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Bike Sharing Demand in NYC: ARIMAX
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Abstract
The objective of this study is to investigate the impact of the COVID-19 vaccine on bike sharing demand in New York City
(NYC). The vaccination’s impact was also compared with other known influences (COVID-19 cases counts, COVID-19
deaths, weather data, trip purpose, and more) to help improve bike share demand modeling in a pandemic setting.
Autoregressive integrated moving average (ARIMAX) time series models were estimated for Brooklyn and Manhattan in both
the pre-vaccine and post-vaccine periods. Mean absolute percentage error (MAPE) was used for model evaluation, and the
average MAPE was below 5, suggesting a high-level accuracy in modeling. The Bayesian time series analysis results were very
similar to the ARIMAX model results (with the exception of some parameters being significantly underestimated). The
results of the time series analyses showed that vaccination did not have a significant effect on bike sharing demand in
Manhattan but had a significant effect leading to increases in bike sharing demand in Brooklyn. Despite this, vaccination was
not the main influence on bike sharing demand. For instance, in Brooklyn, grocery and retail/recreational shopping were
strong influences both pre- and post-vaccine, indicating that regardless of vaccination, shopping is essential. COVID-19 cases
counts had opposing effects in Brooklyn and Manhattan. Other findings include higher temperatures leading to increased bike
demand, and precipitation and stronger winds leading to decreased bike sharing demand.

Keywords
planning and analysis, attitudes/attitudinal data, behavior analysis, behavioral process, behaviors, mode choices, pattern
(behavior, choices, etc.)

Introduction and Literature Review

The COVID-19 pandemic radically changed the normal
operations of the transportation sector. Owing to the
varying degrees of risk for virus contraction, the usage of
each transportation mode varied. For instance, public
transportation experienced the greatest decrease in travel
demand and was generally perceived as the riskiest mode
of travel (1, 2). This is because there was a higher chance
of contracting the virus while sitting in an enclosed envi-
ronment over an extended period with other passengers
that could potentially be infected (3). As a result, travel
via private car was generally perceived as the safest mode
of transportation because there was almost no risk of
virus contraction (2). Biking was generally perceived as
significantly less risky than public transportation (1).
This is because when biking an individual is not trapped

in an enclosed environment for an extended period, as
they are when riding public transportation.

A series of previous studies looked at the factors
affecting the bike sharing demand (4–10). These factors
can be briefly classified into four groups as follows.

1. Weather-related factors: temperature, humidity,
precipitation, and wind

2. Built-in environmental factor: bike sharing sta-
tions, transit stations, universities, bike lanes
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3. Travel-related factors: trip purpose, trip depar-
ture time

4. Census-related factors: population, the median
income

During the pandemic, the influence of the typical fac-
tors above was reduced, giving rise to new factors such
as COVID-19 cases, news coverage of the virus, and
lockdown/restriction policies (11–13). One factor that
has received little attention in the research field thus far
is the impact of vaccination on transportation. Only a
few studies have analyzed this issue, and their findings
are reported here.

In one of the studies, linear regression was used to esti-
mate the influence of the COVID-19 vaccine on public
transport and found that transit demand in the United
States increased by 0.439% for every percentage increase
in first-dose vaccination rates and 0.676% for every per-
centage increase in complete vaccination rates (14).
Another study in London, UK, using a multinomial logit
model (MNL) on survey data found that vaccination
increased individuals’ likelihood of riding transit systems
(15). The final study used multiple indicator multiple
cause (MIMIC) and probity modeling on survey data
from the Greater Toronto Area, Canada, finding that
being vaccinated did increase current public transit usage,
but the estimates were lower than that of other COVID-
19 risk perception factors, indicating that vaccination
was not the leading influence of transit usage (16).

The main contribution of this research to the existing
literature is summarized as follows.

1. Most of the previous studies investigated the
impact of vaccination on transit mode choice
only. This study contributes to the existing litera-
ture by investigating the impact of COVID-19
vaccination on bike sharing only.

