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Historical overview

The concept of heredity as a cause of deafness
gained acceptance in the last quarter of the
19th century.'? Politzer,®> writing in 1882,
stated that ‘“‘the most frequent causes of con-
genital deafness are: hereditary, including
direct transmission from the parents as well as
indirect transmission from forefathers and
marriage between blood relatives”. This state-
ment was based upon the work of Arthur
Hartmann whose studies were carried out
in the Berlin schools for deaf children.*’
Hartmann distinguished between direct trans-
mission of deafness from parent to child and
indirect transmission, in which he noted a high
level of consanguinity. This latter finding was
supported by Uchermann’s extensive study
of Norwegian schools for deaf children.S
Uchermann showed that consanguinity was
four times as high among the parents of deaf
children as among the parents of their nor-
mally hearing counterparts. Moreover, those
areas of Norway with the highest degree of
consanguinity were those with the highest pre-
valence of deafness.

The earliest known author to have recog-
nised that some forms of deafness may be
inherited was Schenck.” A century later
Zacchia, physician to the Pope, recommended
that deaf people be precluded from marriage in
view of the evidence that their children were
similarly afflicted.® Although Joseph Adams
distinguished between hereditary (dominant)
and familial (recessive) disorders, he was of the
view that deafness ‘‘is rarely if ever heredit-
ary”.?

In the mid-nineteenth century two men, of
diametrically opposed views, served to raise
otology from quackery to the level of credible
clinical discipline.’® Wilheim Kramer (1801-
1875) did not accept that deafness could be
inherited, although he did admit that deaf and
dumb children frequently had ‘““numerous deaf
mutes among their male or female cousins”.!!
In contrast, his eminent Irish contemporary,
William Wilde (1815-1876) (fig 1) identified
pedigrees with ““transmission of the disease by
hereditary taint” and distinguished between
these and pedigrees where ‘““‘too close consan-
guinity among the parents may be looked upon
as paramount”.!? Not only did Wilde thus
fundamentally identify autosomal dominant
and recessive inheritance of deafness, but he
further emphasised the excess of males among
congenitally deaf patients, much of which is
likely to be explained by the X linked form of

deafness.!> Thus, in the context of human
genetic disease, the three forms of Mendelian
inheritance had been documented by Wilde
more than a decade before Mendel published
his observations on peas in 1865.

Inheritance of deafness
Nowadays at least half of severe childhood
deafness in a community is attributed to gen-
etic causes,'* and the approximate prevalence
of genetic deafness has been calculated as 1 per
2000."” The spectrum of hereditary deafness is
broad and ranges from simple deafness with-
out other clinical abnormalities to genetically
determined syndromes of a more pleiotropic
nature in which deafness is one of a number of
clinically recognisable signs, together compris-
ing the syndrome. Approximately 30% of gen-
etically determined deafness is said to occur in
syndromic form and 70% in non-syndromic
form.'®

Overall the most common forms of genetic
deafness are the autosomal recessive forms,
accounting for >75% of cases.!* Autosomal
dominant inheritance accounts for a further 10

Figure 1 Sir William Wilde.
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to 20% of cases, and X linked inheritance for
2 to 3%.'7'® Deafness may also be a feature of
chromosomal aneuploidy'® or chromosomal
deletion, 2! as well as of mitochondrial in-
heritance? and of mitochondrially determined
predisposition to deafness inducing environ-
mental agents.?

Most available data on the subject of genetic
deafness concentrate on congenital or pre-
lingual deafness. Deafness of later onset is
frequently likely to reflect genetic factors but
precise reliable data are currently lacking.
Indeed epidemiological data on the prevalence
of hearing disorders in the population are only
now coming to hand following the first large
scale survey of this problem since 1947.2%
Early indications suggest that 15 to 20% of the
population have a significant hearing impair-
ment (>25dB, average 0-5 to 4kHz, better
ear).”” While otosclerosis is recognised as a
genetically determined cause of post-lingual
deafness,?®? as are several syndromic forms of
deafness, such as Alport’s disease, Alstrom’s
disease, and Refsum’s disease, other genetic
aspects of aetiological importance in post-
lingual deafness remain to be identified.

Embryology of the inner ear

Most of the published data on genetic deafness
relate to pathological and histopathological
studies in man and in other mammals. Before
attempting to interpret these or draw any con-
clusions relevant to human genetic deafness, it
is essential to be conversant with the basic
sequence of events involved in the embryology
of the cochlea.

