
Review

A survey of automated methods for biomedical text

simplification

Brian Ondov , Kush Attal , and Dina Demner-Fushman

Computational Health Research Branch, National Library of Medicine, Bethesda, Maryland, USA

Corresponding Author: Brian Ondov, PhD, Computational Health Research Branch, National Library of Medicine, 8600

Rockville Pike, Bethesda, MD 20894, USA; brian.ondov@nih.gov

Received 27 May 2022; Revised 26 July 2022; Editorial Decision 7 August 2022; Accepted 16 August 2022

ABSTRACT

Objective: Plain language in medicine has long been advocated as a way to improve patient understanding and

engagement. As the field of Natural Language Processing has progressed, increasingly sophisticated methods

have been explored for the automatic simplification of existing biomedical text for consumers. We survey the

literature in this area with the goals of characterizing approaches and applications, summarizing existing

resources, and identifying remaining challenges.

Materials and Methods: We search English language literature using lists of synonyms for both the task (eg,

“text simplification”) and the domain (eg, “biomedical”), and searching for all pairs of these synonyms using

Google Scholar, Semantic Scholar, PubMed, ACL Anthology, and DBLP. We expand search terms based on

results and further include any pertinent papers not in the search results but cited by those that are.

Results: We find 45 papers that we deem relevant to the automatic simplification of biomedical text, with data

spanning 7 natural languages. Of these (nonexclusively), 32 describe tools or methods, 13 present data sets or

resources, and 9 describe impacts on human comprehension. Of the tools or methods, 22 are chiefly procedural

and 10 are chiefly neural.

Conclusions: Though neural methods hold promise for this task, scarcity of parallel data has led to continued

development of procedural methods. Various low-resource mitigations have been proposed to advance neural

methods, including paragraph-level and unsupervised models and augmentation of neural models with proce-

dural elements drawing from knowledge bases. However, high-quality parallel data will likely be crucial for de-

veloping fully automated biomedical text simplification.
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INTRODUCTION

The ability of patients to understand health issues has been shown

to have a significant impact on outcomes.1 The preponderance of in-

formation now available to the general public may have the poten-

tial improve health literacy, which could increase patients’

autonomy, engagement, and compliance when it comes to their own

healthcare.2–4 Resources along these lines range from medical litera-

ture and online encyclopedias to clinical notes, which are increas-

ingly made available to patients through healthcare portals.

Utilizing these resources, however, comes with major barriers.5 Nat-

urally, patients and caretakers will not always have the educational

background needed to grasp all the concepts they encounter in such

documents. However, much of the impenetrability of these types of

documents is more akin to a language barrier, created by the distinc-

tive lexicon of medicine,6 which often parallels general terminology.

Further, literature and encyclopedias often employ long sentences

with complex syntax, making their general reading levels higher

than much of the public’s.7 Both of these potential hurdles may be
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conquerable in light of recent methods in Machine Translation and

Text Simplification. This has led researchers to explore the possibil-

ity of automatically adapting biomedical text to plain language for a

consumer audience. Figure 1 illustrates an example of a manual sim-

plification that highlights some of the difficulties that may be faced

by automated systems. The original passage is from a biomedical ab-

stract.8 In this survey, we provide relevant background, review prog-

ress that has been made in biomedical text simplification, and

discuss current challenges.

BACKGROUND

Biomedical text simplification is an intersection of a computational

task and a language domain. We will present background relating to

both areas.

Plain language in medicine
As a remedy for low health literacy, the use of Plain Language is in-

creasingly advocated for by practitioners and researchers.9–14 Many

consumer-oriented online knowledge bases, such as the Merck Man-

uals15 and MedlinePlus,16 incorporate Plain Language. However,

the time and resources needed to survey and adapt the latest litera-

ture for the public means they are not likely to contain very recent

research findings. This is especially important during emerging

health crises, when consumers are looking to the Internet to find

such knowledge.17 Plain Language Summaries (PLS), which are

short, consumer-oriented summaries published alongside original re-

search, may be a solution. There has been considerable effort to en-

courage the publishing of PLS along with research articles,

systematic reviews (such as from Cochrane), and clinical trials.

However, PLS have nonetheless been reported to be difficult to find

and inconsistently written.18–20

Automatic text simplification
Since the general task of automatically simplifying text is a broad

area and beyond the scope of this review, we will direct the reader

to other surveys, such as those by Shardlow et al21 and Al-Thanyyan

and Azmi,22 for a fuller understanding of methods and resources.

However, here we will briefly cover the major developments and

practices as they may relate to biomedical text simplification.