2. This study combined a series of open-source data
sets, such as the New York State Health
Department, Google Community Mobility Reports,
Google Trend, Apple Mobility Trends, National
Oceanic, Atmospheric Administration (NOAA),
and Citi Bike data. This data fusion helped to
explore how a series of factors affected bike share
demand during COVID-19 in the NYC area.

3. Previous literature only modeled the impact of
vaccination independent of other influences, not
allowing comparison. This study shows a detailed
comparison between the pre-vaccine and post-
vaccine periods.

4. While this research topic may appear insignificant
because the COVID-19 pandemic is seemingly
near an end, there is the risk of an outbreak of
other COVID-19 variants, and it is estimated that

there will be more global pandemics and health
crises in the future (14). Therefore, thoroughly
understanding how COVID-19 impacted trans-
portation will help us to prepare for these health
crises and to mitigate their effects on society. The
pandemic did not only have a one-directional
effect on transportation, but transportation also
significantly shaped the pandemic (15). For exam-
ple, public transportation usage significantly con-
tributed to the initial outbreak of COVID-19 in
NYC (16–20). Understanding the impact of
COVID-19 and vaccination on transportation
can help policy makers make informed decisions
to control the spread of future viruses.

Methods

Data Aggregation

The bike sharing data used for this study was from Citi
Bike, a privately owned bike sharing service in the NYC
and New Jersey Area. Since 2014, Citi Bike has made its
bike sharing data for every trip publicly accessible. The
predictor variables for bike sharing demand (Figure 1)
were from the New York State Health Department,
Google Community Mobility Reports, Google Trend,
Apple Mobility Trends, NOAA, and the Oxford Covid-
19 government response tracker (OxCGRT). The data
included in this study were chosen according to the fol-
lowing criterion.

1. The data are available at the city-wide level
2. The data are available at daily or weekly intervals
3. All data points are available from February 15,

2020, to January 27, 2022
4. The underlying variable is known to affect deci-

sion making according to previous literature

Data Processing

Citi Bike. Citi Bike is a bike sharing platform located in
the NYC area that has provided open access to all bike
sharing trips since 2014 (21). Citi Bike provides the fol-
lowing information: the start and end date and time; the
start and end location; the type of ride if the rider was a
member or not; and other information. There is no option
for filtering the data by location; therefore, researchers
typically reverse the geocode based on the start station’s
longitude and latitude to determine if the bike trip was in
Manhattan or Brooklyn. The data were separated, then
aggregated daily based on the start trip date.

Citi Bike provides limited information about the types
of bikers, such as user type (customer=24-h pass or 3-
day pass user; subscriber=annual member), gender
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(zero=unknown; 1=male; 2= female), and year of
birth. Citi Bike shares gender information from February
2020 to January 2021. It is found that 59.96% of Citi
Bike users are male, and 28.73% of them are female.
Around 11.31% of users declined to reveal their gender.
For user type, 23.79% of users are 24-h pass or 3-day
pass users. Of users, 76.21% are annual members (sub-
scribers). The mean age of the users is 40.813, and the
standard deviation is 12.4.

New York State Health Department. The New York State
Health Department website provided open access to daily
COVID-19 vaccination numbers as well as the number of
COVID-19 tests, positive tests, hospitalizations, and deaths,
at the county level (22). A data set was extracted for New
York County (Manhattan) and Kings County (Brooklyn).
The number of tests, positive tests, deaths, and hospitaliza-
tion data were already expressed as a daily total for the time
series model. Vaccination data had two variables: first dose
and series complete. First dose refers to the number of indi-
viduals with one dose of an mRNA vaccine, while series
complete refers to the number of individuals fully vaccinated
either by one dose of the Johnson&Johnson vaccine or two
doses of the mRNA vaccine.

Google Community Mobility Reports. As a result of the
COVID-19 pandemic, Google has released open access
to data concerning the changes in visits to specific loca-
tions (23). Google has classified these locations into the
following categories: work; parks; retail/recreation; tran-
sit; residential; and grocery/pharmaceutical. Residential
data are measured differently, though; rather than mea-
suring the number of visits to residential locations, the

amount of time spent at home is measured. Google con-
trasts these numbers daily against the baseline (0%)
mobility, which was the median value from January 3 to
February 6, 2020.