The membraneous inner ear is of ectoder-
mal derivation. At three weeks an ectodermal
thickening, the otic placode, appears on the
lateral surface of the head. Subsequently the
placode invaginates, forming the otic pit,
which grows downwards into the underlying
mesoderm. As the surface ectoderm closes
over the otic pit, the otic cyst is formed, the
process being complete by about four weeks.
From the otic cyst develop two primitive
structures, the dorsal (vestibular) and ventral
(cochlear) parts. At six weeks the vestibular
part forms two pouches, a dorsal pouch from
which will develop the two vertical semicircu-
lar canals and a lateral pouch from which will
develop the lateral semicircular canal. By the
nine week stage the basis of the vestibular
system, the utricule and semicircular canals,
are well established, but the cochlear system
lags behind.*3!

At about this time the mesoderm enveloping
the developing otic cyst becomes cartilaginous
and ossification starts at approximately 16
weeks, being completed by the third trimester.
Meanwhile the cochlear system starts to de-
velop and, by 12 weeks, the two and a half
turns are discernible with further development
of the membraneous elements of the cochlear
system continuing into the second trimester.

The fundamental importance of normal
neural tube development for correct otic cyst
development in the mammal has long been
appreciated.’”3* More recent evidence
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suggests that melanocytes, derived from the
neural crest, have an important role in the
normal development of the stria vascularis and
endocochlear potential within the membran-
eous system of the cochlea,”® a normal endo-
cochlear potential being of crucial importance
in the physiology of hearing.

Bearing these considerations in mind, it is
hardly surprising that the phylogenetically
older vestibular system appears more resistant
to disease than the later developing cochlea. It
is the cochlea which is the more sensitive to
rubella, measles, and mumps damage and
equally it is the cochlea alone which is the seat
of most genetically determined hearing loss.

Temporal bone pathology in deafness
Four main classes of abnormality have been
described as a result of temporal bone studies
in deaf human subjects®*3”: (1) Michel type,
characterised by total underdevelopment of
the inner ear; (2) Mondini type (more correctly
Mundini*®), in which the cochlea appears as a
single basal turn with the rest of the cochlea
comprising a single sac, as if to suggest inter-
rupted development. Vestibular structures
may be similarly underdeveloped, though
several cases are known where this abnormal-
ity was accompanied by a normal vestibular
labyrinth®*; (3) Bing-Siebenmann type, in
which the bony labyrinth is well formed but
the membraneous labyrinth is not developed;
(4) Scheibe (cochleosaccular) type, in which
the underdevelopment is restricted to the
membraneous cochlea and saccule only, but
the vestibular part of the ear is functional.

The latter is thought to be the most common
form of abnormality in deafness of genetic
origin. However, no direct relationship exists
between pathological class and mode of in-
heritance.

Correlations between temporal bone
pathology and genetic deafness

As they involve abnormalities of bone, Michel
and Mondini types may be diagnosed radiolo-
gically.® Although some residual hearing, par-
ticularly in the low frequencies, has been
documented in association with the normal
basal cochlear coil of the Mondini deformity,*
this is unlikely to be a universal finding.*"*
The Mondini deformity is rare in genetic
forms of deafness, but is seen in the autosomal
dominant condition of branchio-oto-renal syn-
drome and in the autosomal recessive con-
dition of Pendred’s syndrome. Michel abnor-
mality is not a consistent finding in genetic
deafness. ,

Indeed, as few as 20% of congenitally deaf
patients have radiologically detectable abnor-
malities of the inner ear.* For these reasons
detailed radiological examination of the ear is
difficult to justify in all cases of genetic deaf-
ness. Cochlear lesions apart, the other inner
ear lesions which benefit from CT scans of the
cochlea are those in which congenital abnor-
malities of the labyrinth are associated with
cerebrospinal fluid (CSF) fistulae. Clinically
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such labyrinthine abnormalities present as
CSF otorrhoea, CSF rhinorrhoea, recurrent
episodes of meningitis, or stapes ‘gusher’ at
surgery.®* The value of CT scanning in X
linked deafness associated stapes ‘gusher’ has
been shown*® and similar investigation is likely
to be of predictive value in preoperative identi-
fication of other patients at risk of this surgical
complication.?!

Temporal bone studies in human subjects
with genetic deafness indicate that lesions con-
fined to the membraneous cochlea are the most
common form of pathology** and these are
generally of the Scheibe type. Accordingly,
blanket cochlear CT scanning in genetic deaf-
ness is likely to give a disappointing yield.

