sensitive hashing, in this paper we introduced the
distribution sensitive bucketing paradigm for efficient subquadratic inference in latent variable models. In this
paradigm, given a joint and an independent model for true and random pair of sequences, the sequences are
mapped to buckets in a way that pairs of sequences from the joint model are more likely to fall into the same
bucket than random ones. By focusing on pairs that fall into the same bucket, Distribution Sensitive Bucketing
(DSB) can not only find read/genome pairs over a wide range of insertion, deletion, and mutation rates, but also
avoids many unnecessary computations.

Brute force techniques (e.g. LALIGN) are incapable of handling large scale alignment tasks. On the other
hand, faster methods (e.g. Minimap2 and DALIGNER) can not handle larger mismatch, insertion and deletion
rates. DSB is capable of recovering a significant portion of alignments with a reasonable computation time. We
do not advise using DSB in cases where error rates are small (e.g. Illumina reads). In these scenarios, our bench-
mark shows that Minimap2 outperforms other methods while maintaining high accuracy. In case of erroneous
reads or distant homologs, DSB algorithm achieves high sensitivity, while being orders of magnitude faster than
the brute force alternatives.

An alternative strategy to the MinHash approach used in MHAP is densified MinHash16. However, our results
show that the main disadvantage of MinHash based methods is in their low sensitivity and high false positive
rate. Switching to densified MinHash can make this problem more severe, since it has been reported that densi-
fied MinHash slightly improves the speed of MinHash while sacrificing sensitivity17.

Currently, DSB is based on a simplistic assumption that insertions and deletions occur independently. The
current approach paves the path toward more sophisticated models, such as affine gap penalties and non-uniform
distribution of nucleotides.

Methods
Inference problem for hidden Markov models.  Consider an HMM P with a finite alphabet H of hid-
den states and an alphabet A× B of observations where A and B are finite discrete alphabets. For any pair of
sequences X = (x1, x2, . . . , xT) ∈ AT , Y = (y1, y2, . . . , yT) ∈ BT where T ∈ N , let

where H = (h1, h2, . . . , hT) ∈ HT denotes hidden states, Pemit : A× B ×H → [0, 1] denotes the emission
probabilities, Ptrans : H×H → [0, 1] denotes the transition probabilities, and Pinit : H → [0, 1] denotes the
initial probability of the hidden state h1 . Here all multi-dimensional probabilities are shown with P , while scalar
probabilities are shown with P. In the context of sequence alignment, one can treat Y as the query sequence and
X as a sequence in the database. The inference problem for latent variable models is defined as follows: Given a
latent variable model P(X,Y) , a set of sequences X = {X1, . . . ,XN } ⊆ AT , and a query sequence Y ∈ BT , find
X∗ satisifying:

where P(X) is the product of background probabilities of each base and insertions/deletions. In the case where
P(X,Y) is a HMM defined in (3)-(5), the naive method to solve this optimization problem requires computing
P(Y | Xi) for each Xi ∈ X using the classic forward algorithm18, and then finding Xi that maximizes P(Y | X)
(see Supplementary Algorithm 4). However, since the complexity of the forward algorithm is O(T|H|2) , the
complexity of this naive method is O(NT|H|2) (computing P(Y|X) for all X ∈ X  ). This solution thus cannot

(3)P(H) = Pinit(h1)

T−1
∏

t=1

Ptrans(ht+1 | ht)

(4)P(X,Y | H) =

T
∏

t=1

Pemit(xt , yt | ht)

(5)P(X,Y) =
∑

H∈HT

P(X,Y | H)P(H)

(6)X∗ = argmax
X∈X

P(Y | X)

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:7285 | https://doi.org/10.1038/s41598-023-34257-x

www.nature.com/scientificreports/

scale to cases where the number of sequences N is large. Also note that the forward algorithm is not applicable
to the string alignment problem with insertions and deletions.

Database search by distribution sensitive bucketing for HMMs.  Here we introduce decision trees
with bucket data structures, and show how they can be used for mapping database sequences X ∈ X and query
sequences Y ∈ Y to buckets in a way that for pairs (X, Y) with higher P(Y | X) , the chance of mapping to the
same bucket is higher. Intuitively, each node in the tree contains two subsequences Sx and Sy , and X ∈ X (resp.
Y ∈ Y ) falls in a bucket node in the tree if Sx (resp. Sy ) is its prefix. We then use this data structure to design an
algorithm that solves the inference problem in the case of HMMs.

