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Abstract. Verbal autopsies (VAs) are extensively used to determine cause of death (COD) in many low- and middle-
income countries. However, COD determination from VA can be inaccurate. Computer coded verbal autopsy (CCVA)
algorithms used for this task are imperfect and misclassify COD for a large proportion of deaths. If not accounted for, this
misclassification leads to biased estimates of cause-specific mortality fractions (CSMFs), a critical piece in health-policy
making. Recent work has demonstrated that the knowledge of the CCVA misclassification rates can be used to calibrate
raw VA-based CSMF estimates to account for the misclassification bias. In this manuscript, we review the current prac-
tices and issues with raw COD predictions from CCVA algorithms and provide a complete primer on how to use the VA
calibration approach with the calibratedVA software to correct for verbal autopsy misclassification bias in cause-specific
mortality estimates. We use calibratedVA to obtain CSMFs for child (1–59 months) and neonatal deaths using VA data
from the Countrywide Mortality Surveillance for Action project in Mozambique.

INTRODUCTION

Accurate and credible cause-of-death (COD) data are criti-
cal to understand, interpret, and address the burden of dis-
eases and tailor public health policymaking at subnational,
national, and regional levels. A complete diagnostic autopsy
(CDA) is the gold-standard procedure for determining COD.
When full autopsy is not affordable or feasible, medical certi-
fication of COD (MCCOD) is often conducted using all medi-
cal information relevant to the terminal illness. In low- and
middle-income countries (LMICs), CDAs are very rarely con-
ducted due to cultural, religious, and infrastructural con-
straints, whereas MCCOD has suboptimal coverage that is
usually limited to deaths that occur in health facilities and is
of variable quality.1 For settings without the capacity to con-
duct CDA or where they are infrequently done, a nonclinical
approach called “verbal autopsy” (VA) is commonly used.
VA is a systematic postmortem interview of the relatives of
the deceased on the health history, signs, and symptoms
of the fatal illness that can potentially identify the COD.
Although the reliability of the VA at the individual level is
questionable,2 it is often the only feasible option and has
become a key source of COD data in LMICs that do not
have fully developed civil registration and vital statistics
systems with MCCOD information.3 In addition, VA-based
results are often useful for studying population-wide trends
of cause of death.
There are two ways to assign a COD from a VA report.

One practice is to have physicians review the VA (physician-
coded VA [PCVA]).3 This process is time- and resource
intensive, and PCVA results can be inaccurate or hard to
standardize across physicians, countries, or regions.4 A
scalable alternative to PCVA is to use an automated algo-
rithm termed “computer-coded VA” (CCVA) that inputs a VA
record and outputs a probable COD. The format of the VA

instrument has now been standardized by the WHO and is
compatible with many CCVA automated diagnostic algo-
rithms like InterVA,5 InSilicoVA,6 EAVA,7 SmartVA,8 the Naive
Bayes Classifier,9 among others.
The automation afforded by CCVA, offering diagnosis of

COD for large databases of VA records, has led to its
increased adoption in large-scale VA studies.10 The “raw”
estimates of cause-specific mortality fractions (CSMFs)—the
percentage of deaths attributable to a given cause—are
obtained as the proportion of the total number of deaths in
the VA database that are predicted to be from that cause by
the CCVA algorithm. The CSMF estimates can be stratified
by age groups, sex, geographical regions, or other sub-
groups. CSMF estimates from CCVA algorithms can pro-
duce results similar to those from physician review.11

However, this widespread practice of aggregating CCVA
outputs to obtain CSMFs has ignored the fact that CCVA
algorithms are not perfect, and their accuracy depends both
on the quality and geographical coverage of the training data
and the modeling assumptions used in creating the algo-
rithm. The COD determination from CCVA is not the true
COD; it is only a predicted one and is prone to misclassifica-
tion. Multiple studies have now shown that CCVA-predicted
COD (VA-COD) suffers from misclassification bias; for a sig-
nificant proportion of deaths (often . 50%), the predicted
cause from CCVA differs from the cause obtained using
more comprehensive information.12–14 The misclassification
of CCVA can be assessed by comparing CCVA outputs to
medical certification based on COD obtained from CDA,
minimally invasive tissue sampling (MITS; also called mini-
mally invasive autopsy, or MIA),15–17 or some “reference
standard” combination of laboratory, pathology, and medi-
cal imaging results such as used by the Population Health
Metrics Research Consortium (PHMRC).18

The misclassification bias of CCVA gets propagated into
the raw (uncalibrated) estimates of CSMFs based on the
CCVA-determined COD. Biased CSMF estimates from
CCVA can mislead public health professionals and decision-
makers to potentially misallocate the use of resources to
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prevent mortality. This misclassification is also prevalent for
PCVA, which has been shown to perform worse than CCVA
at identifying COD at both the individual and the population
level in some settings.4 In this manuscript, we focus on cali-
brating CSMFs from CCVA, but the calibration approach can
also be applied to CSMFs from PCVA.
Datta et al.13 developed a method called “calibratedVA”

that calibrates the initial raw CSMF estimate from a CCVA
algorithm by adjusting for the misclassification bias of the
algorithm. The method requires a paired dataset of COD
having both CCVA and a reference standard COD based on
more comprehensive medical and laboratory information to
learn the misclassification rates of the CCVA algorithms. The
misclassification rates are then used to calibrate the raw
CSMF estimates in a hierarchical Bayesian modeling frame-
work. Calibration has been shown to substantially improve
CSMF estimates over the raw (uncalibrated) estimates from
CCVA.13,14