Procedural methods

Earlier automatic simplification methods focused on procedurally

addressing the 2 major components of simplification: lexical and

syntactic.23 Procedural (or “rule-based”) lexical simplification uses

knowledge bases (such as plain language thesauri) to identify rare or

difficult terms and substitute them for more common or shorter syn-

onyms.24 Procedural syntactic simplification generally uses parse

trees to perform operations like pruning, splitting, or pattern-based

paraphrasing.25,26

Statistical methods

Driven by availability of parallel data and improvements in comput-

ing power (among other factors), Statistical Machine Translation

(SMT)27 drove much of the early progress in Machine Translation

(the use of computers to automatically translate from one natural

language to another).28 By posing the simplification problem as one

of “translating” from one sublanguage (ie, the more complex regis-

ter) to another (ie, the simplified register), SMT is also applicable to

this task. However, there are challenges in translating within a lan-

guage, the foremost being data acquisition. For translation between

languages, data are largely found in existing parallel corpora, since

textual resources often need to be read in different languages. These

corpora have typically already been translated sentence by sentence,

preserving as much meaning as possible. Individual pairs of senten-

ces simply need to be aligned from such “bitexts,” typically using

fairly straightforward heuristics and dynamic programs. Bitexts for

different audiences in the same language, however, are rarer. Those

that exist are typically adapted at the document level, potentially

splitting, rearranging, or omitting sentences and phrases. These

types of sentence-level operations, though rare in translation,29 are

much more common in simplification, requiring more advanced

strategies for alignment. Much of the progress in data-driven simpli-

fication (ie, statistical and neural approaches) has thus been enabled

by the “mining” of training data from comparable corpora, using

various heuristics and measures of semantic similarity.30–32 Using

Figure 1. An example of biomedical text simplification highlighting some of the difficulties that may be encountered.
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such mined data, the SMT framework and simplification-specific

variants of it have been explored.32–35 However, simplification

tends to involve open-ended paraphrasing to a greater extent than

translation, with many options for lexical substitution. It has been

noted that this poses a problem for SMT, which relies on consis-

tently observed parallel words and phrases.36

Neural methods

Advances in Deep Learning methods, along with further advances in

hardware and data sources, led to the dominance of the neural

sequence-to-sequence model37 over statistical models for Machine

Translation and many other linguistic tasks. Since then, much of the

progress in simplification has naturally focused on neural models as

well. Parallel data sets can be used to directly train sequence-to-

sequence models.38,39 Deviations from this basic paradigm have in-

cluded teaching neural models to make particular types of edits40 or

output text with desired characteristics, such as parse tree depth,41

and using reinforcement learning to reward simplicity, relevance,

and fluency of the output.42 Since neural models, like statistical

models, require large amounts of training data, some work in the

neural era has also focused on using auxiliary neural networks to

improve the mining of training pairs.43–45 The lack of truly parallel

training data, however, has also generated interest in hybrids of pro-

cedural and neural methods,46 unsupervised methods,47 and zero-

shot methods that leverage parallel texts across languages.48

Evaluation

As with other natural language tasks, automated evaluation metrics

are crucial for the development of increasingly advanced methods,

especially those that are data-driven. However, the difficulty of rat-

ing simplifications automatically has also made human evaluation

important. Automatic metrics can be broadly grouped into readabil-

ity, reference-based, and reference-free:

• Readability: systems can in theory be evaluated with traditional

measures of readability, such as the Flesch-Kincaid Grade Level

(FKGL),49,50 SMOG (Simple Measure of Gobbledygook),51 LIX/

RIX/OVIX,52–55which use attributes like syllable counts and sen-

tence length to calculate text difficulty. However, these metrics

are easily manipulated56 and do not necessarily correspond to

reader comprehension, which is ultimately the goal of simplifica-

tion.53 Further, word complexity may not correspond to famil-

iarity when considering domain-specific language.57,58

Additionally, inline explanations of terms are often required for

comprehension but make sentences longer and more complex.59

These phenomena can make standard readability metrics mis-

leading for automatic text simplification, leading to alternatives

being proposed.60

• Reference based: For data-driven approaches that are framed as

translation problems, it is intuitive to use reference-based met-

rics, such as BLEU (BiLingual Evaluation Understudy),61 which

measures the fraction of common substrings between a system-

generated output and a gold-standard reference translation (or

set of translations). However, BLEU can be misleading when ap-

plied to simplification because of the specific operations of this

task.62 Xu et al35 thus introduce a new, simplification-specific

reference-based metric, SARI, that incorporates the original in-

put in addition to reference simplifications. This allows SARI to

characterize n-grams that were kept, added or deleted compared

to the original, and balance these 3 operations in rating system

outputs. Additionally, other translation-based metrics such as

METEOR and TER (Translation Edit Rate) have been used.63

Paraphrase in n-gram changes (PINC) was developed specifically

for rating paraphrases and rewards novelty, essentially making it

the inverse of BLEU.64 BERTscore65 relaxes the exact token (or

stem) matching requirement of other metrics by comparing con-

textual embeddings using BERT.66

• Reference free: Sulem et al67 introduce SAMSA, a metric that

compares syntactic content of a generated output to its input,

forgoing the need for reference outputs.