Correlations between genetic deafness
in man and animal models

More than 70 different mutations are known to
affect the inner ear of the mouse* and 151
forms of inherited deafness have been docu-
mented in man by drawing distinctions, some
more justified than others, between different
pedigrees.? Many of the inner ear abnormalit-
ies observed in mice appear to be grossly
similar to abnormalities documented in man
and suggest that the responsible mouse muta-
tions are candidates for specific forms of gen-
etic deafness in man. Unlike colleagues work-
ing with mice, the human geneticist has rarely
been in a position to relate specific abnormalit-
ies to the effects of a particular gene. The
number of human pedigrees with known inner
ear pathology in all affected members is small
and when families whose deafness is ostensibly
similar on clinical grounds differ in respect of
temporal bone pathology, differentiation tends
to be made between them on this basis. Mouse
studies have, however, shown that the same
gene may produce a wide variety of clinical and
pathological abnormalities.*’*® This probably
reflects the genetic background factors against
which the gene is being expressed. For this
reason attempts to relate specific inner ear
abnormalities on a one to one basis to particu-
lar single gene causes of deafness in man are
liable to be disappointing and misleading.
Moreover, this observation is important in
understanding the limitations of phenotype
studies as a guide to shared genotype in the
study of human deafness.*

Notwithstanding the limitations of the rela-
tionship between inner ear abnormalities and
specific genes in man, it has been possible to
define certain similarities between human her-
editary inner ear abnormalities and those in
mice. Broadly speaking such abnormalities in
the mouse may be of three distinct types.*

(1) Morphogenetic, which includes all cases
of structural abnormality and corresponds to
the Michel and Mundini defects in man. As
with Michel and Mundini abnormalities in
man, asymmetry is a frequent finding between
the two ears in affected cases.

(2) Neuroepithelial, characterised by a
primary organ of Corti abnormality and a
variable degree of vestibular degeneration. No
strict corresponding form is described in the
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classification of temporal bone findings in
man.

(3) Cochleosaccular, characterised by a
primary lesion involving the stria vascularis
and corresponding to the Scheibe abnormality
in man (fig 2).

There may be certain benefits from an
interspecific comparative system such as this.
Classifying animal models of deafness in this
manner may facilitate the future selection of
appropriate models for study of comparable
forms of genetic deafness in man. It also de-
fines a better framework for classifying tem-
poral bone findings in human cases. Although
the limitations of this approach are formidable,
nevertheless expanding our knowledge in this
area may help identify mechanisms common to
both species which are important in the de-
velopment of normal hearing and genetically
determined aberrations thereof. Other avenues
of insight into these same mechanisms are
likely to be provided by mouse mutants which
are not thought to be murine counterparts of
human hearing disorders but rather serve as
models of interrupted developmental biology
of the ear. Study of such mutants should
elucidate several of the factors important in
normal cochlear development.

Clinical genetics and deafness

Given the aetiological heterogeneity of genetic
deafness and the complexity of possible
mechanisms underlying this heterogeneity, it
is not surprising that genetic counselling for
deafness continues to be empirical. The stat-
istical basis of such counselling in regard to
deafness has been authoritatively reviewed
elsewhere.’’->* Perhaps the main role of the
clinical geneticist is in attempting to recognise
syndromic forms of deafness and provide ap-
propriate counselling for other family mem-
bers on the basis of the diagnosis. Diagnostic
possibilities may be suggested by the history
and clinical examination which may be further
refined by reference to an authoritative data-
base.>* Frequently special procedures may be
required to confirm a syndrome diagnosis and
reference to a guide to the appropriate invest-
igation of isolated cases of hearing loss may be
helpful.*5¢

Perhaps the area of greatest confusion re-
lates to the value of the audiogram not only in
relation to phenotype definition but also as a
screening measure for gene carriers. Several
different forms of non-syndromic genetic deaf-
ness have been delineated on the basis of
audiogram findings?* but the validity of these
findings as a guide to shared genotype remains
unproven. Indeed the only study which has
evaluated the audiogram in affected members
of a number of families with apparently the
same form of non-syndromic genetic deafness
has shown no reliable correlation between
audiogram and genotype.*’

Syndrome related autosomal recessive forms
of deafness have been said to be characterised
by a preferential high tone loss of hearing.'® In
contrast the hearing loss in X linked recessive
non-syndromic deafness has been said to give a
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Neuroepithelial degeneration

. Stria normal at first

. Primary organ of Corti
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. Endocochlear potential
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Cochleo-saccular degeneration

. Reissner’'s membrane in place 1. Reissner’'s membrane collapsed

2. Primary strial abnormality

3. Damage to organ of Corti,
occasional signs of fluid imbalance

4. Frequent collapse of saccule, while
rest of vestibular labyrinth is normal

5. Variable expression, often leading
to asymmetry

6. Endocochlear potential probably
absent

Figure 2 Cochlear duct sections showing normal animal (top), neuroepithelial
degeneration (bottom left), and cochleosaccular degeneration (bottom right).