In this manuscript, we offer a statistical primer on how to
use calibratedVA to correct for misclassification bias of CCVA
algorithms. We provide a complete workflow of the methodol-
ogy that estimates the raw CSMF and the misclassification
rates, combines them to produce calibrated CSMF estimates,
and provides data-driven model comparison metrics to com-
pare and choose between the raw and calibrated CSMF esti-
mate. Finally, we discuss how calibratedVA also combines
predictions from multiple CCVA algorithms to produce a single
CSMF estimate based on an ensemble calibration method.
The ensemble method is preferable over the use of a single
CCVA algorithm because it guards against incorrect results
produced by a poorly performing algorithm. We apply calibra-
tedVA to obtain CSMF estimates for child (aged 1–59months)
and neonatal deaths in Mozambique. The methodology can be
used to correct for COD misclassification bias in VA-based
projects in other countries.

MATERIALS AND METHODS

COMSA Mozambique verbal autopsy data. We use VA
data from the nationally representative Countrywide Mortal-
ity Surveillance for Action (COMSA) program in Mozambique
to obtain raw (uncalibrated) CSMF estimates. COMSA pro-
vides CSMFs at the national and subnational levels for
Mozambique based on active surveillance for deaths in 700
clusters of approximately 300 households each, with a total
population of 923,031 people. We collected 11,614 VAs on
deaths across all age groups that occurred from 2017 to
2021. The majority of deaths that are registered in COMSA
occur outside of a hospital and thus are not assigned an offi-
cial COD. For each registered death in COMSA, a VA is con-
ducted. The dataset used in this analysis includes records
for 1,841 deaths of children (1–59months old) and 818 neo-
natal deaths from May 2018 to May 2021 from all 11 pro-
vinces of Mozambique. The VA questionnaire used for
COMSA corresponds to the WHO 2016 VA tool.1 The forms
have been programmed into the Open Data Kit software19

for data collection on a tablet. In-person interviews are con-
ducted with a respondent determined to have been the
child’s usual caregiver, which is most often the mother.
Child Health and Mortality Prevention Surveillance

(CHAMPS) Network MITS data. To estimate the misclassi-
fication rates of COD predictions for the CCVA algorithms,

we use data from the CHAMPS network. CHAMPS is an
ongoing comprehensive child mortality surveillance project
that performs MITS to inform determination of COD for
children (1–59months), neonates, and stillbirths at sites
across several countries, including Mozambique.20 MITS
COD assignments in these age groups have been shown to
be accurate (�75% concordance) when compared with the
full diagnostic autopsies.16,21

The CHAMPS data used in this manuscript contain re-
cords for 426 child (1–59months) and 614 neonatal deaths
that occurred within the CHAMPS network hospitals in Ban-
gladesh, Ethiopia, Kenya, Mali, Mozambique, Sierra Leone,
and South Africa, from July 2017 through December 2020.
MITS is only conducted for “disease-related” deaths and not
for trauma or accidental deaths. The MITS-COD was deter-
mined through review of postmortem biopsy pathology and
screening tests for a large array of pathogens, as well as
medical history and clinical records, by a panel of physicians
(including pediatricians), pathologists, microbiologists, and
public health specialists. In CHAMPS, the COD report using
MITS provides a full chain of events, initiated by the underly-
ing cause, followed by the morbid or antecedent condi-
tions(s), and finalizing with the immediate cause. For each
death in CHAMPS, the VA record was also available in addi-
tion to the MITS-COD.17 Because the CCVA typically only
provides the underlying cause of death, to estimate misclas-
sification rates of VA (see “Misclassification bias of CCVA
algorithms” below), we pair the “underlying” cause from the
MITS-COD with the VA-COD for each of the deaths in the
CHAMPS dataset.
CCVA algorithms and uncalibrated CSMFs. To obtain

the raw (uncalibrated) estimates of age group–specific CSMFs,
we use COD diagnosis from two CCVA algorithms, InSilicoVA6

and EAVA,7 for each COMSA child and neonate record. These
CCVA algorithms were used due to their fundamentally differ-
ent nature of decision-making. InSilicoVA is a probabilistic
(Bayesian) method that assigns a COD for a VA record based
on the likelihood (probability) of the reported VA responses (ill-
ness, signs, and symptoms) for that record given each COD.
InSilicoVA is broadly similar to InterVA,5 another popular CCVA
algorithm, but offers a more statistically principled treatment of
the binary (yes/no) and the missing VA responses. Hence, we
used InSilicoVA instead of InterVA.
The second CCVA algorithm, EAVA, is not a statistical

algorithm. It is based on medical decision-making rules. The
approach relies on expert-derived algorithms of VA illness
signs and symptoms for each COD and a hierarchy to select
the main COD from among all identified comorbidities.22