Figure 2 shows examples of scoring with BLEU and SARI, which

are the most commonly used automatic, reference-based evaluations

for simplification.68 Alva-Manchego et al,68 after analyzing correla-

tions of various automated metrics with human judgments, recom-

mend using the precision component of BERTscore foremost, and

then SARI (especially if the system performs lexical paraphrasing) or

SAMSA (especially if the system performs sentence splitting) if

BERTscore is low.

Human evaluations are typically performed using a small subset

of system output due to the time and labor involved. They can be di-

vided into several basic types:

• Qualitative: human evaluators may be tasked with providing

judgments about attributes like simplicity, grammaticality, and

faithfulness of the simplification to the original. These judgments

are usually captured quantitatively using Likert scales or forced-

choice responses.
• Comprehension: since the end goal of simplification is for readers

to better comprehend text, human readers can be tested on how

well they comprehend a simplified version of a passage versus the

original. There are 2 main methods used to determine compre-

hension:
• Multiple choice questions (MCQ): After reading a passage of

either original or simplified text, the subject is presented with

a crafted question with a multiple-choice response, similar to

a standardized test. The question is created such that the sub-

ject would need to have comprehended the text to know the

answer. These are reliable but require labor and expertise to

generate.
• Cloze procedure: Due originally to Taylor,69 the cloze proce-

dure involves masking words throughout the text and tasking

the subject with predicting the missing word from context.

This has been shown to correlate well with other measures of

comprehension and has the benefit of being mostly automatic.

The basic cloze procedure is often modified, for example by

choosing which words to mask by their importance (“rational

deletion”) or adding multiple choice distractors to each

blank.

MATERIALS AND METHODS

Since we are concerned with not only a particular language task, but

one applied to a specific domain, we approach our literature search

using pairwise sets of synonyms. For the task, we begin with the

terms “sentence simplification” and “text simplification” and, fol-

lowing initial search results, also include “text style transfer” and

“text adaptation.” For the domain, we use the terms “biomedical,”

“medical,” and “clinical.” We search for all pairs of these synonyms

using Google Scholar, Semantic Scholar, PubMed, ACL Anthology,

and DBLP. From the results, we include papers that are both chiefly

concerned with the biomedical domain and either: (1) describe a
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method for simplifying or adapting text to a consumer audience, (2)

empirically evaluated simplification or its effects on downstream

tasks, or (3) describe a data set or other resource valuable for devel-

oping simplification systems. We exclude papers that are not chiefly

concerned with the biomedical domain or do not fall into at least

one of the latter 3 categories. We further exclude publications that

are not peer reviewed (eg, preprints and theses) or that only evaluate

proprietary systems. For semantic searches (ie, Google Scholar and

Semantic Scholar), whose results are not limited by the keywords,

we end the search when an entire page of results does not meet the

inclusion criteria. We categorize papers by natural language, subdo-

main within the biomedical domain, and computational paradigm.

RESULTS

Our search and inclusion criteria yielded 45 papers. Of these

(nonexclusively), 32 describe tools or methods, 13 present data sets

or resources, and 12 describe impacts on human comprehension or

downstream applications. A complete list of papers and their inclu-

sion criteria can be found in Table A1 in the Supplementary

Material.

Categorization
First, we categorize papers by basic factors, choosing to sort them

by natural language and subdomain within the biomedical domain.

Natural languages

The majority of papers (32) were concerned with only English text

data. Either in addition to or instead of English, 8 papers dealt with

French,43,70–76 2 with Spanish,77,78 1 with Portuguese,79 1 with

Swedish,80 1 with Italian,81 and 1 with Romanian.82

Subdomains

The biomedical domain encompasses a range of textual resources

and applications (Figure 3). Friedman et al6 identify 2 main sublan-

guages of biomedical text: that of the biomolecular domain (corre-

sponding to literature) and that of the clinical domain

(corresponding to patient reports). Each subdomain poses unique

challenges for simplification. Literature contains technical terms and

complex language. Clinical notes, on the other hand, use abbrevia-

tions and short, often incomplete sentences with informal grammar.