The data structure consists of a decision tree G and a set of distinguished leaf nodes of G called “buckets”.
Decision tree G is a directed tree with a set of nodes V. Each node v ∈ V is associated with two sequences
v.Sx ∈ ∪T

t=1A
t and v.Sy ∈ ∪T

t=1B
t (called x-sequence and y-sequence of v). For each v ∈ V  , v.Sx and v.Sy have

the same size, and this size is equal to their depth in the tree. For the root node, root ∈ V  , root.Sx = root.Sy = ∅ ,
where ∅ is the empty string. Each node v ∈ V is either a leaf node, or has exactly |A| × |B| children. For each
child w of v corresponding to a ∈ A, b ∈ B , its x-sequence and y-sequence are defined as follows:

where plus sign stands for string concatenation. In other words, w.Sx and w.Sy are formed by attaching a and b
to the end of v.Sx and v.Sy strings, respectively. The edge from v to w is indexed by (a, b). Furthermore the set
of D buckets v ∈ Vbuckets = {v1, . . . , vD} is a subset of the leaf nodes of the tree, where D is referred to as the
number of buckets. Later we will discuss how to set D and Vbuckets in order to optimize accuracy and efficiency.
Figure 7 shows the schematic of this data-structure for A = B = {0, 1} . Note that the proposed tree differs from
suffix/prefix trees in that they are constructed from two distinct databases of strings, and each node in the tree
corresponds to a pair of substrings.

Given the decision tree G and a set of buckets Vbuckets , we define a natural bucketing strategy for database and
query sequences in AT and BT . Let’s define:

A sequence X ∈ X maps to a bucket v in position 1 ≤ j ≤ J if and only if v.Sx is a subsequence of X starting at
j, i.e.

x
Prefix(v,X, j) = 1 . A sequence Y is mapped similarly. For example if v.Sx = 1011 and X = 01011100 , then x

Prefix(v,X, 2) = 1 while
x

Prefix(v,X, j) = 0 for any j = 2 . We will refer to each position j, 1 ≤ j ≤ J as a band.
We further refer to the set of bands as J (here J = {1, · · · , J} ). Intuitively, only a small ratio of true positives
fall into the same bucket in a single band, and therefore J bands are needed in order to guarantee a true positive
rate nearly one.

Let’s define the bucketing function hxj (X) (resp. hyj (Y) ) as the set all the buckets in the decision tree that a
sequence belongs to from its j-th band. That is:

(7)w.Sx = v.Sx + a w.Sy = v.Sy + b

(8)Prefixx(v,X, j) =

{

1, v.Sx is a prefix of j′ th suffix of X
0, otherwise

(9)Prefixy(v,Y , j) =

{

1, v.Sy is a prefix of j′ th suffix of Y
0, otherwise

(10)hxj (X) ={v ∈ Vbuckets | Prefixx(v,X, j) = 1}

Figure 7.   Construction of the HMM decision tree. Examples of accepted, pruned, and branched nodes are
shown. Refer to Algorithm 3 for further details of the tree construction.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:7285 | https://doi.org/10.1038/s41598-023-34257-x

www.nature.com/scientificreports/

Given these buckets we can then solve the inference problem using Algorithm 1. In summary, Algorithm 1 first
maps all sequences in X and Y to appropriate buckets, which are obtained by growing and pruning the decision
tree G (Fig. S3). Then, it examines all pairs in each bucket using forward algorithm to compute P(X,Y) , Px(X)
and Py(Y) , and uses the likelihood ratio to determine if the pairs are likely to have an alignment. Since only
pairs in each bucket are examined, the complexity is much lower than the brute force strategy from Algorithm 4.

In the special case where for every bucket v, v.Sx = v.Sy , Algorithm 1 will be restricted to finding exact match
substrings based on prefix trees. Enforcing exact match substrings could results in high false negative rates, as
distance homolog sequences might not share any substring of certain length. However, by constructing optimal
trees and buckets that tolerate errors ( Sx not exactly equal to Sy ), Algorithm 1 can achieve lower false negative
rates than methods that enforce exact matches.

Another naive choice of the decision tree and buckets is a complete tree with all leaf nodes selected as buckets.
In this case, every pair of sequences will share a bucket, and therefore the complexity of Algorithm 1 would be the
same as the brute force algorithm. Now we provide a complexity and true positive rate analysis of Algorithm 1. We
further present an algorithm to select a decision tree and a set of buckets, Vbuckets , that minimizes the complexity
in Supplementary Sect. 9.6. This algorithm iteratively grows a tree and prunes nodes/buckets that do not have a
sufficiently high probability of containing pairs of sequences generated under the joint distribution.

