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Abstract. Arboviruses receive heightened research attention during major outbreaks or when they cause unusual or
severe clinical disease, but they are otherwise undercharacterized. Global change is also accelerating the emergence
and spread of arboviral diseases, leading to time-sensitive questions about potential interactions between viruses and
novel vectors. Vector competence experiments help determine the susceptibility of certain arthropods to a given arbovi-
rus, but these experiments are often conducted in real time during outbreaks, rather than with preparedness in mind. We
conducted a systematic review of reported mosquito–arbovirus competence experiments, screening 570 abstracts to
arrive at 265 studies testing in vivo arboviral competence. We found that more than 90% of potential mosquito–virus
combinations are untested in experimental settings and that entire regions and their corresponding vectors and viruses
are undersampled. These knowledge gaps stymie outbreak response and limit attempts to both build and validate pre-
dictive models of the vector–virus network.

INTRODUCTION

Arthropod-borne (arbo-) viruses face evolutionary pres-
sures that favor generalism in the range of both vertebrate
hosts and arthropod vectors that they can use (reviewed in
detail in Ciota and Kramer1). That flexibility can pose a par-
ticular problem for public health, as it both enables their
spread into new locations and ecosystems and adds a layer
of unpredictability to their dynamics upon arrival. Experimen-
tal studies simplify real-world complexities of transmission
and can be used to test not only the basic compatibility of a
given virus and arthropod vector species but also vector
competence—the relative ability of arthropod vectors to be
infected by a virus and then disseminate and transmit it to a
susceptible host.2 Despite arboviruses’ evolutionary tenden-
cies toward broad host and vector range,1,3,4 there are com-
plex genetic underpinnings that govern vector competence,5

which can manifest as variation in competence between
closely related species of the vector6 or even among popula-
tions of the same species.7

Vector competence experiments are often conducted in
response to the emergence of novel pathogens or the emer-
gence of a known pathogen in a new location with previously
untested vectors. The distributions of both mosquito vectors
and the viruses they transmit are increasingly in a state of dis-
equilibrium as a result of climate change, global travel and
trade, and biotic homogenization.8,9 Operating in a responsive
paradigm, medical entomology is increasingly struggling to
keep pace with these shifts, as resources are often abruptly
diverted to new study systems to answer questions that sup-
port outbreak response and influxes of funding to support
such studies are typically reactionary to emergence events.10

The patchwork of experimental research efforts to date repre-
sents the cumulative history of these moments rather than
a systematic exploration of the mosquito–arbovirus network,
limiting outbreak preparedness and particularly complicating
efforts to predict unrealized links in that network using machine
learning.11,12 As there are no standardized repositories that
register vector competence experiments or immortalize their
findings, it is currently difficult to evaluate the distribution of
research efforts so far and identify important gaps that may be
relevant to future outbreaks.
Here, we conducted a systematic review of the mosquito–

arbovirus literature using keywords associated with vector
competence and screened studies in the Web of Science to
identify these studies. Our objective was to determine the
taxonomic and geographic patterns in these studies and to
identify historical trends driving research in this subfield.

MATERIALS AND METHODS

A systematic literature search was conducted on the Web
of Science to identify suitable records that described vector
competence experiments with mosquito-borne viruses. Our
search used the following terms: “(“vector competence” OR
“extrinsic incubation period” OR “vectorial capacity” OR
“dissemination”) AND (arbovirus OR virus) AND (experiment*
OR trial OR captive* OR laboratory) AND mosquito.” Our
search in the Web of Science Core Collection via University
of Edinburgh institutional access returned 570 records in
February 2021.
We performed an initial screen of records based on

abstracts, excluding reviews, methodology descriptions,
and studies with no experimental infection (N5 135), studies
with non-virus infections, insect-specific infections, infection
regimes with confounding treatments (i.e., coinfection with
Wolbachia or insect-specific viruses; N 5 71), studies involv-
ing infection in non-mosquitoes, experimental vector infec-
tion without any reported results describing competence
quantitatively or ex vivo data (N 5 55), and studies fitting
multiple exclusion criteria (N 5 22). For the remaining 287
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records, we undertook a second round of screening to
determine suitability (i.e., did the study include some sort of
experimental test of mosquito competence for arbovirus
transmission, such as infectious bloodmeal, intrathoracic
injection, or feeding on viremic animals). After excluding one
study for which we could not access the full text,13 we were
left with 265 studies that were within the scope (see Supple-
mental Table 1). For each of these, we recorded the species
pairs of mosquitoes and arthropod-borne viruses that were
experimentally tested together, regardless of how compe-
tence was measured (including both measurements of virus
[infectious virus versus viral RNA] and mosquito tissues ana-
lyzed [e.g., body, legs, head]) or whether the vector was
found to be competent or not; the country from which wild
mosquitoes were originally collected (even if populations
were maintained in laboratory settings long-term); and when
available, mosquito subspecies and (as applicable) dengue
virus serotype. Using the taxize R package,14,15 we updated
mosquito binomial names if a more recent valid name could
be found in the National Center for Biotechnology Information
taxonomic database; in all other cases, we used taxonomy
reported verbatim from source studies, including nonstan-
dard naming conventions (e.g., “Culex sp.,” “Culex declara-
tor/mollis”).
All analyses were conducted and figures generated in R

software version 4.0.3.

