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Significance

For individual timing of medical 
treatment or diagnosis of 
circadian disorders, it is essential 
that practical methods are being 
developed which allow 
estimation of individual circadian 
phase in the clinic. Our machine 
learning algorithm outperforms 
previously published approaches 
by using targeted metabolomics 
data from one or two optimally 
timed blood samples to reliably 
estimate circadian phase of 
melatonin specifically for men or 
women. It thereby provides a 
relatively cheap method for 
potential circadian applications in 
the clinic after appropriate 
validation.

Author contributions: V.L.R., K.A., M.K., F.I.R., and 
D.J.S. designed research; V.L.R. performed research; 
T.W. contributed new reagents/analytic tools; T.W., 
B.M., D.J.S., and R.A.H. analyzed data; F.I.R. performed 
metabolomics analyses; and T.W., D.J.S., and R.A.H. 
wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS.  
This article is distributed under Creative Commons 
Attribution-NonCommercial-NoDerivatives License 4.0 
(CC BY-NC-ND).
1Present address: Division of Neuroscience and 
Experimental Psychology, School of Biology, Faculty of 
Biology Medicine and Health, University of Manchester, 
M13 9PT Manchester, United Kingdom.
2Present address: Surrey Sleep Research Centre, Faculty 
of Health and Medical Sciences, University of Surrey, 
Guildford GU2 7XP, United Kingdom.
3Present address: Biomedical Sciences Research 
Complex & Centre of Magnetic Resonance, University of 
St Andrews, St Andrews KY16 9ST, United Kingdom.
4To whom correspondence may be addressed. Email: 
r.a.hut@rug.nl.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas. 
2212685120/-/DCSupplemental.

Published April 24, 2023.

MEDICAL SCIENCES

Machine learning estimation of human body time using  
metabolomic profiling
Tom Woeldersa,1 , Victoria L. Revellb,2 , Benita Middletonb, Katrin Ackermannc,3 , Manfred Kayserc , Florence I. Raynaudd , Debra J. Skeneb , 
and Roelof A. Huta,4

Edited by Joseph Takahashi, The University of Texas Southwestern Medical Center, Dallas, TX; received July 23, 2022; accepted March 6, 2023

Circadian rhythms influence physiology, metabolism, and molecular processes in the 
human body. Estimation of individual body time (circadian phase) is therefore highly 
relevant for individual optimization of behavior (sleep, meals, sports), diagnostic sampling, 
medical treatment, and for treatment of circadian rhythm disorders. Here, we provide a 
partial least squares regression (PLSR) machine learning approach that uses plasma-derived 
metabolomics data in one or more samples to estimate dim light melatonin onset (DLMO) 
as a proxy for circadian phase of the human body. For this purpose, our protocol was aimed 
to stay close to real-life conditions. We found that a metabolomics approach optimized 
for either women or men under entrained conditions performed equally well or better 
than existing approaches using more labor-intensive RNA sequencing-based methods. 
Although estimation of circadian body time using blood-targeted metabolomics requires 
further validation in shift work and other real-world conditions, it currently may offer a 
robust, feasible technique with relatively high accuracy to aid personalized optimization 
of behavior and clinical treatment after appropriate validation in patient populations.

metabolomics | dim light melatonin onset | machine learning | human body time | circadian phase

The circadian system in humans influences many behavioral, physiological, and molecular 
processes in the body, causing considerable variation in body function and cellular 
 constitution over the course of the 24-h day (1). Chronomedicine seeks to exploit this 24-h 
variation to optimize timing for pharmaceutical application (“clocking the drug”) or diag-
nostic sampling for treatment of circadian clock abnormalities [“drugging the clock;” (2–4)]. 
Taking such “body time” approaches into clinical practice is thought to reduce medication 
load, improve treatment outcome, and increase accuracy and specificity of diagnosis. Here, 
we exploit diurnal variation in the amount of circulating metabolites in humans to estimate 
body time by using optimized timing in a minimal number of samples (5).

In modern society, humans show considerable variation in sleep timing (6), due to 
differences in the phase of circadian entrainment caused by variation in genetics, lifestyle, 
and especially light–dark environment. For this reason, chronomedical approaches, where 
a clinical diagnostic or treatment method is applied at a specific time of day, is still sub-
optimal. Personalized chronotherapeutic approaches, in which the entrained phase of the 
individual body is estimated and used to determine treatment/diagnostic timing, are 
expected to maximize the outcomes of chronomedicine. The current gold standard for 
human body time estimation is the local time of the onset of pineal melatonin synthesis 
under controlled lighting conditions (dim light melatonin onset, DLMO). DLMO is 
considered to be a reliable measure of the phase of the circadian pacemaker located in the 
hypothalamic suprachiasmatic nuclei. This is based on partial or full melatonin profiles 
measured in the evening or overnight using long sampling periods (8 to 20 h), and specific 
dim lighting and controlled posture conditions. Such a body time estimation method is 
not practical in real-world settings and therefore there is a strong need for validated 
 alternative estimates of human body time.

One approach is to estimate human body time from ambulatory physiological and 
environmental signals. Such an approach has been shown to find high correlations with 
DLMO, using activity, body position, and subjective sleep measures [r2 between 0.5 and 
0.7 (7)]. Heart rate, rest/activity, and light measurements were used as inputs into an 
autoregressive model to estimate DLMO in individuals with relatively high accuracy (8). 
Woelders et al. found good accuracy using ambulatory core body temperature measure-
ments and improved DLMO prediction using Kronauer’s human circadian light entrain-
ment model (9).

