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Abstract
Subarachnoid hemorrhage (SAH) is a major health burden that accounts for approximately 5% of all strokes. The most 
common cause of a non-traumatic SAH is the rupture of a cerebral aneurysm. The most common symptom associated with 
SAH is a headache, often described as “the worst headache of my life.” Delayed cerebral ischemia (DCI) is a major factor 
associated with patient mortality following SAH and is often associated with SAH-induced cerebral vasospasm (CV). Can-
nabidiol (CBD) is emerging as a potential drug for many therapeutic purposes, including epilepsy, anxiety, and pain relief. 
We aim to review the potential use of CBD as a treatment option for post-SAH critically ill patients. Through a literature 
review, we evaluated the known pharmacology and physiological effects of CBD and correlated those with the pathophysi-
ological outcomes associated with cerebral vasospasm following subarachnoid hemorrhage. Although overlap exists, data 
were formatted into three major categories: anti-inflammatory, vascular, and neuroprotective effects. Based on the amount 
of information known about the actions of CBD, we hypothesize the anti-inflammatory effects are likely to be the most 
promising therapeutic mechanism. However, its cardiovascular effects through calcium regulation and its neuroprotective 
effects against cell death, excitotoxicity, and oxidative stress are all plausible mechanisms by which post-SAH critically ill 
patients may benefit from both early and late intervention with CBD. More research is needed to better understand if and 
how CBD might affect neurological and vascular functions in the brain following injury such as subarachnoid hemorrhage.
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Introduction

The most common cause of a non-traumatic subarachnoid 
hemorrhage (SAH) is the rupture of a cerebral aneurysm 
[1]. The fatality rate of SAH patients within the first 28 days 
can be as high as 42%, while 10–20% of patients die before 
reaching the hospital [2, 3]. In aneurysmal subarachnoid 
hemorrhage (aSAH), the cardinal symptom is a severe, sud-
den headache [4], and the most common risk factors are 
hypertension, smoking, and extensive alcohol consumption 
[5]. Females in specific populations and first-degree relatives 
with SAH are also associated risk factors [6, 7]. Patients 
that survive the initial bleed have outcomes that range from 
minor cognitive deficits to severe neurological disability.

Delayed cerebral ischemia (DCI) is a potentially fatal 
condition that occurs in the subacute phase of SAH episodes. 
DCI affects approximately 30% of patients and is the leading 
cause of morbidity and mortality after surviving the initial 
aneurysm rupture [8]. Characterized by an acute reduction 
of arterial blood supply to the brain, DCI is dependent on the 
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severity of the initial aneurysm, early brain pathologies, and 
the development of cerebral vasospasm (CV), though other 
factors such as microvascular spasm and micro-thrombosis 
have been considered contributary [9, 10]. CV, the constric-
tion of intracranial arteries that usually begins 3 days after 
SAH and can last up to 2–3 weeks, was once considered 
the singular cause of DCI, though this has since been chal-
lenged after incongruencies between the presence of CV 
and evidence of DCI were observed [11, 12]. It is, however, 
still identified as a major contributor to DCI. An increase 
in intracellular calcium is thought to play an important role 
in CV due to its characteristic vasoconstriction effects in 
smooth-muscle cells; however, many other conducive mech-
anisms have been described, including the nitric oxide path-
way, endothelin-induced vasoconstriction, pro-inflammatory 
cascades, hypoxia-inducible factor-1 (HIF-1) transcriptional 
modulation, oxidative stress, and apoptosis from early brain 
injury (EBI), among others [13–15]. Nimodipine, a calcium 
channel blocker, is one of the few current standard therapies 
following SAH as it has shown efficacy in reducing neu-
rologic deficits from DCI, an effect believed to be due to 
the prevention of CV, though evidence of this mechanism 
via angiography visualization has been variable [16]. Other 
treatments consist of blood pressure maintenance, including 
induced hypertension when the CV is present, and neuro-
vascular intervention (intra-arterial administration of spas-
molytics and balloon angioplasty) if needed [17, 18]. Pain 
management includes acetaminophen/caffeine/butalbital 
cocktail and opioids [19]. Despite these treatment proto-
cols, poor patient outcomes persist. Given there are many 
pathological mechanisms at play following SAH that signifi-
cantly impact morbidity and mortality, research has focused 
on determining which pathways may have a key role in the 
pathophysiology behind CV and DCI in order to evaluate 
new treatment options.

Cannabidiol (CBD) is the dominant phytocannabi-
noid that accumulates in hemp, a plant closely related to 
marijuana that contains a much lower amount (< 0.3% dry 
weight) of the psychoactive cannabinoid tetrahydrocan-
nabinol (THC). Unlike THC, CBD does not cause eupho-
ria or intoxication, making it an attractive drug for daily 
therapeutic use [20]. First used for the treatment of pain, 
preclinical reports now demonstrate tissue-protective and 
anti-inflammatory effects in models of colitis, kidney injury, 
cardiovascular disease, arthritis, and cancer [20–24]. It has 
also been FDA-approved for the treatment of specific types 
of pediatric epilepsy after clinical trials found it to be more 
effective than conventional agents as well as therapeuti-
cally additive when used as an adjunctive agent [25–27]. 
The most common side effects include diarrhea, weight loss, 
transaminase elevations, and sleep disturbance, while show-
ing little evidence of any severe adverse side effects [28]. 
However, many of CBD’s pharmacologic mechanisms and 

targets are still undetermined, so further research into its 
long-term side effects and therapeutic potential needs evalu-
ation before definitive conclusions are drawn. This literature 
review will evaluate the potential use of CBD as a treatment 
option for post-SAH critically ill patients based on the corre-
lations between the known pharmacology and physiological 
effects of CBD and the pathologies associated with SAH, 
most notably CV and DCI.

