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Abstract
Objective. Adaptive radiotherapyworkflows require imageswith thequality of computed tomography
(CT) for re-calculation and re-optimisationof radiationdoses. In thisworkweaim to improve the quality
of on-board conebeamCT (CBCT) images for dose calculationusingdeep learning.Approach.We
propose anovel framework forCBCT-to-CT synthesis using cycle-consistentGenerativeAdversarial
Networks (cycleGANs). The frameworkwas tailored forpaediatric abdominal patients, a challenging
applicationdue to the inter-fractional variability inbowelfilling and small patientnumbers.We introduced
to thenetworks the concept of global residuals only learning andmodified the cycleGAN loss function to
explicitly promote structural consistency between source and synthetic images. Finally, to compensate for
the anatomical variability and address thedifficulties in collecting large datasets in thepaediatric
population,we applied a smart 2D slice selectionbasedon the commonfield-of-view (abdomen) to our
imagingdataset. This acted as aweakly paireddata approach that allowedus to take advantageof scans
frompatients treated for a variety ofmalignancies (thoracic-abdominal-pelvic) for trainingpurposes.We
first optimised theproposed framework andbenchmarked its performanceon adevelopment dataset.
Later, a comprehensive quantitative evaluationwasperformedonanunseendataset,which included
calculating global image similaritymetrics, segmentation-basedmeasures andproton therapy-specific
metrics.Main results.We found improvedperformance for ourproposedmethod, compared to abaseline
cycleGAN implementation, on image-similaritymetrics such asMeanAbsoluteError calculated for a
matched virtualCT (55.0±16.6HUproposed versus 58.9±16.8HUbaseline). Therewas also ahigher
level of structural agreement for gastrointestinal gas between source and synthetic imagesmeasuredusing
thedice similarity coefficient (0.872±0.053proposedversus 0.846±0.052baseline).Differences found in
water-equivalent thicknessmetricswere also smaller for ourmethod (3.3±2.4%proposedversus
3.7±2.8%baseline).Significance.Ourfindings indicate that our innovations to the cycleGANframework
improved the quality and structure consistency of the syntheticCTs generated.

1. Introduction

Abdominal irradiation is commonly used in the treatment of young patients with a variety of tumours, including
abdominal neuroblastoma andWilms’ tumour (Bölling et al 2010). The success of radiotherapy relies on the
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accurate delivery of radiation dose to the target volumewithminimal toxicity to surrounding normal tissues.
Anatomical variations throughout the course of radiotherapymay lead to reduced tumour coverage and increased
radiation tohealthy tissues, thereby affecting the efficacy of radiotherapy (Berger et al 2017). Although approaches
to adapt radiotherapyplanshave been extensively researched in the head andneck, andpelvis for adult populations
(Ghilezan et al2010, Sonke andBelderbos 2010, Thörnqvist et al2013,Morgan andSher 2020, Tocco et al2020),
fewer studies have exclusively focused in abdominalmalignancies (Liu et al2012, Schlaich et al 2013) especially in
younger populations (Laskar et al 2015,Guerreiro et al2019). The abdominal and lower abdominal region is
particularly susceptible to daily anatomical variations due to thepresence of organswith variablefilling, including
the gastrointestinal (GI) tract, bowel, bladder, and rectum (Berger et al2017). GI air volumeswere shown to vary by
up to±80% throughout radiotherapy in adult pancreatic cancer patients (Estabrook et al 2018). In childrenwith
abdominal cancers, averageGI air volumechanges of 99.4± 126.9 ml (range: 216.7–454.7ml)have been reported
(Guerreiro et al2019) aswell as evidence that younger children under anaesthesia are themost predisposed to
variability (Lim et al 2021, Taylor et al2021). Thepresence or absenceofGI air is reflected in substantial local tissue
density changes.Density changes are particularly detrimental to protonbeam therapy (PBT) treatments, a
favourable radiationmodality in abdominal paediatric cancer due to its tissue-sparing capabilities andpotential for
reducing long term side effects (Guerreiro et al2019, Lim et al 2021, Taylor et al2021). A study on adult cervical
cancer patients receiving PBT found correlations betweendosedegradation andvolume, thickness, andwidth of
bowel gas (Berger et al 2017). The impact ofGI air variationon radiotherapyplan robustnesswas shown tobemore
pronounced inPBT than x-ray intensitymodulated arc therapyplans in both paediatric and adult cancers
(Mondlane et al2017,Ashida et al2020, Lim et al2021).

Image-guided radiotherapy (IGRT) technologies, such as cone-beam-CT (CBCT), provide information of
the patients’ anatomy immediately before treatment. IGRT enables themonitoring of patient’s anatomical
variations betweenwhen their planningCTwas acquired and subsequent treatment fraction delivery sessions,
and potentially allows one to adjust the treatment to the observed anatomical variations (Nazmy et al 2012). A
limitation to the direct use of CBCT in adaptive pathways is that the imaging quality of CBCT scans is considered
significantly inferior to the planningCT scans in terms of contrast-to-noise ratio and prevalence of imaging
artefacts such as streaks. In abdominal scans, streak artifacts can be attributed (amongst others) to x-ray scatter
and internalmotion (Siewerdsen and Jaffray 2001, Peroni et al 2012). This has led to growing interest in
developingmethodology tomake the quality of CBCT scans comparable to that of CT.

Themost established technique to generate syntheticCTs (synCT) scanswith the imagequality ofCT is basedon
deformable image registration (DIR) (Giacometti et al2020), inwhich theplanningCT is deformed tomatch the
CBCT’s geometry (Peroni et al2012,Veiga et al2014, Landry et al2015). Themaindisadvantage ofDIR-based
approaches is that they cannot properly account fornon-deformable changesbetween consecutive scans, such as
collapsing lungs or variableGI air volumeand location. Post-processingmethodsmaybepairedwithDIR to
minimize gross anatomicalmismatch to a certaindegree (Veiga et al2016).MostDIRalgorithms alsodonotmeet
speed requirements to beusable in real-time applications, particularlywithoutGPU implementations (Shams et al
2010, Fu et al2020). An alternative approach is todirectly apply scattering-corrections toCBCT images (Mainegra-
Hing andKawrakow2010, Park et al2015,Hansen et al2018). Furthermore, in recent years deep learning (DL)
becamean emerging and activefieldof research formedical image synthesis tasks such asCBCT-to-CT translation
(Yu et al2020,Wang et al2021). Compared to classical approaches, data-drivenmethodshave shownencouraging
performancemetrics and canbe applied tounseendatasets quickly.Theirmaindisadvantages are the significant
efforts required for appropriate data collection and its curation (Wang et al2021).