An alternative approach is to exploit -omics technologies to estimate circadian phase 
from one or two blood samples. The underlying concept here is that many transcripts 
exhibit daily patterns that vary widely in phase; as such, it should be possible to estimate 
phase from a single sample by comparing the relative values of these transcripts when 
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they are treated as “features” in machine learning and other 
analytical approaches. A first approach was the “TimeTable” 
method (5, 10) using the mouse liver transcriptome to estimate 
sample time. Sample time estimation methods were also applied 
on transcriptomics data from various mouse tissues using a 
supervised machine learning technique coined “ZeitZeiger” (11). 
For practical application in forensic science, sample time esti-
mation methods were applied using human blood mRNA data 
to classify blood deposition time in three 8-h time frames across 
the day (12) and a similar approach was taken by including blood 
metabolite data (13). Machine learning techniques using an 
Elastic Net approach on entrained human blood transcriptomics 
data were applied in a method coined “TimeSignature,” which 
was initially also used to estimate sample time from two samples 
12-h apart (14).

Machine learning techniques were also applied to estimate 
DLMO using molecular markers in blood (15–17). Using tran-
scriptomics from blood monocytes, Wittenbrink and coworkers 
showed high accuracy for estimating DLMO using the ZeitZeiger 
method (17). Laing et al. (15) demonstrated that the partial least 
squares regression (PLSR) approach outperformed TimeTable 
and ZeitZeiger for predicting DLMO. In comparison, it was 
eventually shown that the TimeSignature approach also per-
formed equally well in predicting DLMO from human 
 transcriptomics data (18).

It is conceivable that individual DLMO-based body time esti-
mation approaches will yield more accurate results, when input 
data are based on molecular measures that have a closer relation-
ship to rhythmic metabolic processes in the body. This possibility 
was recently exploited using untargeted metabolomics analyses to 
predict melatonin onset and offset in plasma samples (4 h sam-
pling interval over 20 h), from young men and women combined 
in a PLSR-based approach (19). Here, we want to expand on this 
approach by using targeted human metabolomics data (2 h sam-
pling interval over 34 h), as input to a PLSR machine learning 
approach, to estimate DLMO phase in entrained humans using 
a separate analysis of men and women. We evaluate sampling 
design by comparing the phase estimation error under single, 

double, and triple blood sampling while analyzing optimal 
 sampling timing.

Results

Overview of All Metabolites. The data analyzed in this study 
originate from previous publications (20, 21). Overview of the 
rhythmic behavior of all 131 compounds is provided for females 
(Fig.  1A) and males (Fig.  1B). Amplitude (Fig.  1C) and peak 
phase (Fig.  1D) were assessed for each metabolite time series 
by evaluating the peak concentration and peak phase of a local 
polynomial regression (Loess) fit. Sex differences in the amplitude 
of metabolite rhythms showed that most features had a higher 
amplitude in males (Fig. 1C). Phase analysis shows that there are 
features that robustly peak at a given body time for males, but less 
so for females, and vice versa (Fig. 1D).

Model Fitting and Predictions. A graphical overview of the fitting 
procedure and the results is presented for female (Fig. 2 A–C) 
and male (Fig. 2 D–F) data. Each individual sample provides 
two predictions (one S and one C coordinate; Fig. 2 A, B, D, 
and E). Note that these are the predictions of n different models 
on n different independent datasets. The predicted S and C 
coordinates were then used to calculate an angle [(1,0) = 0°] by 
projection onto a unit circle (discarding amplitude variation; 
Fig. 2 C and F). Finally, the angles were converted to body time 
on a 24-h scale.

Included Rhythmic Metabolites. The majority of compounds 
contributing to the DLMO prediction are shared between females 
and males (58, 51.8%), while 17 (15.2%) are female specific and 
37 (33%) are male specific. Sex differences in metabolomics data 
have previously been reported (for review, see study by Costanzo 
et al. (22)). Although sex differences in the timing of metabolite 
rhythms are less well studied, our data suggest that there is sexual 
dimorphism. OverRepresentation Analysis (ORA) and pathway 
analysis of the metabolites that were statistically significant in 
the C and S models in both sexes were performed. A total of 

Fig. 1. Overview of metabolite rhythms. (A) Normalized abundance over time for female data, ordered by amplitude. (B) Normalized abundance over time for 
male data, using the same ordering as for the female data. Rhythmic amplitude (C) and peak phase SD (D) are plotted for female (black) and male (gray) data 
and connected with a line for each metabolite. For each metabolite, a line to the right of a black dot indicates a higher amplitude (C) or phase SD (D) in males, 
lines to the left indicate a higher amplitude (C) or phase SD for females (D).
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9 different pathway identifiers were found to be significantly 
overrepresented (False Discovery Rate (FDR) for multiple testing, 
P < 0.05; SI Appendix, Table S2). The only pathway that was 
consistently significant in both C and S models and in both 
sexes was aminoacyl-t-RNA biosynthesis. Phenylalanine, tyrosine 
and tryptophan biosynthesis was enriched in males (both C and 
S models) and in the female S model. Arginine biosynthesis; 
nitrogen metabolism; and D-glutamine and D-glutamate 
metabolism was enriched in the females (both C and S models) 
and in the male C model. Additional significant pathways 
(n = 4, FDR < 0.05) were only found in the female S model, 
namely valine, leucine and isoleucine biosynthesis; glutathione 
metabolism; glyoxylate and dicarboxylate metabolism, and 
phenylalanine metabolism.