Methods

A PubMed database search for English-language papers pub-
lished up to July 2022 was conducted using the following 
search terms: “cannabidiol” or “CBD” and “subarachnoid 
hemorrhage” or “vasospasm” or “cerebral vasospasm” or 
“mechanism” or “physiology” or “vascular” or “pathway” 
or “inflammation” or “brain”. Selection criteria were used 
for all CBD-related articles that support the findings of this 
review, which includes studies published since the year 1998 
with original experimental data from preclinical or clinical 
models that examine the physiologic or molecular mecha-
nisms of CBD. Due to the rather low number of articles 
describing CBD’s effects on the brain, and more specifically 
hemorrhagic disease, all published articles that abide by the 
above criteria and provide pertinent information were used, 
despite the anatomical feature or pathology being explored, 
and the limitations associated with these comparisons were 
addressed. The following referenced review articles were 
found using the search terms described above and used to 
identify supplemental articles that further describe CBD- 
and SAH-related mechanisms [15, 29–35]. Any review 
articles that are referenced in the results section are non-
contributary to the results of this review and therefore solely 
act to introduce topics or provide pertinent supplemental 
knowledge.

Results: CBD Targets Relevant to SAH

CBD has over 65 molecular targets with varying effects on 
each of those molecules [30]. While some animal studies 
have shown conflicting results when compared to studies 
with humans, there are multitudes of CBD targets that are 
relevant to SAH pathologies. Although crossover exists, 
we have grouped these targets into three major classifica-
tions: anti-inflammatory, vascular, and neuroprotective. 
This review will assess evidence from preclinical and 
clinical studies pertaining to the hypothesized therapeutic 
potential of CBD following SAH. To date, no studies that 
specifically look at CBD’s use in SAH were found, so the 
following results are drawn from CBD’s use in other disease 
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models and compared to established mechanisms in SAH 
pathophysiology.

Anti‑inflammatory Effects

Following the rupture of an aneurysm and leakage of blood 
into the subarachnoid space, a number of events take place 
that cause both local and systemic inflammation. As red 
blood cells degrade, free hemoglobin stimulates the upreg-
ulation of specific cell adhesion molecules on the luminal 
surface of endothelial cells [36]. This allows macrophages 
and neutrophils to bind to endothelial cells through roll-
ing adhesion and enter the subarachnoid space, where they 
phagocytose extravasated hemoglobin-haptoglobin com-
plexes [37]. However, macrophages/neutrophils remain 
trapped in the subarachnoid space, and as they begin to die 
and degranulate, a multitude of inflammatory factors are 
released, including free radicals, cytokines, and endothelins, 
leading to arterial vasoconstriction [14, 37, 38]. In addi-
tion, microglial cell activation near the site of hemorrhage 
upregulates Toll-like receptors, which leads to an increase 
in high-mobility group box-1 (HMGB1) protein and down-
stream activation of nuclear factor kappa beta (NF-κβ) [34, 
39, 40]. This, in turn, causes the release of pro-inflammatory 
cytokines such as interleukin-1 beta (IL-1β), IL-6, and tumor 
necrosis factor alpha (TNF-α), all of which are found to be 
elevated in both the cerebrospinal fluid (CSF) and serum of 
SAH patients [34]. These inflammatory processes also lead 
to increased levels of matrix metalloproteinase 9 (MMP-9), 
which degrades the extracellular matrix surrounding blood 
vessels and leads to blood-brain-barrier (BBB) disrup-
tion and leakage of inflammatory mediators into the brain 
parenchyma [41]. CBD produces anti-inflammatory effects 
in numerous in vivo and in vitro studies, primarily result-
ing from inhibiting the activity of molecules involved in the 
regulation of the inflammatory response and prevention of 
leukocyte proliferation. A summary of the studies depicting 
CBD’s anti-inflammatory effects is provided in Online Ref-
erence 1 (Table OR1). The following subsections describe 
how CBD might modulate the production and activity of 
these molecules.

Microglia

Microglia are parenchymal macrophages responsible for 
the tight regulation of the brain’s microenvironment. These 
immune cells are primarily responsible for the phagocytosis 
of cells and other debris, a function that may be beneficial 
in clearing blood products following SAH. Hassan et al. 
[42] show that CBD treatment of microglial cells leads to 
increased phagocytosis, at least in part, via activation of 
transient receptor potential cation channel subfamily V 
(TRPV) receptor channels and modulation of intracellular 

calcium influx. Following the release of pro-inflammatory 
cytokines in SAH, activated microglia may polarize from 
a homeostatic state into pro-inflammatory (with surface 
markers CD16, CD86, iNOS) or anti-inflammatory (with 
surface markers CD206, CD163, Arg1, MHCII) pheno-
types that modulate local inflammation through the release 
of pro-inflammatory (IL-6, TNF-α) and anti-inflammatory 
(IL-10) mediators, respectively [43]. This polarization pro-
cess, accompanied by morphologic changes of the micro-
glia themselves, has been observed to dynamically shift in 
SAH, where pro-inflammatory phenotypes accumulate in 
the brain parenchyma shortly after hemorrhage (days 1–3) 
with subsequent transition to anti-inflammatory phenotypes 
as pathology progresses (days 5–10) [44]. Recent evidence 
supports a pathologic role of pro-inflammatory microglia on 
brain damage after SAH, and studies aiming to combat this 
neuroinflammation and increase anti-inflammatory micro-
glial expression in SAH models have shown improved out-
comes [45, 46]. As such, a reduction in the pro-inflammatory 
microglial processes may be of benefit.