Literature can further be divided into journal articles and reference

texts such as books and encyclopedias. The distinction is notewor-

thy since articles are more likely to describe experiments and results,

employing elements such as the first person, the passive voice, and

statistical analyses. Clinical notes also contain further subdomains,

according to the medical specialty. We find 35 papers dealing pri-

marily with literature and 15 primarily with clinical notes. Of the

latter, 2 papers focused specifically on radiology,73,83 which has a

fairly restricted lexicon based around anatomical descriptions, ap-

pearance descriptors, and diagnostic terms, and 2 focused on pre-

scription instructions,84,85 which have a particular shorthand

lexicon for aspects like medication dosages, routes, and frequencies.

Data sources
Regardless of the automated approach (procedural, statistical, or

neural), robust sources of parallel data are required. Procedural

methods largely depend on thesauri for making word-level substitu-

tions. Data-driven statistical and neural methods, however, require

corpora that are parallel at least at the phrase or sentence level, which

are relatively rare within languages (see Automatic Text Simplifica-

tion). The problem of finding such data sets is only exacerbated for a

specialized domain like the biomedical text, with instances of individ-

ual sentences or phrases being explicitly rewritten by experts re-

stricted to small data sets or narrow subdomains.84,85 In place of

parallel corpora, the 2 major solutions are comparable corpora and

pseudoparallel corpora. A summary of available data sets for bio-

medical text simplification can be seen in Table 1.

Plain language thesauri

The most basic parallel resource for simplification is a plain lan-

guage thesaurus, which links technical terms (words or short

Figure 2. Automatic reference-based and evaluation with BLEU and SARI. Note that colors are applied to 1-grams (single words) though both metrics include up

to 4-grams (overlapping stretches of 4 words) in counts when computing precision and F-score.
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phrases) to plain language synonyms, such as those from a Con-

sumer Health Vocabulary (CHV).86 The linkage between technical

and familiar terms can be partially automated using statistical meth-

ods, as done by Koptient and Grabar, Elhadad and Sutaria, and

Doing-Harris and Zeng-Treitler.76,87–89 The Unified Medical Lan-

guage System (UMLS)90 Metathesaurus91 contains such relation-

ships for the Open Access Collaborative (OAC) CHV.88

Parallel and pseudoparallel corpora

The pair-mining approach, as used by many in the open domain (see

Automatic Text Simplification),30–32,44,45 can provide aligned sub-

sets of sentences from comparable biomedical corpora. Statistical

methods like those used for linking thesauri can also be used to find

short phrases revolving around specific noun/verb constructs, as

done by Del�eger and Zweigenbaum70 and Tchami,71 and other sta-

tistics and heuristics can be used to find semantically similar pairs of

sentences or longer passages. However, it is rare for complete sen-

tences written in the contexts of different documents to have identi-

cal meanings. Even allowing for one-to-many alignment, authors

note that many such pairs have extra clauses on one side or make

different points. We thus refer herein to corpora generated with this

method as pseudoparallel. Adduru et al63 and Cardon and Grabar72

execute this approach by training classifiers to distinguish known

parallel sentences from randomly paired sentences, then using the

trained classifier to identify potentially parallel sentences from com-

parable corpora. Van den Bercken et al,92 taking advantage of the

biomedical articles included in Wikipedia, filter an open domain

pseudoparallel Wikipedia/Simple-English-Wikipedia data set31 to

create a biomedical domain-specific subset. Van et al93 take a simi-

Figure 3. Domains and subdomains of current and potential sources of simplification data. Size is arbitrary and not meant to represent amount of data available.

Table 1. Published corpora for biomedical text simplification, listed in reverse chronological order

Name Year Author Type Size Language

CochranePLSa 2021 Devaraj et al Comparable 4495 document pairs English

CDSRb 2021 Guo et al Comparable 7805 document pairs English

MSD Train 2020 Cao et al Nonparallel 130 349 sentences (professional);

114 674 sentences (consumer)

English

MSD test 2020 Cao et al Parallelc 675 passage pairsd English

CLEAR (thesaurus) 2020 Koptient and Grabar Thesaurus 11 272 terms French

Medical Paper-Blogb 2020 Pattisapu et al Parallelc 706 sentence pairs English

DBFa 2020 Sakakini Parallel 4554 sentence pairs English

AutoMeTSa 2020 Van et al Pseudoparallel 3300 sentence pairs English

WikiMeda 2019 van den Bercken et al Pseudoparallel 9212 sentence pairs English

WikiSWikib 2018 Adduru et al Pseudoparallel 2493 sentence pairs English

CLEAR 2018 Grabar and Cardon Comparable 16 193 document pairs French

CLEAR (aligned) 2018 Grabar and Cardon Pseudoparallel 663 sentence pairs French

OAC CHV 2011 Doing-Harris et al Thesaurus 88 529 terms English

aName assigned here.
bAs referred to within paper.
cMined from existing text but screened by human annotators to ensure parallel content.
dPassages have on average 1.38 and 1.55 sentences on the professional and consumer sides, respectively.
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lar approach beginning from another data set derived from Wikipe-