Model Performance. For a single sample analysis, the average 
prediction error (median absolute error, MdAE) was 1.54  h 
for the female data (Fig.  3A) and 1.48  h for the male data 
(Fig. 3D and Table 1). In order to accurately predict individual 
DLMO timing by a single blood sample, the optimal sampling 
time appeared to be at 2:00  h for females (Fig.  3A) and at 
12:00 h for males (Fig. 3D). When two samples were taken, the 
optimal sampling times were 00:00 h and 6:00 h for females 
(Fig.  3B) and 8:00  h and 20:00  h for males (Fig.  3E). We 
also determined the prediction errors for a 3-sample procedure 
for females (SI  Appendix, Fig.  S2) and males (SI  Appendix, 
Fig. S3), to deduce optimal timing for the three samples. To 

compare the performance of the PLSR procedure when based 
on one, two, or three optimally timed samples, we combined 
the errors in one plot and compared the values with randomly 
chosen sample times (Fig. 3 C and F). For the female data, the 
model performance significantly improved from one-sample 
MdAE = 1.54, to 1.16 and 1.02 when two or three random 
samples were taken [Χ2(2) = 17.42, P < 0.0001], respectively. 
When optimally timed samples were used, the model 
performance increased from one-sample MdAE = 1.02, to 0.45 
and 0.30 when two or three samples were used, respectively, 
although this improvement was not significant [Χ2(2) = 1.95,  
P < 0.37]. Optimally timed prediction errors for females 
were on average 0.65 h lower than when samples were timed 
randomly (Fig. 3C and Table 1). For the male data, the model 
performance significantly improved from one-sample MdAE 
= 1.48, to 1.15 and 1.01 when instead of one, two, or three 
random samples were taken [Χ2(2) = 26.79, P < 0.0001]. When 
optimally timed samples were used, the model performance 
increased from one-sample MdAE = 0.96, to 0.60 and 0.26 
when two or three samples were used [Χ2(2)  = 7.16, P < 
0.03], respectively. Optimally timed prediction errors were on 
average 0.60 h lower than when samples were timed randomly 
(Fig. 3F and Table 1). Optimal sample timing landscapes for 
the three samples are also provided for females (S2) and males 
(S3). Interestingly, increasing the number of samples mostly 
improved the prediction performance when using random 
samples, but less so when using optimally timed sampling.

Fig. 2. Model fitting and predictions. Overview of (predicted) S and C coordinates for female data (A and B) and male data (D and E), together with the actual 
S and C coordinates of measured body time projected on a unit circle for females (C) and males (F). Predictions of n models are color-coded and connected 
for each left-out participant/model prediction. Black curves (A, B, D, and E) show the sine or cosine function for sample time in hours after DLMO, and each 
participant is represented by a single color line.

http://www.pnas.org/lookup/doi/10.1073/pnas.2212685120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212685120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212685120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212685120#supplementary-materials
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Discussion

We have shown that human plasma metabolomics data can be 
used as an input for a PLSR machine learning approach to predict 
DLMO phase as an indicator of body time in entrained young 
men and women when using two or three blood samples. Using 
two optimally timed blood samples, we obtained high accuracy 
in body time prediction, resulting in an MdAE of 0.45 h in 
women and 0.60 h in men (Fig. 3 C and F and Table 1). Adding 
a third optimally timed sample showed more improvement in 
males than in females on model performance (MdAE females  
9 min; males 21 min). This finding suggests that circadian phase 
estimation in humans can be improved by distinguishing different 
approaches for women and men, an issue that is systematically 
addressed in our study.

Comparison to Other Blood Sample-Based Body Time Estimation 
Techniques. We compared the performance of our approach using 
different input sets; melatonin only, cortisol only, metabolome 
only, and all possible combinations of these three (SI Appendix, 
Table  S1). In the random timed samples, metabolomics-based 
estimation outperforms melatonin and cortisol only, and 
combining melatonin or cortisol with metabolome improves 
the model performance. Relatively high accuracy can also be 
found in optimally timed samples using only melatonin and/
or cortisol, but these can be sex specific when more than one 
sample is used (SI Appendix, Table S1). In line with mRNA-based 
methods (14, 15, 17), we show that the temporal separation 

of two optimally timed samples is 6  h apart for both females 
and 12  h apart for males. Using such optimal timing of two 
blood samples, the MdAE in estimating DLMO is on average 
0.53 h for women and men (Table 1). This is considerably more 
accurate than that of previously published molecular blood-based 
approaches (14, 15, 17); however, these studies reported average 
estimates of pairs of randomly chosen samples at a specific distance 
when evaluating a two sample-based method. When we applied a 
similar methodology, our metabolomics-based method produced 
an MdAE of 1.16 h for women and 1.15 h for men. The DLMO 
phase estimation accuracy of our PLSR metabolomics approach 
therefore is very similar to that of previously reported methods 
using TimeSignature or dPLSR methods [Table 1, (14, 15) and 
outperforms PLSR, TimeTable, and ZeitZeiger methods using 
blood-based RNA sequencing data (Table 1, (15, 17)]. However, 
almost a doubling in accuracy for random sampling was found 
when the NanoString RNA analysis platform based on isolated 
monocytes was used for two random samples [Table 1, (17)]. The 
recent metabolomics-based approach used by Cogswell et al. (19) 
holds promise. Their untargeted metabolomics analyses provide a 
wide coverage of the metabolome; however, infrequent sampling 
(4  h across 20  h) may have limited the number of rhythmic 
features detected (100 compounds for predicting DLMO) and 
the estimated phase accuracy of each rhythmic compound, 
potentially hindering the accuracy of the DLMO estimation. In 
addition, targeted metabolomics analyses have the advantage of 
quantifying known metabolites against standard calibration curves 
and internal standards. Since these are not available in untargeted 