Apple Mobility Trends Reports. Apple granted open access to
navigation request data generated through Apple Maps
(24). Apple has been anonymously counting the number
of times its users request navigation assistance for car
rides, transit trips, and walking. Apple Mobility Trends
used January 13, 2020, as the baseline count (100%, stan-
dardized to 0% to match Google’s baseline). Each day
the number of navigation requests is compared with this
baseline number. The mobility trends can be filtered at a
county level, so data were collected for both New York
County (Manhattan) and Kings County (Brooklyn). The
data were normalized so that the baseline was 0% to
match the scale of the Google Community Mobility
Reports’ data.

Google Trends. Google Trends provides access to searches
made on Google’s search engine (25). It does not give the
total number of searches but rather a relative ranking
from 0 to 100 based on the popularity of a word or topic
over a period. Google Trends grants an option for users
to search for specific words or topics. Word searches
only account for searches using the specific word entered,
while topical searches account for words related to that
topic chosen by Google. In this study, topical searches
were done. Google Trends also allows users to specify
results by location, time range, and other factors. The
topics searched for were: ‘‘Coronavirus disease 2019,’’
‘‘Coronavirus Delta variant,’’ ‘‘Omicron,’’ ‘‘COVID-19

Figure 1. Data sources and predictor variables for Citi Bike data.
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vaccine,’’ and ‘‘Booster dose.’’ The ‘‘New York, NY’’
location option was selected and used for modeling travel
demand in both Manhattan and Brooklyn.

NOAA. NOAA provides weather data, including wind,
precipitation, snowfall, and temperature (26). Data were
collected only from John F. Kennedy (JFK) airport,
New York, because it was the closest location to
Manhattan and Brooklyn without missing segments of
data for all the variables. There were limited data points
for the snowfall variable; therefore, its impact on trans-
portation numbers may not be accurately captured.

OxCGRT. The OxCGRT has provided a list of different
COVID-19 policies, along with maximum scores depend-
ing on the influence of the policy (27). The New York
Times provided an article containing a timeline of the
major COVID-19-related policies released over 2 years
(March 2020–March 2022) (28). Based on the OxCGRT,
scores were assigned to each of the policies. Before any
COVID-19 policy was implemented, the score for each
policy was 0 (indicating no policy in place). On the date
when a policy was implemented (according to The New
York Times), a score was added to the corresponding
OxCGRT category. Likewise, when the policy was
removed, the score was subtracted. The scores were
aggregated on a daily level. In this study, various policy
categories were used as a predictor variable as well as the
cumulative policy score (the sum of the scores for every
policy implemented on a given day). The policy cate-
gories used as predictors (and their maximum scores)
were: School closing: 3; Workplace closing: 3; Cancel
public events: 2; Restrictions on gathering: 4; Close pub-
lic transit: 2; Stay at home: 3; Public information cam-
paign: 2; and Facial coverings: 4.

The data were further processed into four scenarios,
both Manhattan and Brooklyn, pre-vaccine (February
15, 2020–December 14, 2020) and post-vaccine
(December 15, 2020–January 27, 2022) (Figure 2).
December 15, 2020, was chosen as the post-vaccine
period because the first record of vaccination from the
vaccination data set was on December 15, 2020 (taken
from the New York State Health Department). Various
online articles show that the first vaccine was given on
December 14, 2020. The New York State Health
Department’s data set may have missed the record on
December 14, 2020.