Studies show that CBD treatment inhibits LPS-induced 
microglial inflammation in vitro by reducing the produc-
tion and release of pro-inflammatory molecules (e.g., IL-1β, 
IL-6, TNF-α, and IFN-β), as well as upregulating genes 
(e.g., Trib3, Dusp1) that downregulate pro-inflammatory 
transcription factors such as NF-κβ [47–51]. Dos-Santos-
Pereira et al. [51] further identified the mechanism behind 
these in vitro effects as being predominantly receptor-inde-
pendent and mediated by inhibition of ROS production and 
the NF-κβ signaling pathway, as well as attenuating LPS-
induced increases in glucose consumption. As no studies 
were found to explicitly explore microglial polarization, 
CBD’s effects on many of the microglial differentiating 
surface markers were not identified. It has, however, been 
shown that CBD can modulate microglial activity. In rodent 
models of viral-induced multiple sclerosis, Alzheimer’s dis-
ease, and cerebral ischemia, CBD administration reduced 
microglial activation [52–54]. Interactions with cannabinoid 
and adenosine A2A receptors as well as modulation of intra-
cellular calcium were suggested mechanisms in the Alzhei-
mer’s model, though this may vary between pathologies [54]. 
Carrier et al. [55] identified CBD as a competitive inhibitor 
of adenosine, further suggesting CBD’s immunosuppressive 
actions in microglia are mediated by the enhancement of 
endogenous adenosine signaling. Other studies have dem-
onstrated that treatment of CBD in BV-2 microglial cells 
extensively alters gene expression (680 upregulated genes 
and 524 downregulated genes were described), while it was 
suggested that the immunosuppressive and anti-neoplastic 
effects of CBD occur by inhibiting the conductance of mito-
chondrial voltage-gated anion channel 1 (VDAC1), inducing 
altered BV-2 cell mitochondrial function and cell death [56, 
57].
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Adhesion Molecules

As the local inflammatory response follows SAH, the con-
centration of various adhesion molecules important for 
mediating phagocyte migration and infiltration increases, a 
process pivotal in propagating neuroinflammation. Vascular 
adhesion molecule 1 (VCAM-1) is an adhesion molecule 
that is upregulated by inflammatory cytokines (TNF-α, IL-1) 
and mediates leukocyte adhesion to vascular endothelium. 
Human studies have identified increased serum and CSF lev-
els days following SAH, and though an association between 
serum VCAM-1 levels and CV, DCI, or 3-month patient 
outcomes was not found, leukocyte adhesion remains a 
significant contributing factor towards post-SAH neuroin-
flammation [58, 59]. Mecha et al. [53] showed that CBD 
decreased the transmigration of leukocytes in a viral model 
of multiple sclerosis, partially by downregulating VCAM-
1. They found that administration at the time of infection 
produced the best anti-inflammatory results, and that the 
adenosine A2A receptor is partially involved in this process. 
CBD also decreased VCAM-1 levels in human brain micro-
vascular endothelial cells exposed to oxygen–glucose depri-
vation (OGD) in an in vitro model of BBB [60]. This effect 
was inhibited by a peroxisome proliferator-activated recep-
tor gamma (PPARγ) antagonist and reduced by a serotonin 
1-A receptor (5-HT1A) antagonist, suggesting CBD’s effect 
on VCAM-1 includes a mechanism mediated by the activa-
tion of these two receptors [60]. While there is evidence for 
CBD modulating 5-HT1A and PPARγ activities [30, 60–63], 
direct CBD binding has yet been reported. Molecular dock-
ing simulations of CBD binding to these receptors have 
been suggestive of direct interactions (data not shown), but 
remain to be experimentally substantiated [64]. Reduction of 
VCAM-1 and intercellular adhesion molecule 1 (ICAM-1) 
by CBD treatment has also been reported in an animal model 
of diabetes-induced cardiomyopathy, high glucose-induced 
endothelial cell barrier disruption, and in TNF-α exposed 
sinusoidal epithelial cell assays [65–67].

Cytokines

Interleukins

Interleukins are cytokines that are particularly important 
for modulating the immune response by acting on and 
being released by various immune cells. There is signifi-
cant evidence supporting interleukin release (i.e., IL-1, 
IL-6, IL-8) as critical mediators of the inflammatory 
response following SAH [34]. In fact, serum concentra-
tions of IL-1Rα, the alpha subunit of the IL-1 receptor, 
were significantly associated with 1-year poor outcome 
[68]. Mecha et al. [53] evaluated the effects of CBD in an 
astrocyte culture and reported anti-inflammatory effects 