EAVA does not use a probability framework, training dataset,
or symptom-given-cause matrix like InterVA or InSilicoVA.
Instead, it is a deterministic algorithm and for each death pro-
duces a single most likely COD. It is, however, driven by the
ordering of causes in the hierarchy of all causes of interest.
More details on the implementation of the two algorithms to
obtain COD is provided in Supplemental Section 3. Once the
specific cause has been determined by InSilicoVA and EAVA
for each death, causes are grouped into broader cause cate-
gories (see “Aggregation of causes into broad categories”
below) to be used for raw estimation or calibration.
For each neonatal and child (1–59months) death record in

the data, we obtained the top (most probable) COD from
InSilicoVA. These are then aggregated to obtain the raw
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(uncalibrated) InSilicoVA CSMFs simply as the proportion of
all VA records assigned to be from a given cause. The same
procedure is repeated with EAVA to obtain the raw EAVA
CSMF. More formally, for an age group and a chosen CCVA
algorithm, the raw CSMF estimate for a cause j for that age
group will be given by

Raw CSMF for cause j

5
Number of VA records with CCVA predicted COD as cause j

Total number of VA records
(1)

Misclassification bias of CCVA algorithms. Misclassifi-
cation occurs from a CCVA algorithm when the algorithm
assigns an individual a COD that is different from that indivi-
dual’s reference COD (in this case the MITS-COD). Previous
work has shown that using the misclassification rates of a
VA algorithm to obtain a calibrated CSMF estimate can
greatly improve accuracy over the uncalibrated CSMF esti-
mate.13 Because the misclassification rates for the CCVA
algorithms are not known for COMSA, we use the CHAMPS
data to estimate these misclassification rates. For each
CHAMPS record we use the MITS-COD paired with the
VA-COD. We can estimate the misclassification rate (cause-
specific true-positive and false-negative rates) of the CCVA
algorithm as described below.
For a cause i we calculate the true-positive rate of the

CCVA algorithm for that cause as the proportion of CHAMPS
deaths with MITS COD i that are also assigned to COD i by
the CCVA algorithm (VA-COD). Similarly, for a pair of causes
i and j, we can calculate the cause pair–specific false-
negative rate as the proportion of CHAMPS deaths with
MITS-COD i that are assigned to COD j by the CCVA algo-
rithm (i.e., VA-COD is j). We collect these true-positive and
false-negative rates in a misclassification rate matrix M
whose entryMij in the ith row and jth column is given by:

Mij5

Number of CHAMPS cases with MITS COD cause i,

and CCVA predicted COD as cause j

( )

Total number of CHAMPS cases with MITS COD cause i
(2)

The diagonal entries of the misclassification matrix are the
cause-specific true-positive rates (sensitivities), and higher
values would indicate higher accuracy for the CCVA algo-
rithm. The off-diagonal entries of the matrix contain the
cause pair–specific false-negative rates and lower values
would indicate higher accuracy for the CCVA algorithm. A
perfect CCVA algorithm with no misclassification bias would
have 1 (100%) on the diagonals and 0 on the off-diagonals
ofM.
Aggregation of causes into broad categories. Estimat-

ing the misclassification rates of a CCVA algorithm requires
estimating all the entries of the misclassification matrix. For
C many causes, this would imply inferring about C2 many
true-positive or false-negative rates (one corresponding to
each cause pair). If we want to use the full set of more than
30 causes, this would mandate estimating the 30 3 30 mis-
classification rates matrix (i.e., 900 cause pair–specific mis-
classification rates). Such a task is impossible with only a
few hundred MITS deaths (426 for children 1–59months,
614 for neonates). Hence, to ensure stable estimation of the

misclassification rates, we grouped the original larger set of
causes into a smaller set of broad cause categories.
For children, we use seven broad causes of death in our

study: pneumonia, malaria, diarrhea, severe malnutrition, HIV,
other infections, and other causes of death. Other infections in
children include meningitis, typhoid fever, and hepatitis. Other
causes in children include cancer, injury, and congenital mal-
formation. For neonates, we use five broad causes: congenital
malformation, infection, intra-partum related events (IPREs),
prematurity, and other. Infection in neonates includes neonatal
tetanus, meningitis and encephalitis, diarrhea, pneumonia, and
sepsis. The other category for neonates includes causes like
injury. These broad causes represent the main causes of death
of young children and neonates known from the extensive lit-
erature on child mortality in LMICS.3,23