There is awide breadth of previouswork on usingDL in image-to-image translation. Themost popular
application of such task isMRI-to-CT conversion (Florkow et al 2020,Maspero et al 2020a). There are also
successful implementations ofDL-based solutions for PET attenuation correction (Ladefoged et al 2018) andCT
synthesis fromCBCT in the context of adaptive radiotherapy (Kurz et al 2019, Liu et al 2020). DifferentDL
frameworkshave been proposed for CBCT-to-CT conversion, such as pairedUNets (Kida et al 2018, Landry
et al 2019, Li et al 2019a, 2019b, Chen et al 2020), paired pix2pix generative adversarial networks (GANs) (Zhang
et al 2021b), paired cycle-consistent GANs (cycleGANs) (Harms et al 2019, Eckl et al 2020, Liu et al 2020, Zhang
et al 2021b), and unpaired cycleGANs (Kurz et al 2019, Liang et al 2019, Gao et al 2021).While allmethods use a
data-driven approach tomap image intensities between different imagingmodalities, unpaired cycleGANs
frameworks are of particular interest as they do not require pairs of datawith structural correspondence for
training but still offer good synthesis performance. This is of great interest in the context of CBCT-to-CT
synthesis, where the simultaneous acquisition of scans frombothmodalities is unfeasible in practice, and using
scans acquired closely in time reduces but does not eliminate anatomicalmismatch. Previous studies
implementing paired approaches usedCTs andCBCTs acquired on the same day and appliedDIR to
compensate for residual anatomicalmismatch resulting fromdifferences in the patient’s position in the different
scanners and potential internal anatomical changes (Chen et al 2020). These datasets still do not represent ideally
paired examples andmay introduce uncertainties in the training and evaluation of the networks. Additional
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challengesmust also be consideredwhen applyingDLmethodologies to younger populations. IGRTprotocols
that include regular CT orCBCT imaging are rarely used in children’s treatments (Hua et al 2019) due to
concerns with the long term side effects associatedwith diagnostic radiation doses (Alaei and Spezi 2015).
AcquiringCT andCBCT so close in time is not routinely performed in adult populations and even harder to
justify in younger patients, limiting the amount of data available for training in amethodologywhose
performance is well-known to benefit from larger datasets (Shorten andKhoshgoftaar 2019, Brown et al 2020).

Promising results were reported by several groups in the application of unpaired cycleGANs for CBCT-to-
CT synthesis (Kurz et al 2019, Liang et al 2019,Maspero et al 2020a,Uh et al 2021). However, there are still
challenges in achievingCT-like quality in synthetic images and completely removingCBCT artefacts. Awell-
known limitation of unpaired cycleGANs inmedical image synthesis is that structural consistency between
source and synthetic images cannot be guaranteed, leading to incorrect anatomical information in the synthetic
images. Therefore, the original cycleGAN framework is not well suited for CBCT-to-CT synthesis without
addressing this limitation.

Data from younger cohorts require techniques specifically developed to account for the variability found in
this patient group due to disease, presentation, growth, and development from young age to adulthood.
Paediatric patients are a very diverse population, which likely reflects into amore challenging learning task
(Ladefoged et al 2018, Florkow et al 2020,Maspero et al 2020b). Childhood cancer is also a rare disease,making it
more difficult to gather data from large, representative cohorts across all age groups forDL applications
(Guerreiro et al 2019). CBCT imaging frequencymay vary greatly between different hospitals and types of
radiotherapy used, often at the discretion of the treating physician (Nazmy et al 2012). Low yearly patient
numbers, combinedwith challenges in collecting imaging datasets in children,make the availability of large
datasets scarce, particularly for single institutions (Florkow et al 2020). To address limitations in data available
for disease specific cohorts, combiningmultiple datasets fromdifferent anatomical sites has been previously
proposed; however, this has been achieved simply by including awell-balanced number of cases per patient
group in training and evaluation (Maspero et al 2020a,Uh et al 2021). Transfer learning from adult cohorts is a
viable option as well (Ladefoged et al 2018). However, there are intrinsic differences in the paediatric cancer
population in comparisonwith adults that will likely affectmodel generalizability. Differences include treatment
strategies, such as the commonuse of shunts and anaesthesia, and the inherent anatomical differences across
developmental stages such as variation in composition and shape of tissues and organs (White et al 1991, Bolch
et al 2020).

Key challenges remain that impede the usability of cycleGANs for CBCT-to-CT synthesis in clinical settings.
These challenges include how to ensure the preservation of structural consistency in the synthetic images while
removing unwanted artifacts, how to achieve large and representative sample sizes for training— particularly in
scarce data settings (such as paediatrics), and how to define adequate ground-truths for the validation of novel
synthesismethodswhen paired data is not available. In this workwe propose and evaluate a novel framework for
CBCT-to-CT synthesis tailored for paediatric abdominal patients, a challenging application both due to inter-
fractional variability in gastrointestinal filling and small patient numbers. This study focuses on exploring
improvements to the original cycleGAN framework and training data selection techniques aiming to addresses
the outlined challenges in the proposed application. Preliminary results of this studywere presented in
conference publications (Szmul et al 2021a, Szmul et al 2022). The key novel aspects of our framework are: (1)
application of a global residuals only learning approach, (2) incorporating structural consistencymetrics to
promote anatomical plausibility of synthesized images, (3) a novel smart data selection process to efficiently
combine data frommultiple patient groups (weakly paired approach), and (4) an automated pipeline for the
quantitative evaluation of synthetic images.

2.Methods andmaterials

2.1. A framework forCBCT-to-CT synthesis using cycleGANs
The synthetic CT (synCT) generation pipeline developed consisted of the following key steps: (1) smart slice
selection strategy, (2) image pre-processing and (3)network training and inference (figure 1).

2.1.1. Smart slice selection viaweakly paired data approach
CTandCBCT scans do not cover the same sections of the body due to the reduced field-of-view of CBCT (in
comparison toCT) and the intra-patient variability in the location of the imaging isocentre.We propose a
weakly paired data approach to compensate for the intra and inter-subject variability in imaged anatomical
location. TheCT andCBCT scanswere spatially normalized to a common reference space and only slices from
the same body regionswere sampled (figure 2).We used as reference space an atlas-based paediatric average
anatomy and a co-registration strategy developed and evaluated in our previous study (Veiga et al 2021). A
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region of interest was defined by fusing the co-registeredCBCTbody contours on the average space and applying
a thresholdedmajority voting. The created common field-of-viewmaskwas then propagated back to each
subject’s space. Slices in the individual CT/CBCT scans located outside of thismaskwere excluded from all
experiments. The top and bottom four slices of eachCBCT scanswere typically truncated and thuswere also
excluded from all experiments.

2.1.2. Image pre-processing steps
Pre-processing steps were applied to all CT andCBCT scans before presenting them to the networks for training
and inference. The images were corrected to exclude surrounding equipment and elements external to the
subject—such as the treatment couch, anaesthesia equipment, shunts, feeding tubes, and/or lines, some of
whichmay introduce high-intensity artifacts. External components were defined as regions outside the body
contour andwere replacedwith air equivalent intensity (−1000HU). Internal regionswith high-intensity
artefacts were segmented by applying thresholding (HU 1700) followed bymorphological operations, and
subsequently overwrittenwithwater equivalent intensities (0HU). Finally, the image intensities were clipped to
the range of [−1000, 1000] and normalized to [−1, 1]. The proposed adjustments of intensities aimed at
preventing the networks from generating elements such as tubes and internal lines in the synthetic images that
were not present in the source images but commonly present in the training data.

Figure 1.Overview of theCBCT-to-CT synthesis framework developed, highlighting the threemain steps: training data selection,
image pre-processing and training of the networks.