dia/Simple-English-Wikipedia.30 Cao et al94 employ expert annota-

tors to identify highly similar passages (typically one to two

sentences on each side) from the online Merck Manuals, which fea-

ture many articles on similar topics written for both professional

and consumer audiences. Pattisapu et al95 also use expert annotators

to similarly select pairs from research papers and corresponding

medical blogs about them. Human filtering makes data sets from

both Cao et al and Pattisapu et al closer to true parallel corpora.

Though these data sets relatively small because of the labor in-

volved, the higher quality makes them valuable for testing.

Comparable corpora

Comparable corpora consist of pairs of documents that convey

roughly the same information. For example, Guo et al extract

abstracts from the Cochrane Database of Systematic Reviews

(CDSR)96 paired with their corresponding Plain Language Summa-

ries (PLS),97 with the aim of training lay summarization systems.98

The pairs are filtered for a source length of 300 to 1000 words.

Devaraj et al99 build on this approach by using heuristics to align

sections of CDSR abstracts, which are often structured into sections,

with analogous sections of corresponding PLS. This results in pas-

sages of text that describe roughly the same experimental results in

both the professional and consumer registers. Similarly to Guo et al,

passages retained are limited to 1024 tokens, which is the size that

the largest current models can ingest.100,101 Grabar and Cardon72

compile a corpus of comparable document pairs from several sour-

ces: French Wikipedia versus Vikidia (an online encyclopedia tar-

geted toward children, featuring mainly articles in French),

professional versus consumer drug leaflets, and French versions of

Cochrane abstracts versus their French Plain Language Summaries.

Elements of comprehension
Biomedical text simplification is important chiefly as a means to the

end of improved consumer understanding. Consequently, there has

been a large amount of interest in identifying which of the many

possible linguistic operations captured by simplification are the

most effective in achieving this goal. This knowledge is especially

valuable for procedural approaches but can also inform data set cre-

ation, evaluation, and error analysis for data-driven approaches.

• Corporal analysis: Kauchak et al102 use classical Machine Learn-

ing to weight features such as part-of-speech, lexical frequency,

and semantic ambiguity in terms of their predictive value for the

difficulty of biomedical text. Interestingly, they find that more

difficult text contains more specific terms (such as the technical

term myocardium), while simpler text has more ambiguous ones

(such as the more common but polysemous word heart). In an-

other study characterizing the accessibility of text, Kauchak et

al78 identify transition words, which are known to impact com-

prehension.
• Empirical studies: In empirical studies of comprehension with

nonexpert readers by Leroy et al, substitution of less familiar

words (as measured by frequency in the Google Web Corpus)103

by more familiar ones showed mixed results, improving percep-

tion of text difficulty but only improving comprehension in some

cases.104–106 Splitting up longer noun phrases into short ones

was also hypothesized by Leroy et al107 to improve comprehen-

sion but when studied only improved perceived difficulty. In con-

trast, interventions that were shown by Leroy et al106 to improve

comprehension were increasing coherence using anaphora (ie, us-

ing a pronoun to refer to a recently used term rather than repeat-

ing it) and emphasizing ideas using typographical coherence (ie,

indented enumerations). When a difficult term has no simpler

substitution, an explanation may be inserted. Gu et al108 exam-

ine the effects of these explanations on comprehension, finding

that optimal placement (after the term or at the end of the sen-

tence) depends on the type of corpus.
• Qualitative measurements: To facilitate comparison of papers

that describe methods, we identify 4 major types of qualitative

human judgments used for evaluation in these papers. From

descriptions of what annotators were asked to judge, we map

evaluations onto these 4 categories:
• Grammaticality: how well the output conforms to grammati-

cal rules or is fluent
• Simplicity: how simple or comprehensible the output is, either

absolutely or compared to the original
• Preservation: how much of the original semantic content is

preserved in the output
• Accuracy: how correct the information in the output is

Computational paradigms
Here, we describe work based on the computational paradigm (Fig-

ure 4). Of the 32 tools or methods described in the papers included,

22 are chiefly procedural and 10 are chiefly neural. Note that we did

not find any papers employing the statistical paradigm within the

biomedical domain. We also discuss 2 special cases: human-in-the-

loop computing and the use of simplification as preprocessing for

further computational tasks.