partially due to the downregulation of IL-1β and TNF-α 
gene expression. When added to microglial BV-2 cells 
treated with LPS, CBD treatment decreased the produc-
tion and release of IL-1β and IL-6 [48]. There is also 
evidence of similar anti-inflammatory effects of CBD 
in vivo, as levels of interleukins were reduced following 
CBD treatment in a model of cisplatin-induced nephro-
pathic inflammation and hypoxia–ischemia [32, 69]. Pre- 
and post-treatment of CBD in a rat TBI model signifi-
cantly reduced IL-1β levels and mitigated BBB disruption 
[70]. Juknat et al. [47] revealed in their LPS-stimulated 
gene modification experiment that CBD reduces LPS-
induced upregulation of IL-1β, IL-1α, and IL-27 by 81%, 
68%, and 62%, respectively. Interestingly, the produc-
tion of the anti-inflammatory cytokine, IL-10, was also 
decreased by CBD administration in both in vitro and 
in vivo experiments [71]. While the mechanism of action 
remains unclear, CBD may act through various receptor 
types, such as cannabinoid receptor type 2 (CB2), 5-HT1A 
receptors, and adenosine A2A receptors [72, 73]. Despite 
findings demonstrating a role for CB2, it has been found 
that CBD has a low affinity for CB2 and may even act as 
an antagonist to CB2 [74, 75]. Additionally, CB2 expres-
sion is most prominent in B cells and natural killer cells 
located in the immune system (e.g., spleen), while it has 
only limited expression in the brain, indicating a need for 
more assessment on the potential role of CB2 in mediating 
CBD’s effects on interleukins [76].

TNF‑α

TNF-α is an acute phase pro-inflammatory cytokine that 
is believed to play a role in the development of cerebral 
vasospasm following SAH. Increased levels of TNF-α are 
present in the serum and CSF of SAH patients, and early 
elevations of serum levels have even been associated with 
worse outcomes [34, 77]. Both in vitro and in vivo studies 
have demonstrated CBD’s ability to decrease TNF-α con-
centrations [53, 69]. In LPS-treated retinal BV-2 cells and 
in ex vivo inflammatory models, CBD-inhibited TNF-α 
production is thought to be dependent on the adenosine 
A2A receptor [49, 55]. Malfait et al. [24] found that both 
CBD ex vivo administration in knee synovial cells and 
in vivo administration in mice reduced TNF-α release and 
LPS-induced levels, respectively. CBD also attenuated 
TNF-α production in isolated Kupffer cells and reduced 
apoptotic damage in hypoxia–ischemia, in part by down-
regulating TNF-α expression in the brain and CSF [65, 73, 
78]. Finally, studies have found that CBD administration 
at 1 h, 25 h, and 49 h following ischemia/reperfusion and 
30 min before and 6 h after induced TBI reduced serum 
and brain TNF-α levels, respectively [70, 79].
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High‑Mobility Box Group 1

High-mobility box group 1 (HMBG1) is a protein secreted 
by immune cells to mediate cytokine release by phago-
cytes, in particular microglia activation. HMBG1 levels 
are significantly increased in the CSF of SAH patients 
and are independently associated with poor outcomes and 
neuronal cell death [80]. Few studies have evaluated the 
effects of CBD on HMBG1, but those that have demon-
strate similar results. In a mouse model of middle cer-
ebral artery occlusion (MCAO), CBD treatment reduced 
neurological impairment following stroke by inhibiting 
myeloperoxidase (MPO) containing cell expression of 
HMBG1, inhibiting macrophage/monocyte expression of 
HMBG1, reducing HMBG1 plasma levels, and prevent-
ing glial activation [52]. A similar study found that CBD 
produced neuroprotection and reduced HMBG1 plasma 
levels in MCAO mice when administered 1 and 3 (but not 
5) days post-stroke [81].

Transcription Factors

NF-κβ is a protein complex important for modulating the 
immune response by regulating DNA transcription, cytokine 
production, and cell survival. It is also known to be sig-
nificantly upregulated following SAH [34]. CBD treatment 
reduces NF-κβ activation in animal models of hepatic 
ischemia/reperfusion and diabetes [65–67, 79]. When LPS 
is applied to activate microglial BV-2 cells in vitro, CBD 
administration upregulates Trib3, a negative regulator of 
NF-κβ, thereby reducing the activity of the NF-κβ pathway 
[47, 48]. It was also shown that CBD reduces NF-κβ activa-
tion by partially reversing the LPS-induced degradations of 
IRAK-1 and the downstream signaling protein and NF-κβ 
inhibitor, Iκβ [48].

The Janus kinase (JAK) and signal transducer and activa-
tor of transcription (STAT) protein pathway is a cascade of 
interactions that transduce signals from the cell surface that 
modulate gene/protein expression in response to extracel-
lular cytokine/interferon binding. It has been observed that 
therapeutic activation of the JAK1/STAT3 pathway was pro-
tective against EBI following SAH [82]. While there are few 
reports, studies do show CBD is able to regulate this path-
way. Juknat et al. [47] report that CBD upregulated STAT3, 
a transcription regulator with anti-inflammatory roles in 
macrophage and neutrophil activity, in LPS-stimulated BV-2 
cells [48]. They also found CBD decreased the activation 
of STAT1, a key molecule in the interferon-β (IFN-β) pro-
inflammatory pathway [48]. Others found that CBD attenu-
ated LPS-induced upregulation of STAT1 (− 25%), STAT2 
(− 14%), Socs3 (− 59%), and Cish (− 59%), all of which are 
genes involved in the JAK/STAT pathway [47].

Vascular Effects

Approximately half of SAH patients will experience CV 
in the days following aneurysm rupture, and this is one of 
the major reasons for the long in-hospital stay of all SAH 
patients. It is unclear why some patients develop vasospasm 
while others do not; evidence suggests the inflammatory 
response that occurs following SAH (as discussed above) 
may be a contributing factor. However, a number of other 
factors control vascular function, and CBD has been shown 
to effectively regulate some of these. A summary of the 
reviewed studies that demonstrated CBD’s vascular effects 
is provided in Online Reference 2 (Table OR2).