Figure 2.Overview of the proposedweakly paired data approach. TheCT andCBCT scanswere spatially normalized to a paediatric
anatomical atlas, and a common field-of-viewmask generated after fusing theCBCTbody contours. Themaskwas thenmapped back
to each individual space and used to sample for training only CT andCBCT slices within the region of interest. This approach
effectively adjusted thefield-of-view of all scans to the abdominal region only, allowing us to best utilize data frommultiple patient
groups.
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To account for significant variation in body size and shape across ages, an axial normalisation pre-processing
stepwas also employed. The trainingCT/CBCT slices were axially normalized byfitting the body contour to a
fixed size of 256× 256 and resizing the corresponding image slice. This stepwas done by finding the longest
profile between x and y axis on each slice; amargin of 10 pixels paddedwith−1000HUwas included to each slice
to allow for additional variation in shape during data augmentation. The determined distance was used to
calculate the required scaling factor to best fit the slice to thefixed image size of 256× 256. The same scaling
factorwas applied on both directions to preserve body shape. The images requiring resampling were
interpolated using spline interpolation followed by intensity clipping to ensure the intensity ranges do not
extend the normalisation ranges. The spatial normalisation of the body aimed at artificially reducing the
anatomical variability in size across the populationwhile preserving shape variability. In our preliminary
investigations we have found consistent improvements by including axial normalisation—without this step the
resulting synCTswere often unrealistic and the body contours could be distorted, particularly for smaller
patients (Szmul et al 2021a). Ourobservations were also confirmed byUh et al (2021).

2.1.3. Design of the cycleGANnetwork
A2DcycleGAN approach for CBCT-to-CT synthesis was implemented in this study, known for its good
performance in unpaired data style conversion (figure 3).We followed closely the implementation presented in
Zhu et al (2017). The cycleGAN framework consists of two armswith a pair of a generator and a discriminator in
each of the arms.One arm converts CBCT toCT, and the counterpart generates CBCT fromCT. The task of a
generator in this configuration is to, conditioned on an input image fromonemodality, provide a corresponding
image in another imagingmodality.

We investigated twodifferent generator architectures:UNet-based (Ronneberger et al2015) andResNet-based
(He et al2015). TheResNet-based generator is, similarly toUNet, an encoder-decoder architecture.However, it
does not apply skip connections anduses residual blocks at thebottleneck stage. The implementationwas basedon
works of Johnson et al (2016) and Isola et al (2018), andhas been successfully used in applications such as styleand
domain adaptation. For the rest of the paper, wewill refer to these asUNet andResNet generators respectively, to
keep it consistentwith the cycleGAN implementation ofZhu et al (2017). The choice ofwidely used generator
architectures allowed our study to focus on improvements to the synthesis framework only.

A novel aspect of our cycleGANCBCT-to-CT synthesis frameworkwas incorporating the concept of global
residuals only learning in the generators. Global residual only learning is a common technique in computer
vision image restoration (Zhang et al 2021a), denoising (Zhang et al 2017) and enhancement (Kim et al 2016).
Unlike other pairs of very distinct imagingmodalities (for example, CT andMR), CBCT andCT sharemany
acquisition similarities such that CBCTmay be considered as a distortedCT image to a certain extent. Therefore,
instead of learning thewhole image, our proposed network focused only on predicting the unwanted elements in
the images, whichwere then combinedwith the source image to produce the synthetic counterpart (figure 4).
This approach effectively redefines the network’s aim from synthesizing to refining/enhancing images. The
proposed concept of global residuals was applied to both generator architectures.

The task of thediscriminators is to distinguish between real and synthetic images implemented as binary
classifierswith a binary cross-entropy loss function.The core loss in the framework is aGAN loss function ( GAN ),
which is used to reward the generator for delivering outputs closer to the target domain,while the discriminator is
rewarded for distinguishing between real and generateddata.Weapplied an extended version of the loss using
Least SquaresGAN loss functions ( GAN )which also notes how far from the decision boundary the newgenerated
imagewas, when evaluated by the discriminator (Mao et al2017). CycleGANsutilise two arms, synthesizingCT
intoCBCTs andCBCT intoCT, therefore therewere two losses corresponding to each arm.The cycle consistency
loss ( cycle ) evaluates how similar the input image is to itself after going through both generators. This loss
indirectly promotes structural consistency between source and synthetic images but cannot guarantee it (Ge et al
2019a, 2019b). Consequently, studies have reported for example differences inbodyoutline inCT images
generatedwithCBCT-to-CT cycleGANmethodology (Kurz et al2019). Topromote preservationof theCBCT
anatomy, the original formulationwas here extended by introducing a structure consistency loss ( structure ) in the
formof locally normalized cross correlation (LNCC) (Hermosillo et al 2002)between theoriginal images and their
synthesized counterparts. A similar approachwas applied byHiasa et al (2018a) inmultimodal image synthesis,
where cross correlationwas calculated between gradients ofCTandMRI images. In our case, before the LNCCwas
calculated, the imageswere smoothedwith gaussianfilter andgaussiannoisewas added to focus the attention of
themeasure intohigher level structures. Additional regularisationwas promoted by the identity loss ( identity ),
which penalises applying changes to an image introduced to the generator if the image is already in the target
domain (for instance, the output of theCT-to-CBCTgeneratorwhen aCBCT image is the input shouldbe the
same image). L1was used as the identity and cycle consistency losses. Theoverall proposed cycleGAN framework
was optimisedbasedon the total loss function stated in equation (1). Complete details of each loss function canbe
found in supplementary dataA.
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Figure 3.Overview of the proposed cycleGANarchitecture. Themain difference from the original cycleGAN implementationwas the
inclusion of the Structure Consistency Loss between raw input images and their synthetic contour parts, shown in orange colour. The
paths of the different types of images are shownwith dedicated line types: solid for the raw images, dotted for synthetic images and
dashed for cycle images. Blue and red colours correspond to themodality armpaths, blue to theCBCT armpath and red to the CT arm
path. For clarity the identity loss was omitted from the diagram.

Figure 4.Visualization of the concept of the global residuals only learning, by applying the global residual connectionwhich combines
the input imagewith the output of the generator. For illustrative purposes the global residuals onlywere shown for theUNet
architecture, but the same conceptwas applied to the ResNet architecture.
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2.2.Data and data split
Scans from63 patients aged 2 to 24 years old historically treatedwith radiation therapywere used in this study.
The data for this studywas requested and approved in linewith the internal information governance procedures
of theUniversity College LondonHospital NHS FoundationTrust RadiotherapyDepartment. The smart slice
selection process described in section 2.1.1 allowed us tomake use of data frommultiple treatment groups.
Thus, we included not only subjects irradiated to the abdomen (68%) but also to the thoracic (8%) and pelvic
(24%) regions to increase the dataset size for training in this scarce data domain.One planningCT and one to ten
weekly CBCTswere gathered per patient, from a variety of scanners and on-board imaging systems. The
planningCTswere acquired on a SOMATONConfidence (Siemens), LightSpeed RT16 orDiscovery 710 (GE
Medical Systems)with 120 kVp andfield of view of 28 – 50 cm, resulting in reconstructed images with 0.93
(±0.1)× 0.93 (±0.1)× 2.29 (±0.25)mm3 resolution. Contrast enhancement was used in 70%of theCT scans.
TheCBCTswere acquiredwith the on-board imaging of theVarianMedical SystemsTruebeamorClinacwith
125 kVp, 15 – 80 mA, 13 – 18 ms, half-fanmode, and shifted panels. TheCBCT scans had afield of view of 41 –
46 cm andwere reconstructedwith a resolution of 0.91 (±0.1)× 0.91 (±0.1)× 1.99 (±0.001)mm3. In total 63
CT and 209CBCT scanswere available for the development and evaluation of the proposedCBCT-to-CT
synthesis framework. In addition to theCT andCBCT scans, corresponding segmentations of the body, GI air,
bone, and lung volumeswere used for evaluation purposes. The volumeswere first semi-automatically
generated, and thenmanually edited and revised slice-by-slice using ITK-Snap (Yushkevich et al 2006). Post-
processingwas applied to all contours to reduce commonmanual segmentation errors, such as discarding small
volumes located outside the body.