Procedural

Despite the widespread adoption of statistical, and then neural, meth-

ods over procedural ones in the open domain (see Automatic Text

Simplification), work on procedural methods for simplifying biomed-

ical text has continued. This is due to: (1) the robustness of in-

domain knowledge bases, (2) the lack of in-domain parallel training

data, and (3) the unpredictability of neural models. The latter is espe-

cially important when health information is involved, as both spuri-

ous substitutions and omissions of potentially crucial context could

mislead users and potentially cause inappropriate actions. Like in the

open domain, the 2 most common elements of procedural methods

are lexical simplification methods and syntactic simplification.

• Lexical methods typically use plain language thesauri (see Data

Sources), such as the UMLS Metathesaurus,91 to identify and re-

place difficult medical terms.59,73,79–81,83,89,104,109 Open-domain

knowledge bases that naturally contain scientific language, such

as WordNet110 and Wiktionary, have also been used, as by Leroy

et al104 Several improvements to this general paradigm have been

explored:
• Explanation generation: The hierarchical relationships be-

tween words or concepts in the UMLS90 and other knowledge

bases can also be used to generate explanations for words

that do not have simpler synonyms. For example,

“Pulmonary atresia” can be explained through its hyponymy

with “birth defect,” creating the phrase “Pulmonary atresia

(a type of birth defect).” This approach is taken by Kandula

et al,59 Leroy et al,104 and Zeng-Treitler et al.109

• Subwords: Kloehn et al77 further expand on the basic word-

substitution approach by breaking words into roots and

affixes and providing substitutions for each piece of complex

words. Abrahamsson et al80 similarly adapt the approach to
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Swedish, a compounding language, by examining substrings

of words.
• Language models: Sakakini et al84 improve on the lexical sub-

stitution approach by using a language model to help disam-

biguate possible substitutions using their surrounding context.

Tran et al111 use a neural Masked Language Model to directly

generate context-aware candidates for substitutions.
• Syntactic approaches have included those common in the open

domain. Koptient and Grabar and Kandula et al employ sentence

splitting methods,59,74 and Kauchak and Leroy112 use pattern-

based paraphrasing. Peng et al113 use finite state machines to

identify coordination, relative clauses, and appositions (adjacent

noun phrases referring to the same thing). Double negation,

where words with negative prefixes are also negated in the sen-

tence (such as “not abnormal”), can be simplified by removing

both negations. This method is implemented by Mukherjee et

al,114 and this implementation is used as part of a larger system

by Kauchak and Leroy.112

Procedural approaches have the advantage of predictability,

preservation of content, and generally accurate lexical substitutions.

However, lexical substitutions are typically made without consider-

ing context, causing ambiguity (eg, “no” interpreted as “nitrous

oxide,” or “ultrasound” meaning either a treatment or a diagnostic

tool) and grammatical issues (eg, “renal cortex” becoming “kidney

outer layer of an organ”). While procedural methods also have the

advantage that parallel training data are not needed, this also means

they are typically evaluated using bespoke human evaluation meth-

ods, making it difficult to compare the performance of different sys-

tems. In Table 2, we provide an overview of publications presenting

procedural methods.

Neural

Scarcity of parallel simplification resources is only exacerbated

within domains. Perhaps the biggest exception is Li et al,85 who are

able to obtain a large set (around 530 000) of prescription directions

and their manually translated equivalents for training a sequence-to-

sequence model. However, these data are from a highly specific sub-

domain and are not publicly available, leaving the problem open in

the broader biomedical domain, especially the literature subdomain.

Nonetheless, research on neural models has been pushed forward by

several innovations:

• Procedural elements: One way to mitigate data scarcity is to aug-

ment the standard, supervised sequence-to-sequence model with

procedural elements that draw from knowledge bases, such as

phrase tables. This approach is taken by Koptient and Grabar,

Van den Bercken et al, and Shardlow and Nawaz.75,92,115

• Pseudoparallel corpora: Pairs of sentences similar in meaning can

be mined from comparable corpora (see Parallel and Pseudoparal-

lel Corpora). This allows standard sequence-to-sequence models

to be used, following the Machine Translation paradigm. This ap-

proach is taken by Van et al and van den Bercken et al.92,93

• Document-level simplification: Another strategy is to take advan-

tage of recent models that are able to ingest and output entire

documents. This allows the use of comparable corpora for train-

ing (see “Comparable Corpora”). Devaraj et al and Guo et al

train BART101 models using Cochrane abstracts along with their

Plain Language Summaries.98,99 Limited human evaluation by

Guo et al indicated that, though outputs lagged in simplicity ver-

sus reference PLS, they were at least as fluent and accurate. How-

ever, an issue for both systems was the “hallucination”