flat audiogram.!” However, X linked deafness
appears to be a heterogenous disorder®®> and
general remarks as to audiogram pattern are
unlikely to be helpful. One way of evaluating
the audiogram is to look at the consistency of
pattern and degree of hearing loss in a single
group of patients likely to be genetically homo-
geneous. Such a group is Pendred’s syndrome,
in which condition audiogram involvement
may vary from profound hearing loss through
all frequencies to minimal loss of function.'®
Other authors have evaluated the audiogram as
a means of discriminating between aetiologic-
ally different forms of deafness but have not
found it a reliable tool.®®

With regard to the carrier state in autosomal
recessive deafness there have been several
studies attempting to identify audiological
characteristics of such patients. Wildervanck®
performed audiograms on normally hearing
consanguineous couples who were the parents
of at least two deaf children and could not find
any abnormality in the parental audiograms. A
subsequent report indicated ‘peculiarities’ of
hearing in almost all parents of children with
presumed autosomal recessive deafness.’? It
was unclear whether these ‘peculiarities’ were
sufficiently similar in all cases to form the basis
of a carrier detection test. Similar techniques
of Bekesy audiometry and stapedial reflex ex-
amination have been used by other authors but
without observing significant findings.®
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The benefits of audiological tests as an aid to
genetic counselling in autosomal dominant
non-syndromic deafness are better docu-
mented. In general, dominant deafness is said
to be milder than recessive.!® Reduced penet-
rance and variable expressivity of autosomal
dominant non-syndromic deafness genes are
well documented!® and, for this reason, audio-
grams of first degree relatives of index cases are
usually undertaken, although the sensitivity
and specificity of such testing is open to ques-
tion.

Genetic counselling in deafness

In the USA 90% of deaf adults marry another
deaf person and, in view of this assortive
mating, genetic counselling may often be ap-
propriate to persons whose deafness may be
non-genetic in aetiology. Perhaps nowhere in
genetic counselling is an appreciation of cul-
tural factors said to be more important.®>%
Many deaf patients have no desire to be cured
and are hostile to any suggestion that the aim
of counselling is to prevent deafness. Thus, the
counsellor may find his/her personal views
being challenged by the preference of a deaf
couple to have deaf children. These cultural
considerations aside, several other general
phenomena have been observed in relation to
genetic counselling in deaf communities.
Questionnaires have been successfully used to
elucidate aspects of medical, pregnancy, and
family history which may influence counsel-
ling. Limited knowledge of family history is
frequently observed and may necessitate con-
tacting other family members, with the pro-
band’s consent, for relevant details. Moreover
the collection of data relevant to counselling
may be limited by educational and communi-
cation factors.

These phenomena have been well docu-
mented in the USA as a result of the genetics
service programme established in 1984 at Gal-
ludet University, an institution for deaf stu-
dents. Though valuable in highlighting factors
unique to this population which would not be
observed otherwise, it is unclear how generally
applicable they may be to less educationally
privileged, less culturally aware groups of deaf
people elsewhere. Similar studies outside this
highly selective group are needed to facilitate a
balanced overview of the more general situ-
ation.

Molecular genetics and deafness

Several methods of investigating genetic deaf-
ness have been outlined. Irrespective of
whether this group of conditions is approached
clinically, histologically, radiologically, audio-
logically, or by means of animal model correla-
tion, the problem of non-specificity remains
unsurmounted. In terms of applying linkage
analysis and other tools of modern genetics to
deafness this non-specificity in the clinical and
investigative findings of conditions which are
genetically distinct means that it has not been
possible to define a genetically homogeneous
patient group. Accordingly the strategies
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which have met with such spectacular success
in other human genetic diseases have had their
impact limited to well defined clinical subtypes
of genetic deafness, such as Waardenburg syn-
drome,*®® Usher syndrome,®” % Treacher Col-
lins syndrome,® and X linked deafness.”

Comparative gene mapping represents one
such tack. Knowledge of the chromosomal
location of a deafness causing mouse mutation

may be exploited to predict the likely chromo-

somal location of the human homologue.” The
identification of loci in mice responsible for

mutations whose effects are confined to the

auditory system offers a possible basis for
genetic analysis of non-syndromic deafness in
many.”>”> Homologous human genes may then
be isolated and evidence of their possible
involvement in deafness sought. While this
approach to overcoming the problems of

heterogeneity may seem cumbersome, it is

clear that innovative approaches are required if

progress in identifying the genetic basis of
non-syndromic deafness is to be made.
Nevertheless, the technology of molecular

genetics is the most sophisticated method yet
applied to genetic deafness and must, with
imaginative use, represent the best chance of
resolving the genetic complexities inherent to
the group of conditions.

The author wishes to acknowledge the Well-
come Institute Library, London, for fig 1. Fig
2 is reproduced by permission of Dr Steel and
the Editor of Archives of Otolaryngology. Help-
ful comments on the manuscript were received
from Dr Dafydd Stephens and Dr Michael
Baraitser.
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