Modeling Approach

ARIMAX Time Series Analysis

The ARIMAX model has the following structure (where
yt is the current bike demand):

yt =
Xp

i= 1

fiyb�i +
Xq

j= 1

djet�j +
Xn

k = 1

bkXk + et ð1Þ

� fi, dj, bk =parameters for the autoregressive,
moving average, and predictor terms respectively

� p, q=lag term in the number of days for the auto-
regressive and moving average terms respectively,
and n is the number of exogenous regressors term

� yt�i =the previous period’s bike demand, et�j =
the previous period’s error unexplained by the
model and Xk =predictor variables

� et =error term, unexplained by the model

The autoregressive term uses previous demand as a pre-
dictor for the current demand; the number of previous
demands used depends on p. The moving average term
uses previous error (unexplained variance) as a predictor
for the current demand and the number of previous
errors depends on q. ARIMA models cannot model data
with trends (a steady overall increase or decrease in
demand) or seasonality (patterns in demand that occur
weekly, monthly, or consistently over any given period).
Data with trends and seasonality are called non-
stationary and require differencing. This is what the ‘‘I’’
term in ARIMAX refers to. The Augmented Dickey-
Fuller (ADF) test can be applied to the dependent vari-
able to determine stationarity. If the data fail the ADF
test, they must be differenced until they are stationary.
Since ARIMAX models have exogenous predictor vari-
ables that follow linear regression, the correlation among
the predictors must be taken into consideration because
it threatens multicollinearity. In this study, the threshold
for correlation was 0.75 (29, 30). Variables were removed
to ensure that there was no correlation above 0.75
between any two variables. Therefore, all the variables in
Figure 1 were not necessarily included in all the models.

Figure 2. Four modeling scenarios: Manhattan and Brooklyn
(pre- and post-vaccine).
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The correlation matrices for the Manhattan models are
shown in Tables 1 and 2.

Bayesian Times Series Analysis

A typical structural time series model has the following
structure (31):

yt =mt + tt +
Xn

k = 1

bkXk + et ð2Þ

where yt is the observed bike demand, tt is the seasonal
component, bkxk is parameters and predictor variables
and et error term (normally distributed). The trend com-
ponent reflects a steady increase or decrease in the data
over the given period and is defined as

mt + 1 =mt +vt ð3Þ

where vt is the error term (normally distributed). The sea-
sonal component reflects patterns repeating on a daily,
weekly, monthly, etc., basis. The seasonal component is

tt + 1 = �
XS�1

s= 1

tt�s +wt ð4Þ

where S is the seasonal division where S = 52 and S = 12

are weekly and monthly seasonality respectively. In this
study, the seasonal component was set bi-annually S = 2.
While this is not intuitive, it produced a lowerMAPE
than a daily, weekly, monthly, or quarterly seasonality. tt

contains dummy variables for S � 1 number of seasons
and wt is the error term, normally distributed. In our
study, Bayes theorem is applied as defined in the follow-
ing equation (32):

H(b,s2 j Yt)=
F(Yt j b,s2)�P b,s2ð Þ

F Yð Þ ð5Þ

and the posterior distribution can be simplified as

H(b,s2 j Yt)} F(Yt j b,s2)�P b,s2
� �

ð6Þ

where P b,s2ð Þ is a prior distribution of estimates for the
b parameters based on previous knowledge. In many
cases as well as in this study, there was no prior informa-
tion concerning the predictors used to create informed
prior distributions. Therefore, the prior distributions fol-
lowed a spike and slab normal distribution where: m= 0

and s2 = s2
yt

as specified by the Bayesian structural
time series-‘‘BSTS’’ and ‘‘spike.slab.prior’’ packages in R.
F(Yt j b,s2) is a likelihood function of the bike demand
based on the data for each predictor variable (33, 34).
F(Yt j b,s2) � P b,s2ð Þ is proportional to the posterior
distribution. The mean of the posterior distribution can

be taken to obtain estimates for each parameter. The esti-
mates can be standardized by multiplying the estimate by
the standard deviation of the predictor and dividing it by
the standard deviation of the dependent variable.

Model Evaluation

The accuracy of predictor variables used in both the
ARIMAX and Bayesian models was determined using
the MAPE, which has the following formula (35):

MAPE =
1

n

Xn

i= 1

jŷt � yt j
yt

3 100 ð7Þ

where the term n refers to the sample size, yt is the actual
value, and ŷt is the models’ estimated value. MAPE is
the average deviation of the models’ demand from the
actual demand. MAPE values \10 indicate an accurate
forecast, 10 to 20 indicate a good forecast, 20 to 50 indi-
cate a reasonable forecast, and .50 indicate an inaccu-
rate forecast (35, 36). In this study, we are looking for the
impact of the predictor variables on bike demand. If the
estimated model is accurately representing the actual bike
demand, then the coefficient for the predictor variables
bð Þ is accurately representative of the impact of these
predictors.