Thewhole dataset was divided into 50 development cases and 13 cases for testing. The development dataset
contained scans from thoracic-abdominal-pelvic subjects andwas randomly split as 40 and 10 for training and
validation. The testing dataset consisted of scans from abdominal subjects only, and cases were selected to
achieve awell-balanced representation of ages and genders, while prioritizing the use of cases withmultiple
CBCTs for development purposes. The split between the datasets wasmade based on non-image characteristics
only tominimise selection bias (i.e. the scanswere not visually inspected during the splitting process).

We have created three training datasets by applying different slice selection approaches to our imaging data,
which resulted in different number of slices being used for training. In the first dataset no data selection
thresholdwas applied (naïve sampling). Two other datasets were created using the smart data selection via
weakly paired approach, with two different thresholds to create the datasets: 1% and 40%. The 1%mask
excluded rarely represented slices (hereby referred as ‘no outliers’) in a systematic way (such as slices containing
the neck or inferiormembers), which could accidently be included in the naïve sampling. The 40%mask
effectively adjusted thefield-of-view of all images to the abdominal region, as shownpreviously infigure 2
(hereby referred as ‘smart data selection’). A complete breakdown of the number of CT/CBCT slices included
per approach can be found in supplementary data B.

2.3. Network training and inference
We trained a total of 16 cycleGAN frameworks by varying the generator architectures (UNet andResNet), the
slice selection strategy (naïve, no outliers and smart data selection), with andwithout global residuals, and
including (or not) the structure consistency loss in the frameworks.

For the ResNet networkswe followed the implementation used in Johnson et al (2016) and Isola et al (2018).
It consisted of a down-sampling (encoder-like) section, 9 residual blocks at the bottleneck stage, and an up-
sampling (decoder-like) section afterwards. TheUNet-like architecture was a standard implementation by
Ronneberger et al (2015), with 5 down/up sampling levels, Leaky ReLu activation function used in the
downspampling blocks andReLu in upsampling blocks, following Isola et al (2018). Both architectures were
usedwith 64 initial filters, instance normalisation and dropout probability set to 0.5. The implementation of the
discriminator followed PatchGANdiscriminator with 70× 70 overlapping patches, initially introduced in Isola
et al (2018) and successfully applied byUh et al (2021). The discriminator had 3 layers of depth, with 64filters in
the initial layer. LeakyReLuwas applied as the activation function. The cycleGAN frameworks were trained for
200 epochs with a batch size of 4 and diminishing learning rate on an in-house high-performance computing
(HPC) facility with graphical processor units (TitanX 12GBGPU cards). The initial learning ratewas set to 0.002
for the initial 100 epochs andwas linearly decreased to 0 for the following 100 epochs. Adamoptimiser was used
withmomentumβ1= 0.5. Before calculating the Structure Consistency Loss, the images were smoothedwith
gaussianfilter (kernel size 7,σ=1) and randomgaussian noise was added (with themagnitude of 0.001). The
losses were calculatedwithfixedweights for all experiments:λcycle= 10,λidentity= 0.5,λstructure= 1 (when no
structure consistencywas used this weight was set to 0). For data augmentation, the following transformations
were applied: randomflipping (left and right), elastic deformationswith the spacing set to (64, 64) and
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magnitude range to (3, 3), rotations by up to 15 degrees, and gamma contrast adjustments in a range [0.7, 1.3].
The probability of all randomaugmentations was set to 0.5.

At the inference stage, unseen datasets were fed to the network subjected to the same pre-processing steps as
the training data (section 2.1.2). The generated synCTwere then resized back to their original size, their
intensities were rescaled to [−1000, 1000] and stacked back into a 3D volume for evaluation.

2.4. Evaluation experiments
2.4.1. Definition of the ground-truth
Evaluating the quality of synthetic images is a challenging task due to the lack of a real ground-truth, which in
this applicationwould consist of pairs of simultaneously acquiredCT andCBCT scans. Thus, we opted to
evaluate the synCTs against two complementary image ground-truths: the rawCBCT and a virtual CT (vCT)
matched to the anatomy of the rawCBCT. The vCT consisted of the planningCTdeformably registered to the
CBCTs using the open-sourceNiftyReg (Rueckert et al 1999,Ourselin et al 2001,Modat et al 2010, 2014)with
additional post-processing steps to account for the variable position of theGI air between scans (complete details
in supplementary data C). Figure 5 shows an example of a planningCT and correspondingCBCT and vCT. The
use of those two ground-truths enabled the quantitative evaluation of both anatomical and intensity consistency
of the synthetic images.

2.4.2. Experiments
A total of three sets of experiments were conducted to optimise and evaluate the proposedCBCT-to-CT
synthesismethod.

Experiment 1: Ablation study of the proposedmodifications.Weperformed a general search for the optimal
configuration of the framework on one-fold of the development dataset tofind the optimal CBCT-to-CT
synthesis framework. A total of 16 framework configurationswere quantitatively evaluated calculating global
image similaritymetrics between the gold-standards and the synthesized images (details in section 2.4.3).

Experiment 2: Five-fold cross validation and benchmarking of the optimal configuration.Weevaluated inmore
detail the optimal configuration of the framework onfive-folds of the development dataset and compared it
against a baseline configuration. These experiments aimed to ascertain on the level of overfitting of themethod
to the training dataset. The proposed cycleGANswas benchmarked against a baseline implementation of the
cycleGANs (also defined in Experiment 1). Bothmethodswere evaluated in terms of global image similarity with
CBCT and vCT (details in section 2.4.3).

Experiment 3: Comprehensive quantitative evaluation on the unseen testing dataset.The baseline and the
identified optimal configurationwere retrained on thewhole development dataset and used for inference in the
testing dataset. This experiment aimed to evaluate how themodel generalises to unseen data, and to validate its
performance in detail in the proposed application. The proposed cycleGANwas again compared to a baseline
configuration of the cycleGAN. The performance of the networkswas assessed through global image similarity
metrics, segmentation-basedmeasures and radiotherapy-specificmetrics (details in section 2.4.3).

2.4.3. Evaluationmetrics
The quality of theCBCT-to-CT synthesis achieved by differentmethodswas evaluated usingmetrics that
quantify how close the synthetic CT is to the original planningCT intensities and to theCBCT anatomy. These
metricsmay be grouped into three separate categories: (1) global image similarity (experiments 1–3), (2)
segmentation-basedmeasures (experiment 3) and (3) radiotherapy-specificmetrics (experiment 3). Global
image similaritymetrics as well radiotherapy-specificmetrics were calculated in 2D (i.e. slice by slice) in all

Figure 5.Example of paired CT,CBCT and virtual CT slices. The virtual CTwas created by registering CT toCBCT and semi-
automatically correcting forGI air differences. The air regions inside body inCTwere replacedwithwater equivalent values prior to
the registration, while air regions fromCBCTwere subsequently embedded into the virtual CT (that is indicated bywhite arrows in
CT and in corresponding places in vCT).
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experiments, while segmentation-basedmetrics were calculated in 3D. Themetrics are briefly described in the
following paragraphs.