Hemodynamics and Calcium

The release of reactive oxygen species and oxyhemoglobin 
following a bleed contributes to hemodynamic stress 
and vascular effects, such as CV, by altering the expres-
sion of calcium channels and increasing intracellular cal-
cium [83–85]. Ishiguro et al. [86] showed oxyhemoglobin 
enhances small cerebral artery constriction and voltage-
gated potassium channel (Kv) suppression acutely, while 
chronic exposure enhances the expression of the voltage-
dependent calcium channels (VDCC). They suggest the 
acute and chronic effects of oxyhemoglobin act synergisti-
cally to alter channel activity and increase intracellular cal-
cium levels. In a study using hippocampal cultures in high 
excitatory states, CBD reduces intracellular calcium and 
prevents calcium oscillations in a mitochondria-dependent 
manner [87]. CBD produced relaxation of the rat’s small 
mesenteric artery and retinal microvasculature in the set-
ting of endothelin-1-induced vasoconstriction via calcium-
dependent potassium (KCa) and calcium channels [88, 89]. In 
addition, CBD produced vasorelaxation of the femoral artery 
in a rat model of diabetes by enhancement of cyclooxyge-
nase (COX) activity, leading to the production of vasodilator 
prostanoids acting at the EP4 receptor [90]. Together, these 
data suggest CBD acts to restore calcium homeostasis and 
production of vasodilatory factors under pathological condi-
tions, which indicates CBD may reduce the development of 
CV following SAH.

Ischemia

As one of the devastating processes involved in SAH patho-
physiology, ischemic damage often occurs both early after 
ictus as a result of increased intracranial pressure (ICP), 
decreased cerebral perfusion pressure (CPP), and decreased 
cerebral blood flow (CBF), as well as sub-acutely in the 
context of DCI. Contrasted to the abrupt cessation and 
restoration of CBF seen in ischemic strokes that can cause 
ischemia/reperfusion (I/R) injury, SAH has a more delayed 
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ischemic and reperfusion process that has not been described 
to cause I/R injury. However, transient global cerebral 
ischemia, commonly caused by cardiac arrest and SAH, 
does result in similar pathophysiological changes in cerebral 
microcirculation, including vascular constriction, increased 
inflammation, BBB disruption, thrombus formation, and cell 
death [91]. Τhis distinction is of particular importance to this 
review since many of the referenced articles used ischemic 
stroke models, while no studies were found to explore SAH.

CBD displays the promising potential of protecting 
against ischemia. In MCAO mouse models, both pre- and 
post-ischemic administration of CBD was shown to reduce 
infarct size and improve neurologic scores, functional defi-
cits, and survival rates [52, 81, 92, 93]. A therapeutic win-
dow of within 3 days post-insult was described in one study 
[81]. Intravenous administration of CBD before reperfusion 
protects against acute myocardial infarction in rabbits fol-
lowing 90-min coronary artery occlusion/24-h reperfusion 
[94]. CBD also produced cardioprotective effects in rats 
subjected to myocardial ischemia/reperfusion by reducing 
ventricular arrhythmias and attenuating reperfusion-induced 
infarction [95]. Interestingly, a separate study confirmed 
those results and suggested that CBD actions are medi-
ated by the activation of the adenosine A1 receptor, since 
antagonizing this receptor inhibited the CBD response [96]. 
Since patients are at increased risk of both thrombotic and 
hemorrhagic events following SAH, specific considerations 
are made when deciding which therapeutic agents are used. 
Of importance, CBD was not associated with induction of 
thrombosis or platelet activation when studied in isolated 
platelets in vitro [97].

Neuroprotective Effects

The term “early brain injury” (EBI) has been used to 
describe the mechanisms of acute neurologic deterioration 
after SAH, which includes cell death, cerebral edema, and 
neuronal dysfunction [98]. These mechanisms can lead to 
long-term complications such as memory impairment, epi-
lepsy, neuropsychiatric disturbances, neurocognitive dys-
function, and focal deficits [99]. The mechanisms that lead 
to EBI remain unclear, but increased neuronal dysfunction 
and death are observed throughout the brain following SAH. 
Identification of a therapeutic that reduces cell death would 
provide great benefit to patient outcome and long-term qual-
ity of life. A summary of the neuroprotective effects of CBD 
is provided in Online Reference 3 (Table OR3).

Excitotoxicity

Excitotoxicity, considered the main toxic mechanism in 
hypoxic-ischemic (HI) brain injury, occurs when metabo-
tropic and ionotropic glutamate receptors are excessively 

activated with associated intracellular calcium influx via 
overstimulation of N-methyl-D-aspartate (NMDA) gluta-
mate transporters [100], leading to neurotoxicity and cell 
death. Excitotoxicity can occur within minutes to hours fol-
lowing SAH, and studies have associated glutamate concen-
trations in the CSF with the development of CV and DCI 
[101, 102]. In vitro administration of CBD to rat cortical 
neuron cultures exposed to toxic levels of glutamate was 
found to reduce glutamate neurotoxicity by 60%, an effi-
cacy which was significantly higher than the dietary anti-
oxidants ascorbate (vitamin C) and α-tocopherol [103]. 
CBD attenuated brain excitotoxicity in a pig model of HI 
by reducing glutamate levels and preventing an increase in 
the glutamate/N-acetylaspartate ratio [72, 73]. In contrast, 
CBD did not attenuate the increased levels of glutamate in 
a mouse model of MCAO, yet it provided neuroprotective 
effects by enhancing cerebral microcirculation and inhibi-
tion of myeloperoxidase activity in neutrophils [92]. Further 
studies will be necessary to determine if CBD’s positive 
effects on various forms of HI injury are mediated by limit-
ing glutamate release, activation of the glutamate receptors, 
or other mechanism(s). Nonetheless, the potential attenua-
tion of excitotoxicity by CBD may provide therapeutic ben-
efits in EBI pathology as well as later development of DCI.