Correcting for misclassification bias using calibrated VA.
The misclassification matrix of a CCVA algorithm can be
used to correct for its misclassification bias in the raw CSMF
estimates. The calibration is essentially a back-solving pro-
cedure to adjust for the CCVA sensitivities. We elucidate this
with a simple hypothetical example. Suppose there are only
two causes A and B, and we know that a given CCVA has
sensitivities of 95% and 65% for the two causes, respec-
tively. This knowledge about the sensitivity of CCVA may be
derived from some paired dataset of VA records and a refer-
ence COD (like MITS-COD) from an auxiliary dataset (like the
CHAMPS data in this application). Also, suppose that from
the unpaired data of only VA records, the uncalibrated
CSMFs are 53% for cause A and 47% for cause B. It is evi-
dent that these uncalibrated CSMFs are biased. Sensitivity
for cause B is only 65%. Therefore, the CCVA mistakenly
assigns 100% 2 65% 5 35% of people who truly die of the
cause B to cause A. This will lead to a higher uncalibrated
CSMF for the cause A than its true CSMF. We can use these
sensitivities to calibrate for the true CSMF pA and pB 5

100%2 pA, respectively, of cause A and B as follows:

53%5pA � 95%1pB � ð100%265%Þ (3)

47%5pA � ð100%295%Þ1pB � 65% (4)

The above equations allow to calibrate (back-solve) for the
unknown CSMFs pA and pB. These calibrated CSMFs are
pA 5 30% and pB 5 70%, respectively, reflective of the sub-
stantial bias in the uncalibrated CSMF.
When more than two causes are being considered, the

back-solve is not straightforward, and direct attempts to
back-solve this multivariate system of equations may lead to
unstable and absurd estimates (estimated cause proportions
lying outside of 0–100%). Hence, the calibration approach
was formalized into a probability model that avoids both
these problems.13 The model has two parts for the two data
sources: COMSA and CHAMPS. The model for the COMSA
data models the raw CSMF as a weighted sum of the cali-
brated CSMF weighted by the misclassification rates similar
to the equations above. The model for the CHAMPS data
helps estimate these misclassification rates using Equation (2).
The two parts are jointly used in a Bayesian framework that
simultaneously estimates both the misclassification matrix
and the calibrated CSMFs. Being a Bayesian algorithm, cali-
bratedVA offers both point estimate of the CSMFs as well
as 95% credible intervals which are used for inference about
changes in CSMF after calibration. The COMSA national
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sample includes sampling weight to correct for the selection
of clusters with probability proportionate to size and over-
sampling in four provinces. However, for the analysis and
description in this paper, only unweighted CSMFs were
used. See Supplement Section 1 for a technical overview of
the calibration method. The calibratedVA method is made
publicly available as a software via Github R-package.24

The Github repository contains all the code as open-access
and a vignette with example scripts to use the software is
also publicly available.25

Ensemble calibration method. The available CCVA algo-
rithms generally do not agree with each other for a substan-
tial proportion of deaths, and, for a given VA data point, it is
challenging to know a priori which CCVA algorithm will be
most accurate. Hence, Datta et al.13 developed an ensemble
calibration approach that uses COD predictions from multi-
ple CCVA algorithms. The ensemble method estimates the
misclassification rates of each CCVA algorithm separately
and then calibrates by back-solving for the CSMF that
agrees best with all the data (i.e., the misclassification rates
and the raw CSMFs from each of the CCVA algorithms). The
ensemble calibration estimates the misclassification rates of
the different algorithms and weights the more accurate ones
favorably. Hence, the ensemble calibration has been shown
to guard against inadvertent use of a poor performing CCVA
algorithm and, therefore, performs better than VA calibration
using a single CCVA algorithm. In our analysis, in addition to
conducting individual VA calibration with each CCVA algo-
rithm to present the respective calibrated CSMFs, we also
implement the ensemble calibration by simultaneously using
the predicted COD data from both InSilicoVA and EAVA to
produce a unified CSMF estimate. As recommended by
Datta et al.,13 we present the estimate from the ensemble
calibration as our final CSMF estimate for each age group.
We compared the calibrated estimate from each respec-

tive CCVA algorithm with the corresponding uncalibrated
estimate. For the ensemble method, we compare the cali-
brated ensemble estimate with the uncalibrated ensemble
estimate, which is simply the equally weighted average of
the uncalibrated CSMF estimates from the different CCVA
algorithms.
Overview of VA calibration pipeline. We provide a sum-

mary of the entire VA calibration procedure in Figure 1. For
each VA record in the dataset (in our case, the COMSA VA
dataset), the predicted COD is obtained and aggregated,
leading to the raw uncalibrated CSMF estimates. This is
repeated for each CCVA algorithm considered (InSilicoVA
and EAVA in this analysis), and the resulting CSMFs are aver-
aged to obtain the uncalibrated ensemble estimate. From the
CHAMPS data of paired VA-COD and MITS-COD, we obtain
the misclassification rates for each CCVA algorithm. We feed
both the uncalibrated CSMFs and misclassification rates for
both algorithms into the VA calibration pipeline to obtain the
ensemble calibrated estimate.
To compare the results from the calibrated models to the

uncalibrated CSMFs for each CCVA algorithm (InSilicoVA,
EAVA, ensemble), we use the widely applicable information
criterion (WAIC).26 WAIC is an estimate of a model’s ability
to model future data but using only already collected data.27

Lower WAIC is better. Details of how the WAIC is calculated
are provided in Supplemental Section 2.