We used three global image similaritymetrics when comparing pairs of images:mean absolute error (MAE),
normalised cross-correlation (NCC) and rootmean square error (RMSE). Thosemeasures were calculated
between the evaluated image and two ground-truth images: CBCT and vCT. Themetrics were chosen to provide
complementary information on the similarity between synCTs in pixel intensities (MAE andRMSE) and
structural agreement (NCC)with theCBCT/vCT. It is expected thatMAE andRSMEbetween synCT andCBCT
will always reflect some disagreement from locally incorrect CBCT intensities. However, theymay also reflect
differences due to structural inconsistencies. Therefore, due to their complementary nature, allmetrics were
reported and analyzed for both ground-truths. Voxels outside the body contourwere excluded fromanalysis;
the intensities of all images were clipped to [−1000, 1000].

For segmentation-based evaluation, we used complementarymeasures of volume similarity between
different types of tissuewithin the body contour: GI air, bones, soft tissues (muscles and fat) and lungs. Ground-
truth segmentations of these volumes onCBCTswere comparedwith corresponding structures automatically
segmented on the synthetic CTs using theDice similarity coefficient (DSC), theHausdorff distance (HD) and
average pixel intensity (HU) asmetrics. To automate the tissue segmentationwe implemented and trained a
patch-based 3D-UNet (Çiçek et al 2016) using theMONAI library (https://monai.io/) (Consortium2020)
(complete implementation details in supplementary dataD). The training dataset consisted of a total of 183
CBCT and 50CT scans, and corresponding ground-truth labels, from the same subjects included in
development dataset of the cycleGANnetworks. The training dataset consisted of bothCT andCBCT images.
The assumptionwas that while synCTswere expected to have CT-like quality, some features/artifacts typical of
CBCTmay not be completely removed. Our initial experiments using only CTs led, for example, to gross
segmentations errors in the presence of streak artifacts caused by high-intensity elements.

For radiotherapy-specific evaluation, we calculated polar water equivalent thickness (WET) differences
between the vCT and synthetic CTmethods ( WETD ). TheWET is the thickness of water thatwould cause a
proton beam to lose the same energy as if it had crossed a certainmedium. TheWET for a given beamdirection
(Q)was calculated as:

dWET RSP ,
i j k S

i j k i j k
, ,

, , , ,å= ´Q

Î

where S is a set of voxels that contains the beampath, RSPi j k, , is the relative stopping power (estimated fromCT
numbers using a standard calibration curve), and di j k, , is the path length of the beam inside voxel i j k, ,( )
estimated by a ray tracing algorithm (Zhang et al 2010, Lui 2018). TheWETbetween the beam entrance point
and centre-of-mass of the body contourwas calculated slice-by-slice, considering a complete arc with steps of
one degree. TheWETdifferences ( WETA B,D Q ) between two scans (AandB, where A is the ground-truth)was
reported as the RSME value:
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WETD was calculated overall and for each gantry angle individually, to quantify the impact that synthesis errors
have on calculation of clinical dose distributions and ascertain if some beam angles weremore affected than
others.

3. Results

3.1. Experiment 1: Ablation study of the proposedmodifications
Table 1 presents the numerical results in terms of the global similaritymeasures for the ablation study of the
proposedmodifications, wherewe tested a total of 16 configurations for the network.We systematically added
the proposedmodifications (global residuals learning, smart data selection and structure consistency loss) and
observed steadily improved performance of the framework, regardless of the generator architecture that was
used. The largest improvements were observed by introducing the global residuals to the generators.
Configurations that used theUNet architecture always outperformed theResNet-based frameworks.

This first experiment allowed us to narrowdown into an optimal configuration, as well as a baseline
configuration for comparison purposes, to use in the following experiments. The optimal configuration used the
following settings: UNet generator with structure consistency loss and global residuals learning trainedwith the
‘smart data selection’ strategy.Wewill refer to this configuration as the ‘proposed’ approach for the rest of the
manuscript. Likewise, the ‘baseline’ cycleGAN configuration settings chosenwere: UNet generator, without
structure consistency loss and global residuals learning trainedwith the ‘no outliers’ slice selectionmethod.

9

Phys.Med. Biol. 68 (2023) 105006 A Szmul et al

https://monai.io/


Table 1.Results of the ablation study of the proposedmodifications in terms of global similaritymetrics for two generator networks architectures. The proposed and baseline configuration are highlighted in bold font.

Architecture Global residuals Data Selection Structure consistency MAE_vCT [HU] NCC_vCT [1] RMSE_vCT [HU] MAE_CBCT [HU] NCC_CBCT [1] RMSE_CBCT [HU]

ResNet No None No 78.9± 30.0 0.91± 0.06 148.0± 62.4 86.8± 31.5 0.91± 0.06 148.1± 60.8

ResNet No Nooutliers No 71.7± 21.7 0.92± 0.04 136.7± 38.3 71.8± 18.6 0.92± 0.04 130.2± 34.2

ResNet Yes None No 58.7± 15.8 0.96± 0.02 102.3± 29.8 63.8± 17.3 0.96± 0.02 107.3± 31.3

ResNet Yes None Yes 54.5± 15.5 0.97± 0.01 90.5± 22.4 48.5± 11.9 0.97± 0.02 87.8± 25.9

ResNet Yes No outliers No 61.9± 17.5 0.9± 0.05 98.3± 25.3 71.0± 16.4 0.92± 0.04 95.0± 20.8

ResNet Yes No outliers Yes 54.2± 17.0 0.92± 0.04 84.3± 23.6 40.2± 10.3 0.96± 0.02 58.7± 14.5

ResNet Yes Smart data selection No 59.4± 13.9 0.96± 0.01 101.9± 21.3 69.2± 13.9 0.95± 0.02 107.9± 23.3

ResNet Yes Smart data selection Yes 53.5± 16.0 0.97± 0.01 90.7± 22.2 51.9± 12.6 0.97± 0.02 90.8± 24.9

UNet No None No 61.2± 23.3 0.95± 0.05 110.6± 48.7 63.9± 26.4 0.94± 0.05 111.7± 50.7

UNet No Nooutliers No 59.2± 15.2 0.95± 0.03 107.1± 29.1 59.6± 18.9 0.95± 0.03 104.9± 34.2

UNet Yes None No 54.4± 12.8 0.97± 0.01 90.0± 20.0 61.4± 16.3 0.96± 0.02 97.1± 28.0

UNet Yes None Yes 53.1± 15.3 0.97± 0.01 87.5± 21.9 47.3± 14.1 0.97± 0.02 85.8± 28.4

UNet Yes No outliers No 54.1± 14.1 0.97± 0.02 89.7± 22.9 56.9± 16.9 0.96± 0.02 93.6± 31.3

UNet Yes No outliers Yes 53.0± 15.1 0.97± 0.01 87.6± 21.8 47.0± 14.8 0.97± 0.02 85.3± 28.6

UNet Yes Smart data selection No 52.3± 12.4 0.97± 0.01 86.4± 19.6 57.0± 16.3 0.97± 0.02 92.2± 29.4

UNet Yes Smart data selection Yes 51.7± 15.0 0.97± 0.01 85.0± 20.9 45.0± 12.6 0.97± 0.02 82.8± 27.5

MAEvCT/CBCT—Mean absolute error calculatedwith respect to vCT/CBCT;

NCCvCT/CBCT—Normalised cross correlation calculatedwith respect to vCT/CBCT;

RMSE vCT/CBCT—Rootmean square error calculatedwith respect to vCT/CBCT.
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3.2. Experiment 2: Five-fold cross validation and benchmarking of the optimal configuration
In the 5-fold cross validation studywe investigated the proposed synCT generation configuration against the
baseline cycleGAN configuration. The proposedmethod performed consistently between different folds.
Figure 6 shows an example of inference results on the same slice for different folds, where in 4 folds the slicewas
used for training and in one it was part of the validation subset (4th fold). Only small levels of inconsistencywere
observed between folds,mostly originating fromdifferences inwhere contrast enhancement is added by the
networks (e.g: brightness of the kidneys and liver). These visualfindings were also confirmedwith the global
similaritymetrics, whichwere consistent for different folds and outperformed considerably the baselinemethod
(figure 7). To ascertain on the level of overfitting of themethod to training dataset, the evaluation datawas
shown for both training and validation datasets— the results between the two datasets were comparable on
average, with the validation set having larger standard deviations for allmetrics. The proposedmethod resulted
not only in bettermean values compared to the baselinemethod, but also in lower standard deviations. Overall,
the numerical data suggested an improved consistencywith ourmethod, in agreement with the visual inspection
findings.