Results and Discussion

ARIMAX Times Series Analysis

In this section, the results from the ARIMAX time series
analysis are analyzed and discussed for Brooklyn and
Manhattan, pre- and post-vaccine (Table 3). The signifi-
cance level in this study was a=0.05. All statistically
insignificant variables (below the critical values) were
removed in the modeling process (except for complete
vaccination numbers). The parameters or coefficients (b)
were standardized for the predictor variables so that they
could be compared. In Table 3, ‘‘AR’’ and ‘‘MA’’ refer
to the autoregressive and moving average terms
respectively.

Manhattan. Before the vaccine roll-out (b=20.18,
t=28.23), increased precipitation decreased bike shar-
ing demand while increased temperature led to increases
in bike sharing (b=0.20, t=3.68). Work-related travel
(b=20.09, t=22.63) led to decreased bike sharing
demand while park-related activity was the leading influ-
ence for bike travel (b=0.66, t=14.91). This probably
indicates that work-related travel was not a primary
motivation for bike sharing; rather, it seems that leisurely
travel (e.g., to parks) may have been the main reason for
bike share usage. The negative b for work seems to
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indicate that the more individuals were engaged in work-
related travel, the less they were likely to use bike sharing
platforms. Other Google Community Mobility Reports
variables (Retail/Recreational travel, Grocery trip,
Residential activity) were removed because of high corre-
lation threats and the Apple Mobility Transit variable
was statistically insignificant. The COVID-19 Policy
score variable negatively influenced bike sharing demand,
indicating that stronger COVID-19 policies all led to
decreases in bike sharing.

After the vaccine roll-out in Manhattan, complete
vaccination (b=0.04, t=0.94) positively influenced
bike sharing demand, but the t-statistic was below the
critical value, indicating that vaccination was not sig-
nificant. The number of COVID-19 tests (b=0.24,
t=4.92) and deaths (b=0.15, t=2.15) led to
increases in bike sharing demand, while the number of
COVID-19 cases (b=20.31, t=4.26) led to decreases
in bike sharing. These results seem contradictory but
are justifiable. The COVID-19 tests variable refers to
the number of COVID-19 tests taken, regardless of the
result. If an individual received a positive test, then
they would be less inclined to travel, which is why the
COVID-19 cases variable had a negative b value. On
the other hand, if an individual’s test was negative,
then they would be confident that they do not have
COVID-19 and would be more inclined to travel.
Therefore, if more people were receiving negative test
results than positive test results, then it makes sense
that the COVID-19 tests variable would have a positive
b. The COVID-19 deaths variable’s b was probably
positive because individuals were moving away from
public transportation as COVID-19 was breaking out
(40). Therefore, individuals were moving toward modes
that were perceived as less risky, such as travel by car,
walking, and biking. Stronger wind speed (b=20.10,
t=23.18), increased precipitation (b=20.12,
t=23.91) and increased snowfall (b=20.43,
t=29.15) all led to decreases in bike sharing demand.
Snowfall is the strongest influence on bike sharing
demand and wind is the weakest influence of the three.
Increased temperature (b=0.23, t=3.56) led to
increases in bike sharing as well. Travel to parks
(b=0.30, t=5.83) was also a significant influence for
bike sharing, similar to the pre-vaccine model.

Brooklyn. Before vaccination, COVID-19 cases led to
increases in bike sharing numbers in Brooklyn (b=0.34,
t=5.76). The b value is opposite that found in the
Manhattan: post-vaccine model but is still justifiable.