RESULTS

Child (1–59 months) results. Raw VA summary statistics.
All data analyses were conducted and figures were produced
using R software.28 We present the summary (predicted
counts and distributions) of different cause categories among
the COMSA VA data using both InSilicoVA and EAVA.
Among the 1,841 child deaths from the dataset, the analy-
sis excludes VA records for 252 child deaths for which the
EAVA diagnoses were inconclusive. Table 1 presents these
numbers for the remaining 1,589 VA records for under-five
child deaths. We see that, according to InSilicoVA, diar-
rhea and other infections each contributed to nearly one-
quarter of the deaths (25%); malaria and pneumonia were
also significant causes, both contributing to . 15% of
deaths; and severe malnutrition, HIV, and other each contrib-
uted to , 10% of the deaths. For EAVA, the distributions
showed some difference from the InSilicoVA results. Accord-
ing to EAVA, . 30% of the COMSA child (1–59months)
deaths were attributed to other infections, which stood out as
the single largest cause category. Pneumonia (21.5%) and
diarrhea (19.4%) were also major categories, whereas deaths
attributed to malaria, severe malnutrition, HIV, and other were
each, 10%.
CHAMPS MITS data and VA misclassification rate matri-

ces. To evaluate the misclassification rates of the two CCVA
algorithms, we used the paired dataset of MITS-COD and
VA-COD for child (1–59months) death records from CHAMPS.
Thirty-two child deaths of the CHAMPS/MITS study had
inconclusive EAVA diagnoses and were excluded from the
analysis. The misclassification rates of CCVA on the MITS
data are presented in Figure 2. The diagonal entries of the mis-
classification matrices are the cause-specific true-positive
rates (sensitivities) of the VA-COD agreeing with the MITS-
COD, and higher values would indicate higher accuracy for the
CCVA algorithm. For example, the entry in the first row, first
column of the InSilicoVA misclassification matrix in Figure 2
(left) is 44%. This means that of the deaths for which the
MITS-COD was malaria, the VA-COD was also malaria for
44% of them. The off-diagonal entries of the matrices contain
the cause pair–specific false-negative rates (i.e., the fraction of
cases with a specific MITS-COD that are assigned to a differ-
ent COD by the CCVA algorithm). Lower values of these
off-diagonal entries indicate higher accuracy for the CCVA
algorithm. As another example, the first row, second column
of the InSilicoVA misclassification matrix in Figure 2 (left) is
23%. This indicates that 23% of the child deaths that were
assigned to malaria by MITS were assigned to pneumonia
by InSilicoVA.
Both CCVA algorithms have very large misclassification

rates with cause-specific sensitivities that are very low
(�10% for severe malnutrition for both algorithms) to moder-
ate (�60% for the MITS diarrhea deaths for InSilicoVA
and the MITS HIV deaths for EAVA). Many of the cause
pair–specific false-negative rates are . 20% for either
algorithm.
Calibrated CSMFs. Figure 3 presents the results of

VA-calibration. We present both the uncalibrated and cali-
brated CSMFs along with the 95% interval estimate for the
calibrated CSMF. The exact CSMFs corresponding to these
plots are provided in Supplemental Table 1. In addition to
results for the individual CSMF algorithms (InSilicoVA and
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EAVA), we provide the results from the ensemble calibration,
which gives the final CSMF estimate.
For InSilicoVA (Figure 3, top left), the main changes after

calibration are an increase in CSMF for malaria and a
decrease in CSMF for pneumonia. We observe from Figure 2
that a large proportion of MITS-COD for malaria is falsely
classified by InSilicoVA as pneumonia or other infections.
Because these two causes combined account for 40% of

the COMSA deaths according to InSilicoVA (Table 1), the
calibration adjusts for this misclassification, thereby resulting
in increased proportion of malaria deaths. For pneumonia,
many of the deaths caused by MITS-diagnosed malaria,
diarrhea, and other infections are falsely classified as pneu-
monia, whereas among the MITS pneumonia deaths only
substantial misclassification is the diagnosis of diarrhea for
20% of deaths. These results imply that there are overall

FIGURE 1. A complete pipeline for calibration of verbal autopsy (VA) based cause specific mortality fractions (CSMF), using minimally invasive
tissue sampling (MITS), for Countrywide Mortality Surveillance for Action (COMSA) Mozambique. CHAMPS5 Child Health and Mortality Prevention
Surveillance; COD5 cause of death.