3.3. Experiment 3: Comprehensive quantitative evaluation on the unseen testing dataset
3.3.1. Global image similarity
Thefinal experiments were conducted after re-training the proposed and baseline configuration on thewhole
development dataset and applying them to a previously unseen testing dataset. For clarity, due to the smart slice
selection step being included, the final proposed networkwas effectively trained only on slices coming from the
abdominal region (although some slices were frompatients treated for diseases in different anatomical sites).
Figure 8 shows a visual comparison between the two configurations for two example slices fromdifferent
subjects (AandB). The baseline configuration hadworse performance in terms of anatomical realism and
consistencywhen compared to both ground-truths (CBCT and virtual CT). Our proposedmethod generated
synthetic images thatmore closelymatched the anatomy of the source CBCT.Upon visual inspection, the
baselinemethodwas found to commonly remove or add vertebrae and/or introducing inexistent bowel pockets,
as well as contrast from shunts to the synCTs. Such patterns of failure were not observed for the proposed synCT
method, which successfully preserved the anatomy fromCBCTwhile improving the overall image quality. A
limitation seen in both synCTmethodswas that occasionally the generated synCTswere contrast-enhanced,
when the original CBCTormatchingCTwas not (and vice-versa), likely because the training set included scans
bothwith andwithout contrast agent injection. That has led to inconsistencies in contrast between adjacent
slices in some cases. The additional analysis of cross-sectional intensity profiles highlighted how the baseline
cycleGANmethodwas unable to preserve the structural information, adding up inexistent air pockets. The
proposedmethod followsmore closely the profiles of theCBCT and virtual CT.

Visual inspectionwas followed by numerical evaluation in terms of global image similaritymetrics. The
proposedmethod achieved better numerical results than the baselinemethod for all scores (table 2). These
results were only slightly worse than those reported for the 5-fold cross validation, indicating that themethod
did not overfit to the training dataset and generalizedwell to unseen cases.

Figure 6.Comparison of synthetic CTs between different foldswhen 5-fold cross validationwas applied. The foldwhere the slice was
part of the validation subset is shown in bold (fold 4). For the remaining folds the slice was used for training.No significant visual
differences in anatomywere observed. The two lower rows show the difference images between the output synthetic CTsand the
CBCT (top) and virtual CT (bottom).
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Figure 7.Box plots showing the distribution of the numerical results between the proposed and baseline synCT formean absolute
error (MAE) (A), rootmean square error (RMSE) (B) and normalised cross-correlation (NCC) (C) calculated between the synCTs and
ground-truths (CBCT and virtual CT).

Figure 8.Visual comparison of the results between the proposed and baseline synCTswith respect to the virtual CT andCBCT for two
example, cases A andB. The difference images highlight regions of anatomical and intensity disagreement (A1 andB1). The difference
between the virtual CT andCBCThighlights the challenge in establishing reliable ground-truth images. For both cases, intensity
profiles for cross-sections for the CBCT, virtual CT, baseline synCT and the proposed synCT are also shown (A2 andB2).
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3.3.2. Segmentation-basedmeasures
A3D-UNet segmentationwas trained to identify four different types of tissue inCT andCBCTwithin the body
contour: soft tissues, skeleton, GI air and lungs This networkwas used to automatically segment each testingCT,
CBCT and synCT (figure 9).

Table 3 presents the similarity between automated and ground-truth segmentations in terms ofDSC,HD
and average intensity for each tissue type. TheDSC andHDvalues reported for planningCT andCBCT
represent howwell the automated segmentationmethod performed on real images from the testing dataset, with
DSC ranging from0.889 to 0.978 for both scans and tissue types. TheDSC andHDvalues reported for the
synCTs allowed to assess their structural similarity to the source CBCTs. The values ofDSC andHD reported for
the synCT,while expectedly inferior to those on real CT andCBCT,were of similarmagnitude indicating that
the automated segmentationworkedwell on all datasets. The proposed synCT approach outperformed the
baseline synCTdemonstrating better structural similarity to theCBCT segmentations. The average intensity
data allowed us to assess the intensity similarity between the synCTs and planningCTs for different tissue types.
The proposed synCTmethod resulted inmore closelymatchedmeanHUvalue to planningCT for soft tissue
and lungs.However, the proposed synCTmethodwas found to slightly underestimate the skeletonHUs and to
overestimateGI air intensities. Bothmethods achieved standard deviations of similarmagniture for themean
HUs of all investigated tissue types (SupplementaryDataD, figure S1).

Figure 9. Segmentation results for CT,CBCT, and proposed synCT.

Table 2.Numerical evaluation of the baseline and proposedmethod in terms of global image similaritymetrics.

Virtual CT CBCT

MAE [HU] NCC [1] RMSE [HU] MAE [HU] NCC [1] RMSE [HU]

Baseline synCT 58.9± 16.8 0.96± 0.02 102.6± 31.7 63.4± 15.9 0.95± 0.02 110.0± 32.2

Proposed synCT 55.0± 16.6 0.97± 0.02 89.8± 23.8 49.8± 10.9 0.97± 0.02 88.6± 24.9

Table 3.Numerical evaluation of the baseline and proposed synCT in terms of structure-basedmetrics. Dice
similarity coefficient (DSC) andHausdorff distance (HD)were calculated between ground-truth contours (onCT
andCBCT) and automatically generated contours (onCT,CBCT and synCT). ThemeanHUvalueswere
calculatedwithin the ground-truth contours (onCT andCBCT).