Reactive Oxygen Species

The generation of reactive oxygen species (ROS) is believed 
to play a significant role in the pathophysiology of SAH. The 
release of oxyhemoglobin acutely after aneurysm rupture 
causes auto-oxidation to produce oxygen (O2

−) and hydro-
gen peroxide (H2O2), while also deriving ferrous catalyzed 
hydroxyl radicals that contribute to the increased concen-
tration of intracellular calcium [84, 104, 105], stimulating 
CV and thrombus formation. Furthermore, ischemia can 
induce mitochondrial dysfunction and the release of free 
electrons capable of forming O2

− and H2O2 [106], toxic oxy-
gen derivatives that induce oxidative stress. Breakdown (via 
superoxide dismutase) and binding (via iron chelators) of 
these reactive molecules have shown to be neuroprotective 
in SAH animal models by reducing oxidative stress, attenu-
ating lipid peroxidation, and preventing CV [107–110]. An 
important, innate pathway for modulating the concentration 
of extracellular ROS is glutathione-peroxidase (GSH-Px)-
catalyzed reactions, where glutathione (GSH) is used as a 
reducing agent for ROS. In experimental SAH models, GSH-
Px activity is reduced in the cortex 48 h following SAH, and 
increasing GSH-Px activity reduced EBI, oxidative stress, 
and CV development [111–113].

CBD is known to be a potent antioxidant via its ability to 
reduce the generation of ROS. In multiple mouse models of 
disease, CBD reduces the expression of superoxide-generat-
ing enzymes, attenuates NADPH oxidase mRNA expression, 
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decreases lipid peroxide proliferation, and reduces the gen-
eration of ROS [24, 67, 69]. In coronary artery endothelial 
cells, CBD attenuates high glucose-induced superoxide gen-
eration [66]. Although these models are not examining the 
brain, other studies have analyzed CBD’s effects on neurons 
and human brain endothelial cells. CBD exhibited a dose-
dependent attenuation of tert-butyl hydroperoxide–induced 
oxidative damage in neuronal cell cultures similar to that 
occurring in SAH pathophysiology [103]. Beyond reducing 
the generation of ROS and the expression of ROS-generating 
enzymes, CBD also provides antioxidant effects by modu-
lating the GSH-Px pathway. In both diabetic cardiomyopa-
thy and hepatic I/R models, CBD restores the pathologic 
decrease in GSH [67, 79]. In newborn HI pig brains, Pazos 
et al. [72] showed CBD reduced oxidative stress by prevent-
ing an HI-induced decrease in the GSH/creatine ratio and an 
increase in protein carbonylation. Taken together, CBD has 
reproducibly been shown to reduce ROS levels, which may 
prove beneficial following SAH.

Apoptosis

Death of brain cells, via apoptosis, necrosis, and autophagy, 
occurs early after SAH and significantly influences patient 
outcomes [114]. Caspases are a family of proteases that play 
important roles in programmed cell death and high serum 
concentrations may predict poor SAH patient outcomes 
and severity [115]. The presence of cleaved caspase-3, the 
catalytic activated form of the enzyme, is evident within 
10 min in an animal model of SAH in both vascular and 
parenchymal cells, increasing significantly more within 
24 h and peaking 2–3 days post-bleed [109, 114]. Inhib-
iting proteolytic cleavage activation of caspase-3 activity, 
as observed throughout the brain, reduces EBI, neuronal 
apoptosis, oxyhemoglobin-induced apoptosis, neurological 
deficits, and cerebral damage 24–48 h after SAH in animals 
[116–120]. This widespread apoptotic activity in the brain 
identifies a significant need for therapeutic intervention of 
apoptotic activity following SAH.

CBD has a demonstrated ability to reduce apoptotic 
activity during pathologic states, both in the brain and 
other anatomic locations. Abrantes De Lacerda Almeida 
et al. [121] evaluated CBD’s neuroprotective effects in a 
germinal matrix hemorrhage rodent model and found that 
intraperitoneal administration of CBD reduced astrocyte 
reactivity and the number of caspase-3 positive astrocytes. 
A germinal matrix hemorrhage is a type of neonatal intra-
ventricular hemorrhage (located near the lateral ventricles) 
that is anatomically close to, but distinct from, hemorrhages 
in the subarachnoid space. When administered for 11 weeks 
in diabetic mice with cardiomyopathy, CBD attenuated 
enhanced caspase-3 cleavage, caspase-3/7 activity, PARP 
activity, and DNA fragmentation [67]. CBD administered to 

cisplatin-induced nephrotoxic mice also reduced apoptosis 
as measured by caspase-3/7 activity and DNA fragmenta-
tion [69]. In hepatic I/R mouse models, CBD significantly 
reduced DNA fragmentation and the expression of cas-
pase-3, while increasing the expression of survivin protein, 
an inhibitor of caspase [65, 79]. Furthermore, CBD reduced 
caspase-9 expression in an in vitro model of HI, accompa-
nied by reduced neuronal cell death [73].

Discussion

Cannabidiol holds great potential for combatting several 
pathologies that occur following SAH. The multifaceted 
pharmacologic mechanisms of CBD involve antagonizing 
molecules that are important contributors to acute brain 
injury, CV with subsequent DCI development, chronic 
inflammation, and delayed neurologic deficits. We hypoth-
esize the anti-inflammatory effects of CBD are likely to be 
the most therapeutically beneficial in the potential treatment 
of SAH, as inflammation is a confounding factor in multiple 
aspects of disease pathology.