(spontaneous introduction into output) of passages common in

Figure 4. Computational paradigms. Procedural approaches include syntactic and lexical simplifications. Neural approaches simplify holistically, based on train-

ing data. Supervised neural approaches are trained with human-created examples (either simplified by sentence or mined from a larger, simple corpus). Unsu-

pervised neural approaches learn internal representations and output distributions, requiring only unaligned expert and simple corpora. Supervised neural

models may be augmented with lexical simplification the via a phrase table, combining neural and procedural paradigms.
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training targets, such as “the aim of this study. . .” or “the evi-

dence is up-to-date as of. . .”
• Unsupervised learning: As in the open domain, the lack of paral-

lel data has also motivated unsupervised techniques. Cao et al94

pose the simplification problem as Style Transfer,79 training vari-

ous architectures for this task using nonparallel professional and

consumer data to represent source and target styles, respectively.

Pattisapu et al95 explore a denoising autoencoder model for

unsupervised simplification. In this method, to create training

data, medical text in the consumer register is altered (or

“noised”) by replacing simple medical terms with their more

technical counterparts from knowledge bases. By trying to re-

cover the original (simple) sentence, the model learns to substi-

tute terms while also retaining fluency in the consumer register.

The latter denoising approach fares much better than the former

style transfer approach in human evaluations. However, both

approaches suffer from unpredictable hallucinations and re-

peated syllables, words, or phrases.

In addition to the fact that no single automatic evaluation met-

ric fully captures the quality of simplification, it has been difficult

to directly compare systems because of a lack of standardized data

sets. However, van den Bercken et al92 put forth a pseudoparallel

corpus as a test set and use it to compare their system to a reimple-

mented baseline system. Pattisapu et al,95 build on this, using the

same data set to compare their system to that of van den Bercken et

al and Shardlow and Nawaz, and claiming a new state-of-the-art.21

A summary of publications describing neural methods can be seen

in Table 3.

Human-in-the-loop

While complete automation is the goal of much of the work in

biomedical text simplification, computational approaches may

also have value in assisting human writers. A human-in-the-loop

model allows progress in the area to benefit medical communica-

tors before fully automated models are viable and protects against

harms that could be caused by incorrect system output. Procedural

simplification in this vein can consist of suggesting lexical substi-

tutions and syntactic rearrangements to a user, either within an

editor, as implemented by Leroy et al and Kauchak and

Leroy104,112 or a reader, as implemented by Alfano et al and Zilio

et al.79,81 On the neural side, Van et al93 propose adapting the

sequence-to-sequence model to interactively provide words likely

to come next in the simplified version of the text, creating a spe-

cialized “auto-complete.”

Simplification as preprocessing

Though consumers may ultimately be the greatest beneficiaries of auto-

matically simplified biomedical text, human readers are not always the

intended audience. Research by Jonnalagadda et al has shown that

both lexical and syntactic simplification can aid in parsing116 and auto-

matic identification of protein-protein interactions.117 Similarly, Peng

et al113 show that syntactic simplification, specifically targeting coordi-

nations, relative clauses, and appositions, can improve extraction of

protein phosphorylation and ranking of sentences by gene actions. Ev-

ans et al use syntactic simplification to improve the extraction of data

from clinical patient information.118,119 Finally, simplification in the

form of substitution of expert biomedical terms by more common ones

Table 2. Publications describing procedural methods for biomedical text simplification, in reverse chronological order

Author Year Language Subdomain Evaluation

Readability Reference Human Comprehension

Tran et ala 2021 English Literature – – gram., simp., acc. –

Alfano et al 2020 English, Italian Literature Familiarity – simp., –

Kauchak and Leroy 2020 English Literature – – –

Koptient and Grabar 2020 French Literature – – gram., simp., pres. –

Sakakini et al 2020 English Clinical – PINC, BLEU – MCQ

Zilio et al 2020 Portuguese Literature – – simp., acc. –

Kloehn 2018 English, Spanish Literature – – simp., acc. –

Ramadier et al 2018 French Clinical – – – Cloze

Mukherjee et al 2017 English Literature – – – –

Qenam et al 2017 English Clinical – – simp., acc. –

Abrahamsson et al 2014 Swedish Literature LIX, OVIX – – –

Leroy et al 2013 (a) English Literature – – – MCQ

Topac and Stoicu-

Tivadar

2013 English, Romanian Literature – – simp. –

Leroy et al 2012 English Literature – – – MCQ

Peng et alb 2012 English Literature – – – –

Evansb 2011 English Clinical

Jonnalagadda and

Gonzalezb

2010 (a) English Literature – – – –

Kandula et al 2010 English Literature FKGL, SMOG – – Cloze

Jonnalagadda et alb 2009 English Literature – – – –

Ong et al 2007 English Literature FKGL – – –

Zeng-Treitler et al 2007 English Clinical – – simp., acc. Cloze

Elhadad et al 2006 English Literature – – simp. –

Note: Human evaluations are coded as grammaticality, simplicity, preservation, and accuracy.
aContains neural elements.
bEvaluated using performance of downstream automated tasks.
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has also been proposed by Chen et al as a remedy for unseen phrases in