TABLE 1
Raw counts and percentages of cause of death in children (1–59 months) as predicted by InSilicoVA and EAVA

for COMSA child VA records (N 5 1,589)

Algorithm Malaria Pneumonia Diarrhea Severe malnutrition HIV Other Other infections

InSilicoVA, n (%) 303 (19.2) 251 (15.8) 399 (25.1) 74 (4.7) 58 (3.7) 128 (8.1) 376 (23.7)
EAVA, n (%) 134 (8.4) 342 (21.5) 308 (19.4) 98 (6.2) 125 (7.9) 99 (6.2) 483 (30.4)

COSMA5 CountrywideMortality Surveillance for Action; HIV5 human immunodeficiency virus; VA5 verbal autopsy.
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more false positives for pneumonia than false negatives, and
hence the CSMF decreases after calibration.
For EAVA, after calibration, the CSMFs for malaria and

other infections increase, and those of pneumonia and diar-
rhea decrease (Figure 3, top right). The reason for the
change in the EAVA CSMF of malaria is the same as that for
InSilicoVA: substantial undercounting of true malaria deaths
by EAVA. For pneumonia, a large percentage of MITS pneu-
monia cases are misclassified as HIV. Because HIV is a
relatively small category (Table 1), this only implies under-
counting a small absolute number of pneumonia cases. On
the other hand, a large percentage of other infections is mis-
classified by EAVA as pneumonia. Because other infections
contribute a high percentage of deaths, this implies substan-
tial overcounting of pneumonia cases. A net effect of these
is overcounting for pneumonia, and hence the calibrated
CSMFs for pneumonia is considerably lower than the uncali-
brated CSMFs. Additionally, for EAVA we see a large
increase in the CSMFs for other infections and decreases in
CSMFs for diarrhea and HIV. A high percentage (28%) of
deaths with MITS-COD as other infections were misclassi-
fied by EAVA as pneumonia, analogous to the misclassifica-
tion rate for InSilicoVA. However, compared with InSilicoVA,
EAVA has lower misclassification rates of deaths from other
MITS causes being misclassified as other infections (espe-
cially for MITS severe malnutrition deaths). Hence, there is
less overcounting and similar undercounting for other infec-
tions for EAVA compared with InSilicoVA, and we see that
after calibration the EAVA CSMFs for “other infections”
increases substantially.
The ensemble estimates are presented in Figure 3 (bottom

left). The uncalibrated ensemble CSMF is simply an equally
weighted average of the uncalibrated InSilicoVA and EAVA
CSMF. The ensemble calibrated CSMF lies between the

calibrated CSMF for InSilicoVA and EAVA, but the weights
are cause specific and data driven. For malaria, the CSMF
from ensemble calibration agrees more with the CSMF from
calibrated InSilicoVA, which had much more certainty than
the calibrated EAVA malaria CSMF, which had a wide credi-
ble interval. The final CSMF estimate from the ensemble is
presented in the pie chart of Figure 3 (bottom right) and
assigns 36% to other infections, 27% to malaria, 19% to
diarrhea, and , 10% to each of the remaining causes. The
95% Bayesian credible intervals for the calibrated CSMF
help assess for which set of causes the calibrated CSMF is
substantially different from the uncalibrated ones. We see
from Supplemental Table 1 that for the ensemble method,
the 95% interval for calibrated CSMF for malaria (19–33%)
lies above the uncalibrated estimate (14%), showing an
increase in the CSMF after calibration. The interval for cali-
brated CSMF for pneumonia (5–12%) lies below the uncali-
brated estimate (19%), showing a significant decrease. The
uncalibrated CSMF for “other infections” is at the lower end
of the interval for calibrated CSMF for this category (27–46%),
showing an increase in CSMF for “other infections” after
calibration.
In Figure 4, we evaluate the uncalibrated and calibrated

CSMF using WAIC for each of the three methods: InSilicoVA,
EAVA, and ensemble (see Supplemental Section 2 for details
of WAIC). The WAIC for the calibrated CSMF is consistently
lower, offering evidence that the uncalibrated CSMF is
incompatible with the observed misclassification rates and
that adjustment via calibration substantially improves model
fit for the combined COMSA and CHAMPS data.
Neonatal results. Raw VA summary statistics. Among

the 818 neonatal deaths, the analysis excludes VA records
for 186 deaths for which the EAVA diagnoses were inconclu-
sive. Table 2 presents these the VA-COD distributions for the
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FIGURE 2. Misclassification rate matrices for InSilicoVA and EAVA for children (1–59 months) based on the Child Health and Mortality Prevention
Surveillance minimally invasive tissue sampling (MITS) data. The row totals indicate the counts for MITS underlying cause of death. HIV 5 human
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remaining 632 COMSA neonate VA records. Both InSilicoVA
and EAVA attribute most deaths (�50%) to infection, with
IPREs and prematurity being the two other major categories,
each being attributed to �20–25% of the deaths. Both algo-
rithms assigned , 5% of deaths to either congenital malfor-
mation or other.