Brooklyn is a lower-income borough with more indi-
viduals dependent on transit during the pandemic since
there are more individuals working essential jobs that
require in-person work, and it has a denser population

(37–39). Therefore, increasing COVID-19 cases during
the pandemic (pre-vaccine) probably led to a larger shift
away from public transit to bike sharing in Brooklyn
than in Manhattan. Like Manhattan, before the vaccine
roll-out, increased precipitation in Brooklyn (b=20.16,
t=26.69) led to decreases in bike sharing while higher
temperature (b=0.31, t=8.60) led to increases. Also,
similar to Manhattan: pre-vaccine, work-related travel in
Brooklyn was a negative influence on bike sharing
(b=20.50, t=24.97). Unlike in the Manhattan mod-
els, in the Brooklyn models, Retail/Recreational travel,
Grocery trip, and Residential activity variables did not
threaten high multicollinearity and were included. Also,
the Transit variable was statistically significant, unlike in
the Manhattan model. It can be observed that transit
(b=0.20, t=2.37), retail/recreational travel (b=0.23,
t=2.06) and grocery trips (b=0.26, t=5.38) were all
positive influences for bike sharing trips, indicating that
grocery-related travel was the main travel purpose for
bike sharing trips. It is important to note that transit
trips can still be correlated with other trip purposes. For
instance, an individual can bike to a transit station to go
grocery shopping or retail shopping. Even if this was the
case, the nature of the Google Mobility Trends data col-
lection process would count both the transit and grocery
or retail trip. Residential activity (b=20.99, t=8.60)
was a negative influence on bike sharing, which makes
sense because individuals are not home while using bike
sharing platforms. Gathering restrictions (b=0.46,
t=6.5) and public transit closures (b=0.10, t=2.00)
both led to increases in bike sharing demand, which
makes sense because individuals were resorting to biking
as an alternative to regular activity that was canceled
because of the pandemic (40). Lastly, increased searches
for COVID-19 (b=20.16, t=3.23) led to decreases in
bike sharing trips, suggesting that news of COVID-19
and fears of the virus spreading discouraged bike
sharing.

After the vaccine, in Brooklyn, COVID-19 vaccina-
tion numbers (b=0.11, t=3.20) significantly impacted
bike sharing demand, unlike in Manhattan: post-vaccine.
Increased wind speeds (b=20.05, t=22.36) and snow-
fall (b=20.32, t=9.57) decreased bike demand, while
higher temperatures (b=0.09, t=2.09) increased bike
demand. Work-related travel (b=20.32, t=4.71) and
residential activity (b=20.56, t=27.00) were still neg-
ative influences for bike sharing. Retail/recreational
travel (b=0.2.64, t=8.60) and grocery trips (b=0.17,
t=3.46) still led to increases in bike sharing demand.
Post-vaccine, the COVID-19 policies of gathering restric-
tions and public transit closure no longer impacted bike
sharing numbers (they were not statically significant).
This could indicate that, post-vaccine, individuals were
less sensitive to COVID-19 policies.
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Bayesian Times Series Analysis

In this section, the estimates for the predictor variables
and MAPE from the Bayesian time series analysis with
the estimates and MAPE from the ARIMAX time series
analysis are presented (Table 4). The Bayesian model
produces a distribution of values for estimates. In this
case, the mean value of the distribution was taken as the
estimate and the values were standardized for compari-
son. Table 5 shows various diagnostics for the Bayesian
model, such as sample size, number of simulations
(Markov Chain Monte Carlo-MCMC), Burn-ins, and Ř.

Before commenting on the similarities and differences
in Bayesian and ARIMAX results, it is important to note
that the overall accuracy of ARIMAX models was

significantly better than the Bayesian models. All of the
ARIMAX models’ MAPE was below 5, indicating that
the bike demand estimates from the model accurately
represented the actual data. Three of the Bayesian mod-
els’ MAPE fell between 10 and 20, a ‘‘good’’ representa-
tion of the actual data, and the pre-vaccine model in
Brooklyn had a MAPE of 22.96, just falling outside of
the ‘‘good’’ representation zone (35, 36). The estimates of
the Bayesian time series model were still relatively similar
to that of the ARIMAX model, thus cross-validating the
ARIMAX results. We will look at the Manhattan mod-
els, both pre- and post-vaccine, to compare the findings.
In the Manhattan: pre-vaccine period, except for the
Policy score variable, the average deviation between the