Fig. 3. Prediction accuracy of DLMO estimation using 1-, 2-, and 3-sample procedures. (A and D) Prediction accuracy (absolute error) and median absolute 
error per sample time for the 1-sample procedure. Predictions of n models are color-coded per left-out participant/model. (B and E) Median absolute errors 
in the 2-sample procedure. (C and F) Median absolute errors for the optimal and random 1-, 2-, and 3-sample procedures. Analyses presented separately for 
females (A–C) and males (D–F).

http://www.pnas.org/lookup/doi/10.1073/pnas.2212685120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212685120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212685120#supplementary-materials
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Table 1. Comparison with DLMO estimation studies in humans using blood molecular markers
Refence Condition Sex N Age (y) Method #F Measures T R2 MdAE (h)

Laing et al. (15)* CR†, FD‡ f;m 24;25 27.1 (3.7) TimeTable 73 Blood mRNA 1 0.49 3.13

2 0.69 2.45

3 0.82 1.87

ZeitZeiger 107 1 0.47 3.18

2 0.69 2.43

3 0.78 2.07
PLSR 100 1 0.74 2.22

2 0.83 1.80

3 0.88 1.52
dTimeTable 73 2 0.78 1.67
dPLSR 100 2 0.90 1.13

Wittenbrink et al. (17)§    (1) CR m 12 25.3 (2.6) ZeitZeiger 32 RNAseq 1 - 1.6

30 2 - 1.4

(2) 30 NanoString 1 - 0.8

29 2 - 0.7

(3) NL f, m 17, 11 26.9 (5.7) 2 1 - 0.54

2 2 - 0.75

Kervezee et al. (23) CR f, m 1, 10 24.1 (18–30) PLSR 200 Blood mRNA 1 0.83 2.1

Braun et al. (18)*             (1) CR† f, m 12, 14¶ 27.5 (4.3) TimeSignature 41 Blood mRNA 2 - 1.2

(2) FD‡ f, m 11, 11¶ 26.3 (3.4) - 1.85

(3) CR - 11 - - 1.20

mean 1.42

(1) CR† f, m 12, 14¶ 27.5 (4.3) dPLSR 100 Blood mRNA 2 - 0.98

(2) FD‡ f, m 11, 11¶ 26.3 (3.4) - 2.17

(3) CR - 11 - - 1.10

mean 1.42

Cogswell et al. (19)           (1) LD baseline f, m 8, 8 22.4 (4.8) PLSR (DLMO) 100 Untargeted 
blood 
metabolites

1 0.61 2.2

(2) LD 5h sleep 0.6 2.1

(3) LD 9h sleep 0.56 2.6

mean 0.6 2.2

(1) LD baseline PLSR (DLMOff) 300 1 0.91 1.1

(2) LD 5h sleep 0.44 3.7

(3) LD 9h sleep 0.5 3.3

mean 0.62 1.8

Woelders et al., 2023  
(this study)

LD f 12 24.8 (4.4) PLSR 131 Targeted blood 
metabolites

1 - 1.02 (1.54)

2 - 0.45 (1.16)

3 - 0.30 (1.02)

m 12 22.7 (4.5) PLSR 131 Targeted blood 
metabolites

1 - 0.96 (1.48)

2 - 0.60 (1.15)

3 - 0.26 (1.01)
Variables: condition (FD, forced desynchrony; CR, constant routine; LD, light-dark cycle), sex (f= female, m= male), N=sample size for constructing the model (females, males), age [average 
and (SD)], method (statistical modeling approach), #F (number of features: 24-h gene expression or metabolite profiles required to train the model), measures (type of measurements 
used), T (number of sample timepoints used to construct a daily profile for each feature), R2 (model fit), MdAE (median absolute error) indicating the median central measure of the 
individual differences in hours between the estimated and true DLMO. Where necessary, MdAE was estimated from SD given in the original reference by 100,000 Monte Carlo simulation 
runs. For the current study (bottom rows), our random sample selection (in brackets) compares favorably with the error estimates of the other studies. Improving DLMO estimation by 
optimized timing of samples according to sex improved the performance of the algorithm considerably (bold MdAE values).
*The combined datasets of Archer et al. (24) and Möller-Levet et al. (25) were used in Laing et al. (15), which respectively correspond to datasets (1) and (2) that were re-analysed by Braun et al. (18).
†Collection under dim light CR with or without prior sleep restriction.
‡Collection under dim light and darkness during FD with sleep in or out of phase with melatonin.
§Measured in isolated monocytes.
¶Participants were exposed to either both FD conditions, or both CR conditions.
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metabolomics analyses, only putative features can be reported. The 
targeted metabolomics platform we have used is fully validated 
and reproducible, which provides confidence that the metabolites 
identified and measured by this method are real and that the data 
generated can be replicated in other facilities (26).