CBD is a unique anti-inflammatory agent, particularly 
in the setting of SAH, because of its diverse mechanism 
profile that combats inflammation by both directly attenuat-
ing the immune response and indirectly protecting against 
events that would later stimulate inflammation (i.e., oxida-
tive stress, apoptosis). Decreasing the expression of pro-
inflammatory cytokines will help attenuate ongoing local 
inflammation as well as the synthesis of endothelial adhe-
sion molecules and subsequent inflammatory cell infiltration 
into the brain parenchyma. These effects would be beneficial 
in preventing inflammation in the subacute phase of SAH 
since phagocyte infiltration is a part of the innate immune 
response that may contribute to early inflammation following 
SAH. In fact, recent studies have found appealing evidence 
of specific cytokines, most notably IL-1Rα, associated with 
poor patient outcomes following SAH, and large trials that 
target the IL-1 receptor are currently recruiting study partici-
pants [68, 122, 123]. The modulation of activated microglia, 
a known effect of CBD, may benefit both the acute phase by 
decreasing pro-inflammatory microglial activity and the sub-
acute/chronic phases by inducing anti-inflammatory activity, 
which may help attenuate DCI and apoptosis. Distinctive 
from an innate response, these cells promote the migration 
of adaptive immune T cells and antigen-presenting dendritic 
cells, which stimulate the immune response even further, 
creating a cycle of chronic inflammation. Although efforts 
to combat SAH by reducing inflammation with other immu-
nosuppressive agents have provided variable results [124], 
we believe that CBD’s anti-inflammatory properties along 
with its unique profile of other potentially therapeutic mech-
anisms may allow for more promising results. The specific 
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molecular targets that produce these effects as well as those 
that produce CBD’s neuroprotective and vascular effects in 
SAH pathophysiology are depicted in Fig. 1.

As we have described, there is considerable evidence to 
suggest CBD also has neuroprotective effects against cell 
death, excitotoxicity, and oxidative stress. These pathologic 
mechanisms begin to occur as early as minutes following the 
initial bleed in SAH due to early leakage of oxyhemoglobin 
out of the vasculature with concomitant ischemic damage 
to neurons. Ischemic neurons subsequently die and release 
intracellular contents, including glutamate, that predispose 
cortical depolarization and environmental stress. Free oxy-
hemoglobin undergoes oxidative changes as previously 
described that leads to further exacerbated environmental 
stress via free radicals, predisposes vascular cells to under-
going future CV, and increases the risk of microthrombus 
formation. These mechanisms are potential contributors 
to adverse patient outcomes. Early intervention with CBD 
may therefore provide neuroprotective effects against ΕΒΙ 
in SAH and secondarily reduce DCI by combating these 
early pathologies.

Development of DCI, often as a result of CV, in the 
days following SAH puts the patient at a significantly 
increased risk of morbidity and mortality. Current treat-
ments include the administration of the calcium channel 
blockers, nimodipine or verapamil. Nimodipine is the first 
line agent for patients presenting with vasospasm-induced 
ischemia, while verapamil is administered intra-arterially 
in the cerebral circulation for targeted treatment of DCI. 

CBD has been shown to regulate intracellular calcium con-
centrations, induce vasorelaxation in arteries, and protect 
BBB integrity via interactions with human brain micro-
vasculature endothelial cells. Microvascular involvement, 
particularly of arterioles, occurs in SAH; however, the 
studies used in this review that evaluated microvascular 
effects of CBD did so in vitro and did not evaluate the 
in vivo effects of CBD in these vessels. Unfortunately, 
the current understanding of how CBD affects neurovas-
cular tone in general is underdeveloped. Although both 
nimodipine and verapamil provide some benefits, they do 
not prevent DCI in all patients. As such, a therapeutic that 
acts through multiple mechanisms may prove more benefi-
cial or act synergistically to better enhance the vasculature 
effects of these drugs via intracellular calcium modulation. 
There are no identified drug interactions between CBD 
and nimodipine or verapamil; however, CBD has been 
shown to affect the activity of various CYP450 enzymes 
including CYP3A4, the hepatic enzyme most responsible 
for the first-pass metabolism of calcium channel blockers 
[125]. Because of this, future studies should look to evalu-
ate these potential interactions and, if pertinent, modify 
dosing regimens as needed. More so, CBD’s effects on 
CYP2C9 activity warrant administration considerations 
when co-administrating anti-epileptics for seizure proph-
ylaxis and in patients who present on warfarin and need 
acute reversal. Fortunately, these effects should not impact 
the administration of heparin for DVT prophylaxis as it has 
unique metabolism pharmacology.

Fig. 1   Potential molecular targets of CBD in SAH pathophysiology. 
Following a subarachnoid hemorrhage due to a ruptured aneurysm, 
a number of pathological changes occur (purple/red region), leading 
to cerebral vasospasm, delayed cerebral ischemia, and poor patient 

outcome. CBD’s potential effects to combat SAH (green region) are 
mediated by reversing or decreasing these pathologic changes (yellow 
bolts). A relative timeline of these pathologic changes is displayed at 
the bottom
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It is important to note that pre-morbid marijuana use iden-
tified by marijuana-positive urine drug screens was recently 
associated with stroke, DCI following aSAH, and possibly 
worse outcomes in patients with aSAH [126, 127]. These 
studies provide an alarming insight into the possible cer-
ebrovascular risk of consuming cannabis; however, CBD is 
only one of > 100 cannabinoids in marijuana, all of which 
have uniquely variable pharmacologic effects. More so, the 
findings have a degree of confounding due to potential con-
comitant tobacco smoking, and the patients were all physi-
ologically pre-conditioned with cannabis while having an 
abrupt halt in use following the insult. This sudden stop in 
exposure to the various components of cannabis could have 
then been what negatively influenced patient outcomes due 
to further alterations in physiologic homeostasis beyond what 
is induced by stroke, instead of the cannabis itself. It is there-
fore impossible to independently relate CBD to these find-
ings, and future studies should look to identify whether puri-
fied CBD given in a clinical setting carries this association.