Table 4. Bayesian and ARIMAX Time Series Comparison Results

Manhattan: pre-vaccine Manhattan: post-vaccine Brooklyn: pre-vaccine Brooklyn: post-vaccine

Bayesian ARIMAX Bayesian ARIMAX Bayesian ARIMAX Bayesian ARIMAX

MAPE (%) 13.37 1.31 13.82 4.63 22.96 1.72 18.38 3.44
Complete vaccination – – 0.02 0.04 – – 0.001 0.11
COVID-19 tests – – 0.21 0.24 – – – –
COVID-19 cases – – 0.00b –0.31 0.00c 0.34 – –
COVID-19 death – – 0.003 0.15 – – – –
Wind – – – –0.10 – – 0.00h –0.05
Precipitation –0.14 –0.18 –0.16 –0.12 –0.16 –0.16 – –
Snow – – – –0.43 – – – –
Temperature 0.13 0.20 0.17 0.23 0.00d 0.31 0.17 0.09
Work –0.09 –0.09 – – –0.004 –0.50 –0.33 –0.32
Park 0.69 0.66 0.34 0.30 – – – –
Transit (Apple) – – – – 0.31 0.20 – –
Retail/Recreation – – – – 0.00e 0.23 0.33 0.19
Grocery trip – – – – 0.12 0.26 0.002 0.17
Residential activity – – – – –0.51 –0.99 –0.52 –0.56
Policy score 0.00a –0.19 – – – – – –
Gathering restriction – – – – 0.28 0.46 – –
Public transit closure – – – – 0.00f 0.10 – –
Searches: COVID-19 – – – – 0.00g –0.16 – –

Note:
a5.73E-04.
b23.45E-04.
c3.36E-05.
d2.81E-05.
e1.35E-04.
f1.21E-05.
g1.80E-05.
h21.26E-04.

Table 5. Various Diagnostics for the Bayesian Model

Model Sample size Simulations (MCMC) Burn-ins Potential Scale Reduction Factor (Ř)

Manhattan: pre-vaccine 303 1,000 491 0.997
Manhattan: post-vaccine 350 1,000 478 0.998
Brooklyn: pre-vaccine 303 1,000 405 0.997
Brooklyn: post-vaccine 350 1,000 497 0.998
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estimates was about 16%. The estimate of the Work vari-
ables was 20.09 for both models; for the Park variables
the estimates were 0.69 and 0.66 for the Bayesian and
ARIMAX models respectively. In the Manhattan: post-
vaccine models, most estimates were relatively close. It is
also important to note that the sign (6 ) of every vari-
able was the same, except for the Policy score variable in
Manhattan: pre-vaccine and the Searches: COVID-19
variable in Brooklyn: pre-vaccine.

Overall, the Bayesian models were significantly underes-
timating some parameters but there were no significant
overestimations. This is probably because the original prior
distribution assigned to each of the parameters was a nor-
mal distribution with the mean set to zero. The original
normal distribution around a zero mean had a strong pull
on certain estimates. It can be seen in Figures 3 to 6 that
the variables that were underestimated did not have a pro-
nounced distribution, rather a spike and slab near zero.

The un-standardized estimates along with their poster-
ior distributions are displayed in Figures 3 to 6.

Conclusion

ARIMAX and Bayesian time series analyses were per-
formed on Citi Bike data in NYC to understand how the
COVID-19 vaccination impacted bike sharing. The anal-
yses were performed in two boroughs in NYC
(Manhattan and Brooklyn), both during a pre-vaccine
period (February 15, 2020–December 14, 2020) and a
post-vaccine period (December 15, 2020–January 27,
2022). The predictors for bike sharing demand were

taken from the New York State Health Department
(COVID-19 vaccination included), Apple Mobility
Trends Reports, Google Community Mobility, Google
Trends, NOAA, OxCGRT, and The New York Times.