It is important to note that the various studies compared in 
Table 1 have not used the same protocols for their participants 
during sample collection. Laing et al. (15) used forced desyn-
chrony protocols with sleep in and out of phase with melatonin, 
and no sleep during a constant routine protocol with and without 
prior sleep debt. Braun et al. (14) used three datasets: constant 
routine with and without sleep debt (1), forced desynchrony in 
phase and out of phase sleep (2), and a constant routine baseline—
sleep deprivation—recovery (3). Wittenbrink et al. (17) used a 
constant routine protocol, which reduces behavioral influences on 
internal physiology and perhaps on gene transcription. Kervezee 
et al. (23) analyzed mRNA in a constant routine-like procedure 
but combined dim light and bright light treatment in their PLSR 
melatonin midpoint estimation. Cogswell and coworkers used 
untargeted metabolomics data under a baseline light–dark cycle, 
followed by adequate (9 h) or insufficient (5 h) sleep (19). Under 
baseline conditions, they found a high DLMO offset prediction 
accuracy that approaches our optimal timed prediction. Most of 
the protocols reviewed above were designed to isolate circadian 
information independent of sleep or sleep timing, or isolate the 
effect of sleep duration per se. Such conditions may be quite dif-
ferent from what people experience during normal day life (20, 
21, 27). Our approach was aimed to generate prediction values 
closer to real-life conditions and could be considered more realistic 
because entrained participants were studied in a light/dark cycle 
with an 8 h sleep opportunity, with meals at normal habitual times 
(breakfast, lunch, dinner, and evening snack, SI Appendix, Fig. S1).

Evaluation of Included Metabolites. ORA and pathway analysis 
revealed that the only statistically significant pathway common 
to both sexes and both C and S models was aminoacyl-t-RNA 
biosynthesis. Aminoacyl-t-RNA synthases play a central role in 
protein biosynthesis and are involved in a number of regulatory 
processes via their product, the charged t-RNA. Circadian 
control of translation of mRNAs for ribosomal proteins has been 
demonstrated in plants (28) and in eukaryotes where the levels of 
charged versus uncharged t-RNAs underpin circadian changes in 
mRNA translation, cellular energy and nutrient metabolism (29). 
Pathway analysis of a human metabolomics dataset also showed 
aminoacyl-t-RNA biosynthesis as the most predominant pathway 
in both simulated day and night shift conditions (30).

Many amino acids have shown time of day and/or circadian 
variation in human metabolomics studies (31) including in the 
current datasets (20, 21). Many of these amino acids were signifi-
cant in the C and S models and form part of the aminoacyl-t-RNA 
biosynthesis pathway and the other significant pathways (arginine 
biosynthesis; phenylalanine, tyrosine and tryptophan biosynthesis). 
In the female C and S models, and in the male C model, glutamine 
and glutamate were also significant explaining enrichment of 
D-glutamine and D-glutamate metabolism and nitrogen metabo-
lism in these datasets. The four additional significant pathways only 
observed in the female S model (glutathione metabolism; valine, 
leucine and isoleucine biosynthesis; glyoxylate and dicarboxylate 
metabolism; and phenylalanine metabolism) match with amino 
acids, glycine, ornithine, glutamate, isoleucine, valine, glutamine, 
phenylalanine, and tyrosine. Sex differences in some of these amino 
acids have been previously reported in serum metabolomics studies 
(32). In addition, we have reported sex differences in the timing of 
some of these metabolite rhythms (21).

Possible Advantages of Metabolomics for Body Time Estimation. 
There are some advantages and disadvantages considering 
metabolomics-based methods over RNA-based methods in 
circadian body time estimation using human blood samples. 
First, metabolomics analysis is relatively cheap compared to RNA 
sequencing approaches. Second, metabolomics requires minimal 
data treatment. RNA sequencing data, on the contrary, require 
considerable bioinformatics treatment including error correction, 
data filtering, interpretation of alternative splice variants, and optical 
duplicate filtering. Moreover, these approaches are continuously 
developing and require specialist bioinformatics expertise. In 
contrast, if a quantitative targeted metabolomics approach 
is used, as in the current study, the original data are accurate 
and reproducible, making use of standards and quality controls 
(QCs) for reliability and batch correction (26) before entering the 
machine learning algorithm of choice. Third, DLMO estimation 
accuracy may be improved by using a single cell type from the 
blood sample [for instance, monocytes, (17)], but this also entails 
an additional cell-sorting step that requires specialist expertise, 
which is not required for blood-based metabolomics approaches. 
Fourth, metabolomics approaches may better reflect the functional 
phenotype than changes in RNA and proteins. The end products 
of actual metabolic and physiological processes may be closer 
to our interest when seeking a measure of body time (30, 33).  
Fifth, while many of the metabolites in a blood sample may 
have different tissue sources, certain lipids (e.g., cholesterol and 
its metabolites) and bile acids originate primarily in the liver. 
Specifically tracking the phase of these metabolite rhythms may 
permit estimation of the timing of the liver clock.

Limitations of Metabolite-Based Body Time Estimation. An 
important limitation of using metabolomics data for diurnal and 
circadian analyses is the influence of ingested food on some specific 
metabolites, especially amino acids. Differences in diet may in part 
explain different model performance between our study and the 
study of Cogswell et al. (19). In our study, food was controlled and 
timed normally at the four events spread over the day. However, the 
effect of different diets on metabolite-based body time estimation 
remains to be resolved, as is the potential solution to minimize 
these effects of diet by including a period of fasting before a blood 
sample is taken. Validating the applied method after several hours 
of fasting may form an important practical improvement, since it 
would exclude the immediate effect of diet on the metabolome, 
and may also better match clinical practice because many patients 
may arrive at the hospital after an overnight fast. Furthermore, it 
should be noted that our metabolomics-based approach has only 
been validated in healthy young women and men under entrained 
conditions, thus possibly limiting its application in night work 
and shiftwork or in different age groups and clinical conditions. In 
order to realize the potential of our approach, validation in people 
that may suffer from altered circadian organization is needed. 
The same limitation, however, applies for most of the previous 
studies. In addition, all previous studies, including our own, have 
not addressed the possible additional variation emerging from 
estimating DLMO and molecular measures at different times of 
the year or at different latitudes.