RESULTS

Taxonomic coverage. We found a total of 298 pairs of
viruses (N 5 35) and mosquito species (N 5 122) that have
been tested experimentally, leaving the majority of all possi-
ble pairings of these specific viruses and mosquitoes un-
tested (93%; 3,972 of 4,270 possible pairs; Figure 1). Among
these, some viruses were entirely untested in Aedes or Culex
vectors (seven and six, respectively), and most were un-
tested in Anopheles (27 viruses) (Figure 2). Although some of
these pairings may not be relevant for experimental vector
competence testing (e.g., viruses and vectors that do not
overlap geographically), there are many untested pairings of
potential public health importance, such as Everglades virus
in Aedes aegypti, that warrant further investigation given
ongoing and projected range expansions and changing cli-
matic suitability for transmission.8,9 However, for several
pairings, our search parameters yielded no results in the
Web of Science, despite the existence of relevant publica-
tions, such as Murray Valley encephalitis virus and yellow
fever virus in Culex spp.16–20 or Ross River virus (RRV) and
Sindbis virus in Ae. aegypti.21,22

Even within tested mosquito–virus combinations, effort is
distributed unevenly. A small subset of viruses and their main
vectors are extremely well studied: the 10 most commonly
tested combinations are dengue virus in Ae. aegypti (N 5 47
studies) and Aedes albopictus (N 5 19), Zika virus in Ae.
aegypti (N 5 35) and Ae. albopictus (N 5 18), chikungunya
virus in Ae. aegypti (N 5 24) and Ae. albopictus (N 5 23), and
West Nile virus in Culex pipiens (N5 30), Culex quinquefascia-
tus (N 5 16), and Culex tarsalis (N 5 8). Most research has
focused on flaviviruses (Flaviviridae: Flavivirus; N 5 13 viruses,
180 studies) and alphaviruses (Togaviridae: Alphavirus; N5 11
viruses, 79 studies), with less focus on bunyaviruses (Bunyavir-
ales: N5 8 viruses, 26 studies), rhabdoviruses (Rhabdoviridae:

N 5 2 viruses, 2 studies), and orbiviruses (one study on Ife
virus). Even within virus species, distribution of effort was often
unequal; for example, dengue serotype 2 (DENV-2), the most
readily available lineage for experimental work, is far better
studied (N 5 90 studies) than the other three serotypes
(DENV-1: N 5 30, DENV-3: N 5 17, and DENV-4: N 5 13).
Focus on particular viruses over time tended to track the tim-
ing of major outbreaks (Figure 3), including the emergence of
West Nile virus (1999–), chikungunya (2013–2014), and Zika
virus (2015–2016) in the Americas.
The viruses studied in the widest range of mosquitoes

were not always the most-studied viruses overall; the 10
viruses studied in the widest range of mosquito species
were Rift Valley fever virus (N 5 36 species), West Nile virus
(N 5 36), Venezuelan equine encephalitis virus (N5 31), Zika
virus (N 5 26), Eastern equine encephalitis virus (N 5 24),
chikungunya virus (N 5 21), RRV (N 5 19), DENV (N 5 13),
Japanese encephalitis virus (N 5 13), and Barmah Forest
virus (N5 8).
Geographic coverage. Lineage variation in vector com-

petence can be quite striking, even within the geographic
range of a single globalized species such as Ae. aegypti or
Ae. albopictus.34 To explore how arboviral research captures
this dimension of natural variation, we recorded where each
study’s mosquitoes were sourced from. The majority of
studies used mosquitoes sourced from the United States
(Figure 4), followed distantly by Brazil and Australia. The
range of pathogens tested using mosquitoes from a given
country is slightly more even, but still the majority of work
has focused on the United States, Brazil, Australia, China,
India, and western Europe (Figure 5). By both measures,
Africa and eastern Europe have been severely understudied,
particularly compared with the Americas, where multiple
explosive multinational epidemics have forced researchers
to answer questions about broad geographic risk.