The general findings were that COVID-19 vaccination
did not significantly impact bike sharing in Manhattan
but it did in Brooklyn. Various previous research found
that the effects of the pandemic were perceived differently
in urban (e.g., Manhattan) and suburban (e.g., Brooklyn)
areas (41, 42). These studies indicate that various socioe-
conomic attributes (e.g., income), population density, and
transit availability are the inherent reasons for the bike
share demand variation in Manhattan and Brooklyn.

Even though vaccination was a statistically significant
influence in Brooklyn, shopping (grocery and retail/
recreational) were already strong influences for bike
sharing pre-vaccine and post-vaccine, and they remained
stronger influences than vaccination. Increases in
COVID-19 numbers generally pushed individuals toward
bike sharing in Brooklyn but away from bike sharing in
Manhattan. Further research can be carried out on the
socioeconomic differences in the two boroughs to better
understand how COVID-19 and vaccination influenced
transportation.

Other findings show that weather consistently played
a key role in travel demand. In nearly every model,
increased temperatures led to increased bike sharing
demand, while increased precipitation and wind led to
decreases in bike sharing demand. Lastly, there was a
negative association between work-related travel and
bike sharing both in Manhattan and Brooklyn, while

Figure 3. Distribution of Manhattan: pre-vaccine predictors.

Drummond and Hasnine 11



park-related travel was a positive influence for bike shar-
ing. The average MAPE for the ARIMAX models was
below 5, indicating the models were accurately representing
the data; therefore, these findings can be presented with a
high level of confidence. When comparing the standardized
estimates from the ARIMAX and Bayesian models, the
Bayesian estimates generally confirmed the findings of the
ARIMAX model. The signs of nearly every parameter
were the same, and the strength of the influence of most
parameters were roughly the same. The Bayesian model
significantly underestimated some parameters, indicating
the modeling approach can be improved.

Limitations and Recommendations

One limitation in the Bayesian time series analysis was
not incorporating previous knowledge about the

predictor variables in the prior distribution. Along with
this, the BSTS package in R did not specify how to use
other prior distributions except for the spike and slab
distribution or the default distribution, which was a nor-
mal distribution around 0. It is recommended to explore
further the BSTS package or use another package or
program to specify different prior distributions.

Another limitation was in the inclusion process.
Variables were removed if their correlation was above
0.75 with other variables. As a result, many variables
that were aggregated had to be removed. Of the variables
that remained, some were removed from the models
because they were statistically insignificant. Variables
because they were not statistically significant could have
eliminated the correlation threats for other variables.
For instance, in the Manhattan models, COVID-19 hos-
pitalizations and COVID-19 cases counts had a high

Figure 4. Distribution of Manhattan: post-vaccine predictors.
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correlation. COVID-19 hospitalizations were removed
but, when modeling, COVID-19 cases counts were not
statistically significant and were removed. This would
then allow for COVID-19 hospitalization to be included
as a variable and modeled. The issue is that with a large
number of variables, running through every combination
of variable correlation before modeling, their significance
after modeling, and re-running correlation is practically

impossible. Developing an algorithm that can automate
this process will allow for the largest number of statisti-
cally significant variables included in each model.

This research explicitly looked at the bike share
demand. However, it would be interesting to look at the
relationship between the vaccination impacts on transit
and bike share. Since transit users are less likely to own a
car, they will be more likely to choose bike share because

Figure 5. Distribution of Brooklyn: pre-vaccine predictors.
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Figure 6. Distribution of Brooklyn: post-vaccine predictors.
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of the fear of virus transmission. In addition, it would be
interesting to explore the factors affecting this mode
shift, such as trip purpose (recreation versus commut-
ing), income (high versus low), and so forth. Given that
this study uses a time series analysis over nearly 2 years,
spatial factors that do not provide data changing regu-
larly, such as population and built-in environmental fac-
tors, were not included.

In this study, we used the NOAA data set. NOAA
provides weather data, including wind, precipitation,
snowfall, and temperature. There are not separate
weather stations in Queens and Bronx. Therefore, we
decided only to compare Manhattan and Brooklyn.
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