One Sample-, Two Sample-, and Three Sample-Based Methods. 
All studies evaluating multiple sampling report an improvement of 
DLMO estimation by using two or even three samples over a one 
sample-based method. We also confirm that three sample DLMO 
estimations outperform one- or two sample-based estimations, 
for random sampling as well as for optimally timed sampling. 
However, we also found diminishing returns when increasing the 

http://www.pnas.org/lookup/doi/10.1073/pnas.2212685120#supplementary-materials
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number of samples and the optimal number of samples may well 
be two for females and one for males, depending on sampling 
effort and costs involved. Furthermore, choosing an optimal time 
for these samples is important for minimizing estimation error, 
but a precise understanding of these optimal time points is subject 
for further research. Whether the improvement of optimal timing 
reflects a biologically relevant process or merely reflects the lower 
bound of a statistical distribution in prediction errors remains to be 
shown in future studies designed to address this particular question.

Conclusions and Future Perspectives. For estimation of human 
DLMO using one or two blood samples, the metabolomics 
approach using PLSR on two optimally timed samples performs 
equally well or outperforms general blood RNA sequencing 
approaches. RNA-based analysis on isolated monocytes using the 
NanoString approach (17) seems to outperform other methods, 
but requires additional analytical laboratory steps and considerable 
bioinformatics. Metabolomics-based methods may therefore 
be a cheaper, faster, and more relevant approach for practical 
applications in the laboratory and the clinic for whole-body phase 
estimation using DLMO as a proxy for body time, although a 
combined metabolomics/RNA seq methodology may very 
well offer considerable improvement for body time estimation. 
Together, these body time estimation approaches should provide 
a measure that helps circadian-based clinical therapies. As such, 
metabolomics may offer a more feasible approach in that it is 
closer to the functional phenotype and specific clinical disorders. 
In addition, it potentially offers the possibility that the overarching 
term body time is replaced with tissue-specific estimation of 
circadian phase by using a specific set of metabolites.

Materials and Methods

The study was approved by the University of Surrey Ethics Committee. All partici-
pants provided written informed consent prior to any procedures being performed 
and the participants were allowed to withdraw at any time. All participant informa-
tion was coded and held in strictest confidence according to the Data Protection 
Act (UK, 1998). The study was conducted in accordance with the Declaration of 
Helsinki and the principles of Good Clinical Practice.

Laboratory sessions were conducted at the Surrey Clinical Research Centre at 
the University of Surrey, with 12 females [25 ± 4 y (mean ± SD)] and 12 males 
[23 ± 5 y (mean ± SD)] participating. The analyzed data originate from two previ-
ously published studies that used identical study protocols [male study (20); female 
study (21)]. All were healthy, were medication free (except females took combined 
oral contraceptives and were on active phase during the laboratory session), were 
non-smokers, and had a regular sleep/wake schedule (23:00 to 07:00 h) in the 
7 d prior to the in-laboratory session. Full details of the study eligibility criteria, 
screening procedures, baseline-at-home conditions, and laboratory protocols are 
presented (SI Appendix). In brief, the participants were kept in controlled entrained 
conditions (23:00 to 07:00  h: recumbent (sleep opportunity), 0 lux; 18:00 to 
23:00 h and 07:00 to 09:00 h: semi-recumbent, <5 lux; 09:00 to 18:00 h: freely 
moving, ~100 lux) (SI Appendix, Fig. S1). Standardized meals were given at 07:10, 
13:00, and 19:00 h with a snack at 22:00 h; water was available ad libitum.

Sampling and Analysis. From the full dataset, only samples under entrained con-
ditions were used, taken from 12:00 on day 2 until 22:00 h on day 3 (SI Appendix, 
Fig. S1). Following an adaptation night, hourly blood samples were collected from 
12:00 h for 34 h. Two-hourly samples were analyzed for targeted metabolomics 
analysis and hourly samples were analyzed for hormone levels (melatonin, cor-
tisol). Plasma fractions for metabolomics analysis were stored at −80 °C until 
derivatization and liquid chromatography/mass spectrometry (LC/MS) analysis; 
plasma for hormone assays was stored at −20 °C until analysis. Plasma melatonin 
and cortisol concentrations were measured by radioimmunoassay (Stockgrand Ltd, 
University of Surrey) as described previously (34). Targeted LC/MS was performed 
on two-hourly plasma samples to quantify metabolite concentrations, using 
the AbsoluteIDQ® p180 targeted metabolomics kit (Biocrates Life Sciences AG, 

Innsbruck, Austria), and a Waters Xevo TQ-S tandem quadrupole mass spectrometer 
coupled to an Acquity UPLC system (Waters Corporation, Milford, MA) as previously 
described (20, 21, 35). The kit provides absolute concentrations of 184 metabolites 
from six different compound classes (acylcarnitines, amino acids, biogenic amines, 
lysophosphatidylcholines, glycerophospholipids, and sphingolipids).

Plasma samples were prepared according to the manufacturer’s instructions. 
The sample order was randomized and three levels of QC were run on each 96-well 
plate. Data were normalized between batches using the QC level 2 (QC2) repeats 
across each plate (n = 4) and between plates using Biocrates METIDQ software 
(QC2 correction). We excluded metabolites where either >25% concentrations 
were below the limit of detection (<LOD), or below the lower limit of quantifi-
cation, or above the limit of quantification, or the blank was out of range, or the 
QC2 coefficient of variance was >30% (21).