Statistical Machine Translation.120

DISCUSSION AND CONCLUSION

Adaptation of biomedical text for the consumer is not one specific

problem, but rather a branch of study spanning various topics, regis-

ters, and applications. The idiosyncrasies of biomedical language

(and its subdomains) provide unique methodological challenges be-

yond the task of open-domain automatic text simplification. At the

same time, the high stakes of medical information, the availability of

knowledge bases, and the lack of parallel text data, have likely led to

the persistence of procedural methods (as opposed to neural meth-

ods) within this domain, while neural methods have dominated in

the open domain. Procedural methods have made progress in

substituting difficult terms, providing explanations, and some forms

of syntactic simplification. However, rule-based methods require

maintenance of knowledge bases, and they typically fail to capture

the complexity of language, requiring human editing for grammati-

cality.112 Deep Learning models hold a lot of promise for incorporat-

ing both the lexical knowledge and the transformational rules

needed in a purely data-driven, and thus ultimately more sustainable,

way. However, limitations in training data currently cause neural

models to be worse than procedural methods at preserving meaning

and critical information, despite improving grammaticality.84,85,111

In addition to training data, a smaller, but still substantial, amount

of high-quality reference data is also needed for measuring progress

of methods development. In our reading of the literature, obtaining

both these types of data has been a sticking point for the progress of

the task. The most common approaches to this lack to date have

been the use of pseudoparallel and comparable corpora and the man-

ual annotation of small data sets, or those within specific subdo-

mains. For training, future circumventions of the parallel data issue

may also include unsupervised methods and zero-shot multitask

models. For testing, however, the most likely way forward will be

further manual creation of truly parallel data sets.

As fully automated systems of any paradigm become more feasi-

ble, ethical concerns are likely to arise surrounding the potential of

mistranslations to do real-world harm. These must be taken seri-

ously to avoid bad outcomes and erosion of trust in health informa-

tion systems. However, concerns must also be weighed against the

fact that consumers are already seeking out information they may

not understand.5 If systems are deployed, it is prudent to provide

disclaimers to users about their experimental nature, if appropriate,

and to emphasize that they are not substitutes for professional

health advice. Additionally, semiautomated systems and human

editing of system output may provide a bridge, ensuring veracity un-

til fully automated systems can be trusted. This would be in keeping

with the approach of “progressive caution.”121 It is also crucial to

consider privacy when collecting training data or deploying a system

that accepts user queries. These data could contain information

about personal health conditions that, if leaked, could affect patients

financially via insurance rates and erode trust, which would be

counterproductive for engagement.121

The task of fully automating the simplification of biomedical text

remains a daunting one, with issues to be resolved in methods, data

collection and ethical concerns. However, each bit of progress brings

us closer to realizing the potential for this application to improve pa-

tient understanding, health literacy, and, ultimately, health outcomes.
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Table 3. Publications describing neural methods for biomedical text simplification, in reverse chronological order

Author Year Language Subdomain Evaluation

Readability Reference Human

Devaraj et al 2021 English Literature FKGL, ARI SARI, BLEU,

ROUGE

–

Guo 2021 English Literature FKGL, GFI, CLI ROUGE gram., simp., pres.,

acc.

Cardon and Grabara 2020 French Literature Kandel SARI, BLEU –

Cao et al 2020 English Literature – SARI, BLEU pres.

Li et al 2020 English Clinical – BLEU, METEOR acc.

Pattisapu et al 2020 English Literature – SARI, BLEU,

ROUGE, ME-

TEOR

gram., simp., pres.

Van et al 2020 English Literature – – –

Shardlow and Nawaza 2019 English Clinical FKGL, GFI, CLI – simp.

van den Bercken et ala 2019 English Literature – SARI, BLEU gram., simp., pres.

Adduru et al 2018 English Literature – BLEU, METEOR,

TER

–

Note: Human evaluations are coded as grammaticality, simplicity, preservation, and accuracy.
aProcedural elements are used.
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