PlanningCT CBCT Baseline synCT Proposed synCT

Soft tissues DSC 0.973± 0.007 0.978± 0.006 0.971± 0.007 0.974± 0.007

HD 1.5± 0.6 1.4± 0.5 2.3± 1.0 2.1± 1.1

MeanHU 2± 11 0± 26 24± 20 9± 20

Skeleton DSC 0.896± 0.011 0.889± 0.022 0.849± 0.024 0.862± 0.020

HD 1.5± 0.8 2.0± 2.5 5.9± 6.6 3.4± 5.2

MeanHU 350± 33 359± 33 328± 27 313± 27

GI air DSC 0.910± 0.055 0.908± 0.037 0.846± 0.052 0.872± 0.053

HD 3.0± 4.9 2.7± 3.2 9.3± 7.2 6.1± 6.5

MeanHU −814± 86 −737± 93 −775± 113 −756± 95

Lungs DSC 0.956± 0.017 0.928± 0.034 0.898± 0.055 0.898± 0.059

HD 2.1± 0.9 2.2± 0.6 3.9± 2.2 3.5± 2.0

MeanHU −526± 102 −573± 67 −497± 74 −547± 71
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3.3.3. Radiotherapy-specificmetrics
TheRMSE in relativeWETdifferences between vCT (ground-truth) andCBCT, baseline synCT and proposed
synCTwas 3.6± 2.6%, 3.7± 2.8% and 3.3± 2.4%, respectively, when considering all gantry angles and all
individual slices. The WETD for different gantry angles is shown in figure 10. TheWETmeasured for the
proposed synCTbestmatched the vCTWET for anterior and anterior-oblique angles (0° to 90° and 270° to
360°), likely due to its better spatial representation of theGI air pockets. The differences were smaller in the
posterior direction, with the baseline synCTbeingmore similar to the vCT in terms ofWET for gantry angles
between 160° and 270°. This was likely due to these beam angles crossing through higher intensity regions, such
as vertebrae and liver and kidneys (in contrast enhanced scans).

4.Discussion

Weproposed and thoroughly evaluated a novelmethod for generating synthetic CTs fromCBCTs based on
cycleGANs. To the best of our knowledge, this is the first study to incorporate structural consistency loss and
global residual learningwith aweakly paired data approach intoCBCT-to-CT synthesis. Our novel smart slice
selection frameworkwas shown to facilitate training in diverse populations by allowing one to combine data
frommultiple patient cohorts in an optimal and efficient strategy. Global residuals learning combinedwith
structural consistency loss helped to improve the structure correspondence between the input and output
images, producing synthetic CT images thatmore closely preserve the structural information of theCBCT.

To the best of our knowledge, Uh et al (2021)was the only other study that has also investigated using
cycleGANs for CBCT-to-CT synthesis in children and young adults. In their study the networks were trained on
abdominal and pelvic datasets using a configuration of cycleGANvery close towhat we defined as the baseline
method in our study (a key difference was the use of ResNet as generator). The authors followed similar pre-
processing steps towhat we employed, such as intensity clipping, excluding information external to the body
and applying axial normalisation (but only in left-right direction). They reported amean absolute error of 47± 7
HU, excluding regionswithGI air, for their best configuration.We report slightly higher differences in our study
(55± 17HU). This is likely due to two key differences between our studies whichmake the results hard to
compare directly. First, the CT imageswe used for training and evaluation included scans bothwith andwithout
contrast enhancement, which could result in increased pixel intensity values for some organs (for instance liver
or kidneys). Second, we did not excludeGI air regions from the analysis, which are themost difficult regions to
synthesise. Regarding the integrity of GI air pocket location in the synCT,Uh et al (2021) reported aDSC in the
range 0.71 – 0.88, compared to 0.82 – 0.92 (average, 0.87± 0.05) in our study, which indicates that ourmethod
wasmore successful at preservingGI air pocket location in the synthetic images. In general, their results
indicated structural consistency problems likewe found for our baseline cycleGAN, such as bones disappearing
or pockets of GI air being introduced at wrong locations. Finally, therewere also important differences in the

Figure 10.Polarmap of the rootmean square error of the relative water equivalent thickness (WET) differences between virtual CT
(ground-truth) andCBCT and synthetic CT images.
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methods used to report the quality of the synCTs— our analysis of image qualitymetrics wasmore
comprehensive but did not explore in asmuch detail dosimetric aspects.

In the ablation experiment we observed steady improvements in the performance of the framework by
introducing all the proposed elements to the cycleGAN framework. The largest quantitative improvement was
observed after incorporating the concept of global residuals learning for both generator architectures. Global
residuals reframed the problem from generating synthetic images to improving the quality of images (or
degrading them in case of theCT-to-CBCT synthesis armof the cycleGANs). The assumption here is that CBCT
represents a corruptedCT imagewith unwanted artefacts and that the generators can estimate only those
artefacts to unveil the underlying artefact-free CT image.Our study demonstrated that this approachwas
suitable for CBCT toCT synthesis as both imagingmodalities share physical acquisition principles.

A limitation of using cycleGANs inmedical image synthesis is that the original implementation focused on
the translation of images fromone domain to another and did not explicitly promote structural consistency
between source and synthetic images. As consequence the output imagesmay have fit well into the target domain
visually but lacked structural details of the input images. To ensure structural similarity betweenCBCT and
synCT images, our synthesis framework included a structure consistency loss that optimised the LNCCbetween
the input and synthetic images. Although LNCC is commonly used inmanymedical image analysis applications,
to the best of our knowledge its application to promote structure consistency duringCBCT-to-CT synthesis had
not been proposed before. Alternative approaches to explicitly encourage direct correspondence between source
and synthetic images include using similaritymeasures such asModality IndependentNeighbourhood
Descriptor (Shrivastava et al 2017), mean absolute error, gradient difference (Wang et al 2019,Dai et al 2020),
correlation coefficients (Ge et al 2019a, 2019b) and gradient correlation (Hiasa et al 2018a). Chen et al (2020)
combinedmean absolute error loss with structure dissimilarity loss to encourage whole structure wise similarity.
Ouyang et al (2019) employed a feature-matching techniquewhere a newobjective functionwas specified. In
this case the generator encouraged the synthetic images tomatch the expected value of features on the
intermediate layers instead of forcing it on the final output of the discriminator. An alternative approach is to
employ some sort of shape-consistency loss, which promotes similarity between annotated features, such as
body contours (Ge et al 2019a, 2019b), organ sub-volumes (Zhang et al 2018, Cai et al 2019) or different tissue
types (Fang Liu et al 2018) between source and synthetic images. This is often employed in conjunctionwith
segmentation networks to facilitate feature identification during the cycleGANS training. Changes to the
generator architecture to capturemulti-scale information have also been proposed, together with changes to the
loss function to generate less blurry images (Lei et al 2019). Others have used attention gates (Oktay et al 2018)
incorporated in the generated architecture to learn structural variations, improving prediction of the image
intensities and organ boundaries (Liu et al 2020). Some solutions however are only validwhen paired data is used
for training, as the synthetic image is compared to some sort of ground-truth image.Our proposed approach
with LNCC is task dedicated,making use of awell-suited similaritymeasure known toworkwell for two image
modalities betweenwhich a linear relationship can be established. Additionally, the embedding gaussian noise
and smoothing of the images helped to enhance global structure preservation. Our results showed that the
introduction of the structure consistency loss improved the results for every configuration tested.