Complexity and true positive rate analysis.  In the Supplementary Materials, we show proofs for the
complexity and true positive rate under the HMM model. True positive rate (TPR) of Algorithm 1 is the fraction
of (X, Y) pairs jointly generated under the HMMs that are captured in the same bucket. Using J bands we have

where α is defined as the true positive rate in band j. In order to have a nearly one true positive rate, i.e.
TPR ≥ 1− ǫ for a small ǫ , we select

With (13), the overall expected computational complexity of Algorithm 1 is

where M is the number of sequences in X  , N is the number of sequences in Y , β is defined as the false positive
rate in band j, and γ x , γ y are defined as expected numbers of buckets that sequences X and Y in band j fall into,
respectively.

(11)h
y
j (Y) = {v ∈ Vbuckets | Prefix

y(v,Y , j) = 1}

(12)TPR = 1− (1− α)J ≥ 1− e−αJ

(13)J ≥
− ln ǫ

α
,

(14)O(log(ǫ)((Mγ x + Nγ y)+ βMN)/α)

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:7285 | https://doi.org/10.1038/s41598-023-34257-x

www.nature.com/scientificreports/

Sequence alignment model.  Algorithm 1 is limited to standard HMMs, and does not generalize to other
latent variable models. Unfortunately, standard HMMs are not sufficient for modelling the important features
of the sequence alignment problem, as they can not model insertions and deletions. Here, we define a natu-
ral probabilistic model (very similar to pair-HMMs) that we refer to as the sequence alignment model, that
takes into account insertions, deletions, and matches/mismatches between pairs of sequences. Our probabil-
istic model first generates a latent variable H, e.g. H = mmdmmimi . Here, “m”, “i”, and “d” represent match/
mismatch, insertion, and deletion respectively. Given H, the generative model generates pre-sequences X̄H and
ȲH , e.g. X̄H = AGCGT − A− and ȲH = AG − TTGAC . Note that whenever the tth entry of H is “i” (“d”), the
corresponding entry X̄H ,t (resp. ȲH ,t ) is “−” . The model generates X and Y by removing all “−” from X̄H ,t and
ȲH ,t (Fig. 2). In this example, we have:

with Pm : {A,C,G,T} × {A,C,G,T} → [0, 1], Pi , Pd : {A,C,G,T} → [0, 1] , and qmatch , qinsertion and qdeletion are
positive, qmatch + qinsertion + qdeletion = 1 (Fig. 2). Here Pm , Pd and Pi are the emission probabilities when the
latent variable is match, deletion, and insertion respectively. qmatch , qinsertion , qdeletion are probabilities of the latent
variables. Note that qmatch represents the probability for both match and mismatch.

For simplicity we have assumed that insertion, deletion, and match/mismatch events are happening independ-
ent of each other. In practice, these events are usually not independent, and a HMM is used for modeling intervals
of insertions and deletions, that is equivalent to using an affine gap penalty. While in this paper we will focus
on the independent insertion and deletion model, the algorithms presented can generalize to arbitrary priors.

So far, we have shown that the sequence alignment model can be stated as a special case of latent variable
models. We will show how the algorithms we have developed for HMMs (without insertions/deletions) can be
adapted to the case of sequence alignment models.

Efficient sequence alignment by sub‑quadratic inference in sequence alignment model.  Here
we develop analogous methods to solve the inference problem in case of the sequence alignment model. We
present a method to align sequences via the bucketing strategy (Algorithm 4), and we detail how to construct
optimal buckets to minimize the runtime (Algorithm 5). Our model relies on pair-HMMs, which are different
from standard HMMs in that they can also incorporate insertions and deletions. An efficient bucketing strategy
is designed using a decision graph structure (Fig. S4). Decision graphs are iteratively grown and pruned, in order
to optimize the theoretical complexity (Supplementary Sect. 9.6).

Data availability
All data generated or analysed during this study are included in this published article and its supplementary
information files.

Code availability
The command-line version of DSB, available from https://​github.​com/​mohim​anilab/​Distr​ibuti​onSen​sitiv​eBuck​
eting, is capable of conducting searches in both all versus all mode (when searching many reads against each
other) and all versus one mode (searching many reads against a single genome).