Entrained Female and Male Datasets. For females, the total set of targeted 
metabolites above the detection threshold (see Sampling and Analysis section 
below) was 130, for males 141 (21). To enable comparison between females and 
males in this analysis, we used those 129 metabolites that both datasets had in 
common. To increase the accuracy and precision of the approach, we added the 
hormones melatonin and cortisol, leading to a total of 131 compounds to enter 
the model (SI Appendix, Tables S1 and S2).

PLSR Modeling. In our datasets, there are many more predictors (features) than 
samples. Additionally, not all features are necessarily uncorrelated (i.e., multicollin-
earity). Multiple linear regression provides unstable solutions in this scenario. PLSR 
is a linear regression technique that can handle situations where requirements for 
multiple linear regression are violated. It is a dimensionality reduction technique, 
as it constructs latent variables (LV) that are linear combinations of the features that 
are correlated with the dependent variable, but also to one another. The dependent 
variable is then regressed onto this latent variable, reducing the dimensionality 
from f features to 1. Roughly speaking, each latent variable is a vector of weights 
(one for each feature belonging to the latent variable), where the weight coefficient 
depends on the covariance between the feature and the dependent variable. Two 
highly correlated features therefore both receive very similar weights (which is not 
given in ordinary least-squares regression). The measured values for the features 
in a sample can be multiplied element wise, then summed to this latent variable, 
and then summed in order to obtain a latent variable score. PLSR ensures that the 
weights of the latent variable are chosen in such a way that the covariance between 
the dependent variable and all latent variable scores (one per sample) is maximal. 
Additional LV can be constructed to explain orthogonal variance in the residual (i.e., 
deflated) datasets until no further variance can be statistically explained. When all LV 
are calculated, a standard regression model in the form ̂Y = XB̂ can be constructed 
from the LV, where Ŷ  is the model prediction, X contains the measured feature 
values, and ̂B contains the regression coefficients (one for each feature in the PLSR 
model). Models were constructed in R (v4.2.1; RStudio shell v2022.07.2), using 
the spls method from the “mixOmics” package (version 6.20.0).

Fitting Models Using Leave-One-Out Crossvalidation (LOOCV). The main 
goal of this work was to construct a predictive model, that can be used to pre-
dict body time for future observations. This means that data that are used to 
construct the model cannot be used to evaluate the predictive performance of 
the model, as it is not independent of the fitting process. One way to handle 
this problem is to split the dataset into two parts: one to fit the model, and one 
to validate the model. To optimize the use of our data, however, we decided to 
employ the method of LOOC) instead. In this approach, n (participants) models 
are constructed, each time keeping the data of one participant aside to test the 
predictive value of each model.

Fitting Models Using Nested LOOCV. The LOOCV procedure outlined above is 
a simplified version of the LOOCV procedure we eventually employed. The reason 
being that it is unknown a-priori how many LV should be constructed in the n 
models to prevent overfitting and underfitting. Determining this optimal value 
for each of the n models was done by implementing a second LOOCV procedure 
on the (n – 1) data used to construct the n models, also known as nested cross-
validation. The nested LOOCV procedure works by nesting an inner LOOCV loop 
inside an outer LOOCV loop: At the first iteration of the outer loop, the data for one 
participant are set aside. The remaining data are used for the inner loop. In one 
iteration of the inner loop, again, the data for one participant are set aside, and LV 
models are constructed on the remaining (n – 2) data. For each of these LV models, 

http://www.pnas.org/lookup/doi/10.1073/pnas.2212685120#supplementary-materials
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the performance (mean squared prediction error) is determined by predicting the 
data of the participant that was left out in the inner loop. The inner loop then iterates 
to the next participant, until LV models are constructed for each left-out participant 
(n – 1) in the inner loop. The value for LV that, on average, resulted in the lowest 
prediction error was then used to fit a final model on the inner loop data. This 
model was finally used to predict body time for the participant left out in the outer 
loop (data independent of the entire fitting procedure, including hyperparameter 
optimization). This process was repeated n times until the outer loop was completed, 
resulting in one final model for each outer loop iteration. A final overall model can 
be constructed by calculating the average regression coefficients of the n models 
(SI Appendix, Tables S3–S6). We do not know the predictive value of this model, 
although it can be inferred from the average prediction error of the n constructed 
models, under the assumption that our sample is representative of the population.

Body Time. For each participant, the body time of each sample was expressed 
in hours after DLMO (DLMO25%) for that participant. DLMO25% was determined 
using a threshold of 25% of the range between the highest and lowest melatonin 
concentrations as the threshold [min + (max-min)*0.25], and then find the clock 
time where that threshold is crossed using linear interpolation.

Transformation of Body Time to Cartesian Coordinates. Body time is circular, not 
linear (for example, a body time of 22 h is as close to DLMO (body time 0 h) as a body 
time of 2 h). Therefore, statistical problems will occur during any linear regression where 
time is expressed on a 24-h scale, as a predicted value of 22 at body time 0 will yield a 
residual value of 22, whereas it should be –2. Therefore, body time was expressed by 
converting hours since DLMO to angles, and then to Cartesian coordinates by projecting 
the body time onto a unit circle (i.e., a circle with radius of 1). The horizontal (C) and verti-
cal (S) coordinates were calculated for each sample as follows: S = sin[2� × (

BT

24
)] and 

C = cos[2� × (
BT

24
)] , where BT is the body time of the sample. The calculated S and C 

coordinate values thus refer, respectively, to the Sine and Cosine components of body time 
projected on a circle and should therefore not be confused with processes S and C of the 
two-process sleep model. The rationale for this transformation is therefore that samples 
with similar body times have similar S and C coordinates, even when the difference in time 
expressed on a 24-h scale is large. In this system, DLMO corresponds to S = 0 and C = 1.