There are several limitations associated with integrat-
ing these findings into subclinical and clinical trials. We 
provided multiple mechanisms by which CBD may poten-
tially provide therapeutic effects in SAH. However, we must 
address the plausibility that some of these effects, includ-
ing early modulation of vascular tone and modulation of 

microglial activity including the phagocytosis of free oxy-
hemoglobin, may not be therapeutic or may even be harmful. 
Animal trials with variable administration strategies should 
be performed to identify whether these effects occur, and 
if so, how to avoid them based on administration modifica-
tions (i.e., delayed treatment to avoid early vasorelaxation). 
This review also summarizes pharmacologic findings that 
span multiple study modalities and diseases. It is challeng-
ing to extrapolate findings from animal or in vitro studies 
and successfully integrate them to produce similar findings 
in humans, especially with a pathology as intricate as SAH. 
This becomes even more challenging when different pathol-
ogies are being evaluated, as was done in the current review. 
As no studies were found to date that used CBD in SAH, the 
current comparison was warranted, and this limitation even 
further supports the need for future studies to evaluate CBD 
in SAH models.

The studies discussed here use a wide range of CBD doses 
and routes of administration. Online References 1–3 indicate 
the dose and route of administration of CBD as reported in 
the cited literature. Effects observed may be due, in part, to 
the concentration and method of administration of CBD, 
both in vivo and in vitro. Table 1 provides a summary of 
the in vivo studies referenced in this article that specifically 
evaluate CBD’s effects on the brain. These articles provide 

Table 1   All referenced studies demonstrating CBD’s in vivo effects in brain-localized pathologies

Article Dosage Model Time/route of admin-
istration

Pathology being evalu-
ated

CBD molecular/cellular 
interactions & physi-
ologic effects

Hayakawa, 2008.52 0.1, 1, & 3 mg/kg Male ddY mice Before & 3 h after 
occlusion (i.p.)

Left MCA occlusion ↓HMBG1, ↓MPO, 
↓microglia activity

Mecha, 2013.53 5 mg/kg Female SJL/J mice 1–7 & 1–10 days post-
infection (i.p.)

Demyelination ↓VCAM, ↓TNF-α, ↓IL-
1β, ↓microglia activity

Martín-Moreno, 
2011.54

20 mg/kg C56/B16 mice Daily for 1 week and 
3 × /week for the next 
2 weeks after Aβ 
injection

Alzheimer’s disease ↓IL-6 mRNA, ↓cogni-
tive deficit

Pazos, 2013.72 1 mg/kg Newborn pigs 30 min after HI (i.v.) Hypoxia–ischemia ↓Glu/NAA ratio, ↓IL-1, 
prevented ↓GSH/cre-
atine ratio

Lafuente, 2011.78 0.1 mg/kg Newborn pigs 15 & 240 min after HI 
(i.v.)

Hypoxia–ischemia ↓TNF-α, ↓neuronal cell 
death

Hayakawa, 2009.81 3 mg/kg Male ddY mice Daily 1–14, 3–12, 
& 5–10 days after 
occlusion (i.p.)

Left MCA occlusion ↓HMBG1

Hayakawa, 2007.92 1 & 3 mg/kg Male ddY mice Right before, 3 & 4 h 
after occlusion (i.p.)

MCA occlusion ↑CBF, ↓MPO, no effect 
on excitotoxicity

Yokubaitis, 2021.93 0.3, 1, 3 mg/kg C57B/6 mice 1 h before and 24 h 
after induction

Cold light ischemia ↓infarct size, ↓microglia 
activity

Abrantes De Lacerda 
Almeida, 2019.121

1 mg, 10 mg, 10 mg/
kg

Wester rats Multiple groups; 
pretreatment, 1 h 
after induction, 
daily × 7 days

Germinal Matrix 
Hemorrhage

↓astrocyte reactiv-
ity, ↓apoptotic cells, 
↓caspase-3
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insight into the doses and routes of administration that have 
been typically used in previous in vivo CBD studies, which 
may be useful in future studies that aim to evaluate CBD’s 
in vivo effects in SAH and other CNS pathologies.

As we suggest in this review, future investigations into the 
effects of CBD in experimental models of SAH are needed. 
There is a variety of animal models of SAH currently avail-
able [128], and ex vivo and in vitro studies are utilized to 
evaluate the effects of SAH, blood products, compounds, 
etc., on isolated arteries and various brain cell types. A com-
bination of models will provide the best translatability of 
findings to clinical trials.

Conclusion

While controversy exists around the use of CBD as a thera-
peutic, we hypothesize CBD’s anti-inflammatory, vascular, 
and neuroprotective effects are all plausible mechanisms by 
which post-SAH critically ill patients may benefit. We sug-
gest further research on CBD administration be performed, 
specifically following SAH, to verify these findings and 
expand the knowledge of in vivo effects of CBD.
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