DISCUSSION

Our results suggest that research efforts in this field have
largely been driven by the shifting priorities of arboviral out-
break response. As such, there are numerous gaps in viral
taxonomy, vector taxonomy, and vector geography that limit
the utility of available data for future outbreak response.
Moreover, the vast majority of mosquito–virus pairs (. 90%)
are simply untested within our sample of studies, indicating
that network-level understanding of arbovirus ecology is
incomplete. In particular, existing descriptions of the
mosquito–virus network (e.g., Figure 1 in Evans et al.11 and
Figure 2 in Yee et al.35) are challenging to interpret without
explicit understanding that the network’s architecture is
mostly representative of experimental history (Figure 6). In
turn, this severely constrains inference about—and predic-
tion of—the true underlying network.11,35,36 Some gaps may
particularly limit ecological inference; for example, anthropo-
philic vectors such as Ae. aegypti are far better studied than
bridge and sylvatic vectors such as Aedes africanus,
Sabethes spp., or Haemagogus spp. (especially because
some of these species (e.g., Haemagogus leucocelaenus)
have never been colonized, making vector competence
experiments especially challenging and reliant on field-
collected eggs). These species may be less important during
epidemics, but they determine the risk of an enzootic virus
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FIGURE 1. Number of studies that have experimentally tested a given arbovirus–mosquito pair. Abbreviations follow naming conventions in
virology. *Rhabdoviridae; **orbivirus.
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reaching humans and, conversely, whether sylvatic cycles
are established after an epidemic ends.35,37

Efforts to fill these gaps could take several approaches.
First, researchers can use network science to identify impor-
tant vector–virus pairs and conduct vector competence
experiments that would fill key knowledge gaps (especially
those of likely public health importance). Just as machine

learning can be used to guide species sampling for viral dis-
covery in nature,38 predictive models can be used to develop
or augment shortlists of the vectors that will be most relevant
during emergency scenarios that have previously been flagged
(e.g., yellow fever establishment in the Asia-Pacific region39).
The benefits of model-experiment feedback are iterative: at
present, many models will struggle with the sparsity of the
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of studies in any given year.) Tick marks represent notable outbreaks that motivated further inquiry, broken down by pathogen and sourced from
primary literature, including the WHO Disease Outbreak News. In some cases, outbreaks for one disease may have increased interest in others
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2011 – New Caledonia; 2013 – the Americas; 2017 – Italy; 2019 – Republic of the Congo. DENV: 1996 – the Americas; 2000 – DENV-3 introduced
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vector–virus matrix, but targeting important sources of uncer-
tainty will lead to better predictions.
Second, researchers can work toward a more cohesive

geographic picture of how risk varies, both for cosmopolitan
vectors such as Ae. aegypti and Ae. albopictus and for vectors
that are locally abundant or are known to feed on amplifying
hosts.40 The geographic biases we describe here reflect where
a relatively small number of institutions are able to continu-
ously fund and maintain vector colonies. This process is itself
often extractive and inefficient in nature (i.e., mosquito colonies
established with species from countries facing public health
emergencies are often used by researchers in the United
States and Europe to generate high-impact publications). This

dynamic can redirect funding from investment in capacity
building in the regions where vector-borne disease burdens
are highest, perpetuating disparities in both health and scien-
tific research. Deeply linked to capacity and sustainability of
institutions housing laboratory colonies, a lack of training in
medical entomology has been recently noted as a global issue
in the response to outbreaks of vector-borne diseases.41–43

Investment in these kinds of capacity building in under-
supported areas such as Africa, the Middle East, and eastern
Europe would be a significant contribution to global prepared-
ness for vector-borne disease outbreaks.
Finally, our study highlights that a substantial breadth and

depth of vector competence data are published every year
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in the peer-reviewed literature, but currently, the results of
these experiments have no standardized home. Other recent
studies highlight that synthesis of these data is possible,
despite the complexity of metadata required to describe vari-
ation in experimental protocols6; however, our study high-
lights the challenges of recovering “findable” data from the
vector competence literature. Limitations we encountered
included 1) Web of Science is not a comprehensive record of
this research area, and older studies in particular appear to
be missing; 2) keywords we used may not have captured all
of the relevant studies because of variable terminology; 3) a
handful of non–English-language publications—in particular,
Spanish and French language publications from Latin Amer-
ica and Africa, respectively—were not captured by our
search terms; and 4) not all studies reported reusable experi-
mental results and metadata. Developing a standardized
database of vector competence experiments with direct user
contributions—ideally supported by a universal set of mini-
mum data and metadata standards44—would help translate
the inconsistent and patchy funding in this field into more
immortalized data. In doing so, such a database would help
researchers identify geographic and taxonomic knowledge
gaps further in advance of public health emergencies and

would make more data immediately available to public health
agencies in a searchable format once an outbreak begins.
As we show here, data science approaches can be useful to

identify trends and gaps in scientific understanding of arboviral
ecology and evolution.12 In some cases, filling these gaps will
be more challenging; for example, establishing colonies is
harder for some mosquito species than others, and some
viruses require higher biosafety levels, limiting the number of
researchers with the ability to safely work with them. Future
work may also aim to expand our scope to other medically
important vectors, including ticks and midges (for which we
excluded a handful of studies that were identified by our
search terms). Similarly, future work could examine trends in
how coinfection dynamics are studied and tested. Both
insect-specific viruses and Wolbachia have been considered
as potential biological countermeasures to arboviral transmis-
sion in mosquitoes45–48; however, the network of pathogen-
coinfection-vector combinations has been characterized even
less systematically, and these data remain largely unsynthe-
sized. Addressing these types of questions in the future may
point to new opportunities for both empirical research and
modeling that harnesses these data to predict and prevent
arboviral emergence.
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