Transformation of Predicted Cartesian Coordinates to Predicted Angles. 
Two PLSR models were constructed for each dataset: one to predict the S coor-
dinates and one to predict the C coordinates of the samples. By constructing 
two linear models (one for the S and one for the C coordinate), it is possible to 
reconstruct the body time angle from the fitted S and C coordinates. A predicted 
angle was calculated for each sample ( ̂� = atan2(̂s, ĉ) ). With the native R atan2 
function, �̂  is signed (−π < �̂  ≤ π) with counterclockwise angles being positive 
and clockwise angles being negative.

Construction of Predictive Models. The predicted body times ( ̂BT  ) were then 
calculated from the predicted angles by transforming to the original 24-h scale, 
using B̂T = �̂ ×

24

2�
 . Because �̂  is calculated from the predicted S and C coordi-

nates ( ̂s  and ĉ  ), a final model that incorporates the two PLSR models is then 
described as: B̂T = atan2

(−

y
s + �ysX �̂s ,

−

y
c + �ycX �̂c

)

×
24

2�
 . Here, the two 

arguments passed to the atan2 function are the predicted Cartesian coordinates 

ŝ and ĉ  , using the regression coefficients of the two PLSR models ( ̂�s and �̂c ). For 
construction of the LV, PLSR requires the features and dependent data to be scaled 
and centered (each feature and each dependent variable is centered then scaled). 
Therefore, the X matrix is the scaled feature matrix (containing z-transformed metabo-
lites using the SDs and means of our dataset) and �ys and �yc and 

−

y
s and

−

y
c are the 

SDs and means, respectively, used for scaling and centering of the dependent variable.

The Relationship between Predicted and Observed Body Time. One final 
step was required to assess the linear relationship (and prediction error) between 
predicted and observed body times (in hours after DLMO). Negative B̂T  values were 
corrected to positive values by adding 24 (e.g., a predicted body time of −1 becomes 
23). For a subset of samples, this step yielded B̂T  values where ( ̂BT  − BT > 12) or 
( ̂BT  − BT < −12). These values were corrected by subtracting 24 from B̂T  (when 
B̂T  −BT > 12) or by adding 24 to B̂T  (when B̂T  − BT< −12), as we know the maximal 
prediction error to be 12 h in either positive or negative direction.

Comparison of One-, Two-, and Three-Fold Sampling. We additionally set 
out to determine whether one-, two-, or three-fold sampling frequency would 

be optimal to obtain more accurate circadian-phase predictions. In addition, 
we were also interested in the optimal sampling times themselves, for which 
we performed a grid search to obtain a measure of prediction accuracy for all 
combinations of first, second, and third sampling times. We first calculated the 
predicted DLMO from the predicted body time for each sample separately. For 
one-fold sampling, we then calculated the prediction error in DLMO separately 
for each sampling time. For the two-fold and three-fold samplings, we calcu-
lated the average predicted DLMO, for which additional steps were required. 
We first converted the measured and predicted DLMOs to angles (in radians), 
where an angle of 0° corresponds to DLMO. Then, we calculated the average 
for the predicted and measured angles separately. Angles were averaged using 
� = atan2(

1

n

∑n

j=1
sin�j ,

1

n

∑n

j=1
cos�j ) , where n denotes the number of angles 

to be averaged. These average angles were then converted to body time (hours 
since DLMO) on a 24-h scale, followed by calculation of the prediction error.

For these procedures, only the samples taken within 24 h of the first sample 
were included. We preferred this approach over, for example, an initial averaging 
of predictions per sampling time point (as some time points were measured mul-
tiple times in the protocol), as the latter might yield an overly optimistic estimate 
of prediction accuracy by increasing the number of samples per time point. The 
rationale here is that in practical situations, such as a clinical setting, it is unrealistic 
that for these time points two or more samples are taken, which would mean these 
have to be taken at least 24 h apart and would substantially increase the number 
of visits a patient or client has to make to the clinical practice. What we thus tried to 
assess here, is the prediction accuracy for one-, two-, or three-sampling procedures 
while restricting the sampling window to 23 h or less in the case of multiple 
sampling. To test the significance of model improvement by increasing sample 
number, we ran a linear mixed-effects model to account for between-subjects 
variation, using the lme4 package (v1.1-30) in R, with the number of samples as 
a fixed effect (categorical factor) and subject ID as a random effect.

Metabolites that were statistically significant in the C and S models were 
converted to Human Metabolome Database IDs and submitted to Metabolite 
Set Enrichment Analysis and Pathway Analysis (MetaboAnalyst 5.0 https://www.
metaboanalyst.ca/). ORA was performed using the hypergeometric test to evalu-
ate whether a particular metabolite set was represented more than expected by 
chance within the given compound list. One-tailed p values were provided after 
adjusting for multiple testing. Pathway analysis was performed using a Homo 
sapiens Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway library.

Data, Materials, and Software Availability. Rscripts, other associated code data 
have been deposited in FigShare (https://figshare.com/articles/journal_contribu-
tion/Woelders_et_al_2023_Supplementary_data_and_analysis/22567783/1) 
(36). All study data are included in the article and/or SI Appendix. Previously pub-
lished data were used for this work (20, 21).
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