Received: 23 September 2022; Accepted: 26 April 2023

References
	 1.	 Potter, S. C. et al. Hmmer web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).
	 2.	 Zhan, Q. et al. Probpfp: A multiple sequence alignment algorithm combining hidden Markov model optimized by particle swarm

optimization with partition function. BMC Bioinform. 20, 1–10 (2019).
	 3.	 Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinform. 6, 1–11 (2005).
	 4.	 Mak, D., Gelfand, Y. & Benson, G. Indel seeds for homology search. Bioinformatics 22, e341–e349 (2006).
	 5.	 Berlin, K. et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 33,

623–630 (2015).
	 6.	 Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
	 7.	 Myers, G. Efficient local alignment discovery amongst noisy long reads. Workshop on Algorithms in Bioinformatics 8701 (2014).
	 8.	 Chaisson, M. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (blasr):

Application and theory. BMC Bioinform. 13, 238 (2012).
	 9.	 Steinegger, M. & Söding, J. Mmseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Bio-

technol. 35, 1026–1028 (2017).
	10.	 Sović, I. et al. Fast and sensitive mapping of nanopore sequencing reads with graphmap. Nat. Commun. 7, 11307 (2016).
	11.	 Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinfor-

matics 22, 1658–1659 (2006).
	12.	 Jain, C. et al. Weighted minimizer sampling improves long read mapping. Bioinformatics 36, i111–i118 (2020).
	13.	 Shrivastava, A. & Li, P. In defense of minhash over simhash. In Artificial Intelligence and Statistics 886–894 (2014).
	14.	 Ono, Y., Asai, K. & Hamada, M. Pbsim: Pacbio reads simulator-toward accurate genome assembly. Bioinformatics 29, 119–121

(2013).
	15.	 Madeira, F. et al. The embl-ebi search and sequence analysis tools apis in 2019. Nucleic Acids Res. 47, 636–641 (2019).

(15)
P(X,Y | H) = Pm(A,A)Pm(G,G)Pd(C)Pm(G,T)

Pm(T ,T)Pi(G)Pm(A,A)Pi(C)

(16)
P(H) = qmatchqmatchqdeletionqmatchqmatch

qinsertionqmatchqinsertion

https://github.com/mohimanilab/DistributionSensitiveBucketing
https://github.com/mohimanilab/DistributionSensitiveBucketing

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:7285 | https://doi.org/10.1038/s41598-023-34257-x

www.nature.com/scientificreports/

	16.	 Shrivastava, A. Optimal densification for fast and accurate minwise hashing. Proc. Int. Conf. Mach. Learn. 70, 3154–3163 (2017).
	17.	 Shrivastava, A. Optimal densification for fast and accurate minwise hashing. In International Conference on Machine Learning

3154–3163 (PMLR, 2017).
	18.	 Rabiner, L. R. & Juang, B.-H. An introduction to hidden Markov models. IEEE ASSP Mag. 3, 4–16 (1986).

Acknowledgements
The work of M.M., C.S., and A.G.D. and H.M. was supported by a National Institute of Health Award
DP2GM137413. G.M. was supported by US National Institutes of Health Award R01HG012470.

Author contributions
M.M., C.S. and A.G.D. designed the model. M.M. and C.S. implemented the model. M.M. and C. S. performed
benchmarking experiments and analyzed the data. M.M. G.M and H.M. wrote the manuscript. H.M. supervised
the project.

Competing interests 
H.M. is a co-founder and has equity interest from Chemia Biosciences. The other authors declare no competing
interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​34257-x.

Correspondence and requests for materials should be addressed to H.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-34257-x
https://doi.org/10.1038/s41598-023-34257-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Large scale sequence alignment via efficient inference in generative models
	Results
	Brief overview of distribution sensitive bucketing.
	Benchmarking DSB-HMM in matching simulated data.
	Benchmarking DSB-SA in aligning simulated reads against genomes.
	Benchmarking DSB-SA in aligning pacbio reads to distant homologs.

	Benchmarking DSB-SA in aligning PacBio reads to corresponding genomes
	Discussion
	Methods
	Inference problem for hidden Markov models.
	Database search by distribution sensitive bucketing for HMMs.
	Complexity and true positive rate analysis.
	Sequence alignment model.
	Efficient sequence alignment by sub-quadratic inference in sequence alignment model.

	References
	Acknowledgements