CHAMPS MITS data and VA misclassification rate matri-
ces. The misclassification rates of the two CCVA algorithms
for neonates were calculated based on CHAMPS/MITS data
for neonatal deaths; 79 deaths were excluded from the anal-
ysis due to inconclusive EAVA diagnosis. Additionally, all the
neonatal deaths from the CHAMPS site in South Africa were
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excluded due to a high proportion of nosocomial infections
documented at the newborn intensive care unit. The signs
and symptoms of the presenting illness, reported by the par-
ents in the VA, may not correspond well to the illness causes
by an infection acquired after hospitalization.
Figure 5 presents the misclassification rates. For InSili-

coVA, prematurity has the highest sensitivity, with 85% of
the MITS prematurity deaths correctly diagnosed by InSili-
coVA. Infection and IPREs had moderate sensitivity (�50%),
whereas sensitivities for congenital malformation and other
were low. There were also a few large misclassification rates,
most prominent being InSilicoVA falsely diagnosing prema-
turity for �20–30% of deaths for each of the other four MITS
causes. The misclassification rates for EAVA were broadly
similar. The major difference was that the sensitivity of EAVA
diagnosing prematurity was less (63%). Also, 52% of MITS
IPRE deaths were misdiagnosed by EAVA as infection.
Calibrated CSMFs. Figure 6 presents the calibrated CSMF

point estimates and 95% credible intervals along with the
uncalibrated CSMF for neonates. The impacts of calibration
on the CSMFs are similar for all three methods: InSilicoVA,
EAVA, and ensemble. The main changes after calibration are
an increase in CSMFs for infection and a large decrease in
CSMFs for prematurity. This is expected because a large
proportion of infection deaths are misclassified as prematu-
rity by both algorithms (Figure 5). For EAVA, the increase in
CSMFs for infection is more moderate than for InSilicoVA.
This is because, for EAVA, a considerable proportion of true
IPRE and prematurity deaths are misdiagnosed as infection,
so the calibration adjusts for it, and the gain in infection
CSMFs by accounting for the misclassification of infection
deaths as prematurity is partly offset by this adjustment.
The uncalibrated ensemble CSMF is simply the average of

the uncalibrated InSilicoVA and EAVA CSMFs. The final esti-
mate of CSMFs from the calibrated ensemble is presented in
the bottom right of Figure 5. The calibrated ensemble attri-
butes 62% of neonatal deaths to infection, 22% to IPREs,
8% to prematurity, and , 5% to each of congenital malfor-
mation and other. The exact numbers are provided in Sup-
plemental Table 2. The 95% Bayesian credible intervals for
the calibrated CSMF help assess for which set of causes the

calibrated CSMF is substantially different from the uncali-
brated ones. For the ensemble method, for infections the
95% interval for the calibrated CSMF (54–69%) lies above
the uncalibrated CSMF for infection (49%), showing an
increase in CSMF after calibration (Supplemental Table 2).
For prematurity, the 95% interval for calibrated CSMF
(6–12%) lies below the uncalibrated CSMF for prematurity
(23%), showing a considerable decrease. For the other
causes, the 95% interval for the calibrated CSMF covers the
uncalibrated CSMF.
We compare the performance of the uncalibrated and cali-

brated CSMFs for neonates using WAIC in Figure 7. Akin to
the children results, the WAIC for the calibrated CSMFs is
consistently and substantially better (lower) than the uncali-
brated analogs. This demonstrates that the uncalibrated
CSMFs do not provide an accurate description of the com-
bined COMSA and CHAMPS data and that calibration is
necessary to adjust for the large misclassification rates of
the CCVA algorithms.

DISCUSSION

This paper outlines the complete statistical workflow to
use a limited dataset of paired VA records and a reference
standard COD (in this case including results of MITS) to cali-
brate raw CSMF estimates obtained from CCVA algorithms
applied to abundant VA data from a nationally representative
survey (in this case COMSA). We show that for neonates
and children age 1–59months, and for two choices of CCVA
algorithms, the COD predictions from CCVA have large mis-
classification rates. Naive estimates of CSMF that do not
account for the misclassification will be biased, and calibra-
tion is necessary to mitigate this bias.
For child deaths in Mozambique, the calibration results in

higher estimated mortality from malaria and other infections
and lower estimated mortality from pneumonia. For neo-
nates, the calibration results in increased CSMF for infection
and decreased CSMF for prematurity. We provide insight
into why the calibration resulted in these changes to the
CSMF based on the misclassification rate matrices. How-
ever, in general, giving a simple explanation for the changes
to the CSMF after calibration may not always be possible
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TABLE 2
Raw counts and percentages of cause of death in neonates as predicted by InSilicoVA and EAVA for 632 COMSA neonate VA records