To address limitations in data available for disease specific cohorts, we proposed aweakly paired data
method for training data selection.Maspero et al (2020b) also proposed combiningmultiple datasets from
different anatomical sites to generate a single, generalised network capable of performing onmultiple regions. In
their study, scans from33 head and neck, 33 lung and 33 breast subjects, with 15/8/10 split per site were used
training validation and testing of a cycleGAN. The reported differences between single-site networks and a
combined network trained on a dataset of combined sites were of up to 3HU (mean value), and no statistical
significancewas reported. Similarly, Uh et al (2021) used data from two patient groups to correct CBCT scans of
children and young adults (28 abdominal and 36 pelvic, 64 cases in total). They found that themodel trained on
the combined dataset significantly outperformed the abdomen and pelvismodels in terms ofmean absoluteHU
error of the correctedCBCT from14 testing patients (47± 7HUversus 51± 8HU). It is possible that the
relatively small number of cases per site used for training led to the conclusion that including all the sites in the
training results in a bettermethod performance.Moreover, both studies used relatively well-balanced datasets
with roughly equal number of cases for each anatomical site included. Our proposed approach, where images
were initially registered to a common reference space and then sampled only from a chosen anatomical region is
a less naïve technique of combining cases fromdifferent anatomical sites.Multiple anatomical regions can be
combined in a systematicmanner, such that all regions are similarly represented during training. Theweakly
paired approach improved the performance in the ablation study regardless of the chosen generator architecture
and other settings. This demonstrates that it is advantageous to carefully consider presentation strategies of the
data to the networks. There ismerit intomaking the training datasets representative, not only larger, asmore
data did not necessarily lead to better performance.
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Training an unsupervisedmodel is a difficult task.We opted to train allmodels for afixed number of epochs,
while reducing learning rate, stabilizing the networks. Since allmethods comparedwere based on the same
generator architecture, this allowed for a reliable comparison of their performance. Early stopping the training,
based on ametric calculated on a validation subset, could be an alternative to the training approachwe followed.
However the choice of themetric (or a combination ofmultiplemetrics)would become another challenge and
variable within the framework. Our approachwith afixed number of epochsmade it also consistent with other
works in the field (Maspero et al 2020b, Uh et al 2021).

The acquisition of pairedCBCT andCT images is not easily feasible.With paired data the synthesis could be
framed as a supervised regression problem.Qiu et al (2021) performed deformable image registration between
planningCTs andCBCTs, which resulted in pseudo paired data and allowed for fully supervised learning. Such
an approach is heavily dependent on the quality of the registration between planningCT andCBCT. Achieving
accurate registration resultsmay be challenging, particularly in the case of abdominal scanswhere additional
post-processing steps will likely be required to deal with significant bowel gas changes andmay still not always be
successful. These challenges were demonstrated in ourworkwhen generating the virtual CTs for evaluation
purposes.While theDIR-based vCT grossly corrected for both structural and intensity differences between pairs
of CT andCBCT scans, it was not a perfect representation of aCT-like scan paired to aCBCT. Therefore, in our
opinion unsupervised approaches, where paired data are not required, are better suited for the proposed task.

The segmentation-based evaluation allowed to explore inmore detail howwell different types of tissue are
represented in the synCTs. It is important to note that our aimwas not to develop a segmentation algorithmper
se, but to generate quantitative and automatedmeasures of the structural and intensity quality of the synCT.
Therewere challenges associatedwithmanual and automated segmentation of each tissue type. Segmentation of
GI air pockets was associatedwith uncertainties due to scatter andmotion artifacts. It was not always clear from a
lowquality CBCTwhere to draw a boundary between gas and tissue. For example, we could observe that the
automatedGI air segmentationwas able to split air regions into individual air pockets, whilemanual
segmentationsweremore likely to connect them into larger pockets. Furthermore, visual inspection indicated
mismatch between themethods in identifying small pockets of gas. Errors in the automatic skeleton
segmentationmostly originated from contrast agents being classified as skeleton.Our pre-processing step,
wheremost of contrast agent areaswere replacedwithwater equivalentHUvalues, contributed tominimise
issues in skeleton segmentation. The lung volumeswere underrepresented in the testing dataset since only a
small fraction of the abdominal scanswill contain this tissue type.Motion artifacts at the diaphragm also
contributed tomaking it increasingly challenging to segment the lungs bothmanually and automatically. DSC
andHDmetrics were calculated on small sections of the total lung size whichmay be reflected in the scores.
While these uncertaintiesmay impact the results, in our opinion themethodology employedwas accurate
enough to compare structural similarity between the different synthesismethods.

The analysis of theHUs for individual body tissue types indicated that some challenges remain in terms of
generating synthetic CTswith the same intensity information of thematched planningCT. For instance, the
mean value of the skeleton inCTwas 359HU,whereas in the proposed synCT it was 313HU. Intensity
mismatchmay propagate to dosimetric errors.While ourmethod led to relatively smallWETdifferences (when
compared to the baseline synCT) particularly for anterior proton beams, therewere no clear advantages for
posterior proton beams. These angles could be associatedwith path lengths that cross the vertebrae and organs
such as liver and kidneys (in contrast enhanced scans), whereHUs errors weremore pronounced. The observed
differences could potentially be addressed by applying global histogramnormalisations (Zimmerman et al 1988,
Sandfort et al 2019) as a post processing or by introducing additional loss functionswithin the optimisation
framework (Li et al 2019a, 2019b, Afifi et al 2020).

One of the limitations observed in our studywas occasional inconsistency between adjacent slices. Our
models were trainedwith real world CT andCBCT images from a variety of scanners and acquisition settings.
CT images used for trainingwere bothwith andwithout contrast agent injection, which could lead to
inconsistencies where some slices were generatedwith contrast and others not. This was not entirely
unexpected, as our approachwas 2Dwith no explicit adjacent slice consistency enforced.With access to larger
datasets, this could be solved by restricting the selection of CT scans used for training and ensuring that only one
type of scanswas included (with orwithout contrast). Alternatively, we are considering exploring 3Dnetworks
which are expected to improve consistency between adjacent slices butwould comewith largermemory and
computational requirements.

The pre-processingmethod applied to all images corrected for the presence of elements such as anaesthesia
equipment, shunts and lines. Since these elements are very common in the paediatric cohort, we realised during
our preliminary studies that the networks learned to spontaneously generate them in the synCT evenwhen they
were not present in the source CBCT.We expect that this ismore likely to happenwhen the networks do not
enforce structure similarity, so it is likely that this step is not as important to train our proposed network. This
should be investigated in the future. Clinically, these elements are avoided by the treatment beams if possible
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but, if they are inside the treatment volumes, the typical procedure is to override their density for accurate dose
calculations. The impact of their incorrect representation in synCTs could be corrected simply by propagating
contours from the source CBCT.

The proposed framework could be further improved byfinetuning hyperparameters of the optimisation
stage (learning rate and its scheduler, optimiser and its parameters, etc), data presentation (data augmentation
parameters) and loss calculation (individual loss weights).We decided to keep thesefixed on all the experiments
after an initial parameter values search so that the results presented formultiple configurations could bemore
easily and directly comparable.

In the future it would be interesting to investigate the performance of the cycleGANmodels in low dose
CBCTs. In paediatric radiotherapy lower dose protocols are of interest (Bryce-Atkinson et al 2021) butmay
potentially result in lower quality images andmake the learning task evenmore challenging task. Gao et al (2021)
investigated different GANconfigurations inCBCT-to-CT synthesis in the thorax, noting that the increased
imaging artifacts inherent to lower doseCBCTprotocols will disturb image translation tasks.

5. Conclusions

The proposed framework showed improved quality of synCTs generated fromCBCTswhen employing
strategies to preserve structural consistency and to account for variable field-of-view in the training dataset. The
reformulation of the problem fromgenerating synthetic images to refining image quality by applying global
residuals only learning led to the biggest improvements. Our study demonstrated the advantages of a thought-
through data pre-processing and presentation to the AImethod to improve its performance on challenging real-
world applications, with scarce and diverse data. Amulti-step andmulti-layer evaluation allowed us to show that
the proposedmethod resulted inmore realistic synCT generation. Further evaluation usingmetrics of
anatomical plausibility and realism, aswell as impact on dose calculations, is needed to provide further insight
into clinical utility.
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