Algorithm Congenital malformation Infection IPRE Other Prematurity

InSilicoVA, n (%) 1 (0.2) 290 (45.9) 161 (25.5) 12 (1.9) 168 (26.6)
EAVA, n (%) 28 (4.4) 333 (52.7) 132 (20.9) 21 (3.3) 118 (18.7)
COSMA5 CountrywideMortality Surveillance for Action; IPRE5 intra-partum related event; VA5 verbal autopsy.
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because the calibration reflects the total change affected by
multiple different misclassification rates. This underscores
the need for clear communication between statistical practi-
tioners and government officials and stakeholders to under-
stand the general principles of the calibration model, which
are intuitive and interpretable.
The entire analysis in this manuscript used the top pre-

dicted COD from InSilicoVA. In practice, many probabilistic
algorithms like InSilicoVA offer not just the most likely COD
but probability scores for each cause to be the COD for an
individual. Reducing such a rich probabilistic output to a
single top cause wastes valuable information. Additionally,
the analysis excluded some deaths because of indecisive
EAVA diagnosis. Ideally this should be imputed to have
the population proportion for each cause. Such imputed
COD would also constitute a multi-cause COD output and
cannot be accommodated in the single-cause format.
Finally, MITS offers both an immediate and an underlying
COD, and for many deaths these are different. The current
analysis only used the underlying COD. An approach that
accommodates multi-cause MITS output would be able
to use information from both the underlying and the immedi-
ate COD.
Fiksel et al.14 extended the VA calibration method to

accommodate multi-cause output for both the VA and the
reference COD, based on the generalized definition of mis-
classification rates for such multi-output data.14,29 Subse-
quent work will apply this approach for calibration of CSMF
based on multi-cause COMSA-VA and CHAMPS-MITS data.
To use a multi-cause calibration for EAVA and also for the
ensemble that uses EAVA, one innovation will be to apply a
modified EAVA algorithm that offers multi-cause output as
opposed to the EAVA algorithm used here, which only offers
a single COD.

The calibration does not depend on the cause-specific
composition of the MITS deaths, which is not representative
of the population COD composition. Only the misclassifica-
tion rates of VA for a given MITS cause are estimated from
the CHAMPS data and used for calibration of COMSA data.
There is a need to increase community MITS deaths for bet-
ter representation of the VA misclassification rates. Hospital
deaths, and especially NICU deaths, may even exhibit signs
and symptoms not seen in community deaths due to effects
of treatment, nosocomial infections, prolonged life, etc., and
VA responses for these deaths may differ from those for
community deaths in their exposure to health care and medi-
cal information. Also, the pooled CHAMPS data across all
sites are used to improve sample size for estimation of the
misclassification rates. This increased sample size is critical
to improve precision of the analysis but may come with a
loss of representativeness of the estimated misclassification
rates for Mozambique. The impact of this tradeoff on the
performance of the calibration needs to be quantitatively
assessed. In the future, if more data are available on the
VA-MITS pair for community deaths in Mozambique, the
misclassification rates may be estimated solely using
Mozambique CHAMPS data and may be more representa-
tive of these rates in the population.
Due to the limited sample size of the CHAMPS data, the

calibration aggregated causes to a smaller set of broad
cause categories (see “Aggregation of causes into broad
categories” above) and produced calibrated CSMF at this
broad resolution of causes. In the future, when more MITS
data are available to estimate misclassification rates, these
lists could be expanded to include more specific causes
encompassed by these broad categories. For children, this
would add to the current list injury and three neonatal causes
that can still lead to death in the first year of life (i.e.,
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FIGURE 5. Misclassification rates matrices for InSilicoVA and EAVA for neonates based on the Child Health and Mortality Prevention Surveillance
minimally invasive tissue sampling (MITS) data. The row totals indicate the counts for MITS underlying cause of death. IPRE5 intra-partum related
event; VA5 verbal autopsy.
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prematurity, IPREs, and congenital malformation). For neo-
nates, the infection category would be replaced by pneumo-
nia, sepsis, meningitis, and other infections. With even more
data, the child list could be further expanded to include
causes such as specific injury types, childhood cancer, hem-
orrhagic fever, and other major conditions. The neonatal list
could also include tetanus and injuries.
Despite these important unsolved challenges for produc-

ing calibrated CSMF estimates, given the large misclassifica-
tion rates we observe for both VA algorithms, our method
produces more informed CSMF estimates than simply
aggregating VA algorithm predictions. The methodology
adopted for calibration of COMSA CSMF using MITS offers

a general template for calibration of VA-based CSMF in
other studies. The calibratedVA software only requires as
input the VA-COD for the unpaired data and both the
VA-COD and the COD based on more extensive information
(in our case, MITS-COD) for the paired data. The software
works with any number of different CCVA algorithms (can be
more than two) and with any type of reference COD in the
paired data (e.g., a different COD based on the PHMRC data
was used for VA calibration in Datta et al.13).
COD information is fundamental to prioritizing and plan-

ning disease control strategies and health services. VA is
the major data source for COD information for 90% of
child deaths globally30 and for all high-mortality countries.
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The use of calibration for nationally representative VA data
can make these estimates more accurately reflect the true
causes in a national population of children, better guiding
national and international responses to reduce child deaths.
As more countries begin implementing VAs within national
mortality surveillance systems, there will be a need to obtain
data on a smaller number of deaths with both VA-COD and
some reference COD (like MITS-COD) based on more com-
prehensive information. This will inform the misclassification
rates of VA for that country and, in turn, improve CSMF esti-
mates via calibration. Projects such as the global symptom-
cause archive31 may help to establish misclassification rates
for many algorithms and regions of the world to produce accu-
rate COD information for low- and middle-income countries.
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