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To the Editor:

Patients with acute hypoxemic respiratory failure (AHRF) are at risk
of deleterious effects of insufficient, dyssynchronous, or excessively
strong respiratory effort. Patients with efforts of the same magnitude
as healthy subjects at rest had better outcomes than those with
stronger or weaker efforts (1). Frequent dyssynchronies (2) were
associated with higher mortality (3) but not in all studies. In an
animal model of AHRF, the protective versus injurious effect of
dyssynchrony on diaphragm function was determined by the
magnitude of effort (4). Therefore, more so than the prevalence of
dyssynchrony, the magnitude of effort might play a role.

Noninvasive techniques (e.g., airway occlusion pressure)
intermittently estimate the magnitude of synchronous efforts (5).
There is no automated technique for quantifying dyssynchronous
efforts; therefore the epidemiology of their magnitude remains
unknown.

The aims of this study were to 1) develop and validate an
automated algorithm on the basis of esophageal pressure (Peso) to
generate and quantify muscular pressure (Pmus) for synchronous
and dyssynchronous efforts and 2) describe the magnitude and
timing of synchronous and dyssynchronous efforts in patients with
AHREF under different modes of ventilation and compared with
healthy subjects.

Methods

Recordings containing flow, airway pressure, and Peso were obtained
from multiple studies with ethics approval and informed consent.
Fifty-four patients with moderate and severe AHRF (BEARDS
[Incidence of Breathing Efforts in Early ARDS; NCT 03447288] [6]),
9 patients after cardiac surgery during spontaneous breathing trials
(EFFORT [Acceptable Range of Inspiratory Effort During
Mechanical Ventilation; NCT 02838524]), and 9 healthy subjects at
rest and with increased resistance (RegAIN [Effects of Abnormal
Respiratory Mechanics and Assisted Mechanical Ventilation on
Neuro-Regulation of Respiration; NCT 01818219]) were included
either in the derivation or the validation cohort (36 in each). Because
exhaustive visual analysis by experts was necessary for algorithm
development and validation, a selection of recordings was performed,
resulting in 121 recordings (median [interquartile range], 1 [1-2] per
subject) containing 22,041 respiratory cycles. Selection was at random
for EFFORT and RegAIN. For BEARDS, random selection was
performed within specific categories in available recordings
(N'=2,991) after removing those technically not acceptable (4%).
Categories for random selection were defined by ventilation mode,
presence of effort, triggering, and synchrony, to ensure varied
representation of events.

Respiratory cycles were labeled by experts (T. Pham, T. Piraino,
R.C, LT., and L.B.) (for gold-standard definitions, see https://figshare.
com/s/0al46e152c25519f1b34, modified from Reference 6) as
mandatory passive, mandatory with reverse triggering without or
with breath stacking, patient-triggered without or with breath
stacking, and ineffective efforts (Figure 1).

Pmus is the pressure generated by the respiratory muscles to
displace the chest wall from its resting position: it becomes positive
when Peso deviates from the expected increase during passive
insufflation (chest wall recoil pressure), making it easy to recognize
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Figure 1. Event categories and breathing effort according to each category and mode of ventilation. (A) Recording on pressure-control
ventilation illustrating different event categories. From top to bottom flow, airway pressure, esophageal pressure (Peso), and muscular pressure
(Pmus) tracings are shown. The start and end of each respiratory cycle (breath) are defined by the zero crossing of flow (vertical dashed lines).
An inspiratory effort is defined by the positive deflection in Pmus (horizontal black lines). The start and end of each effort are marked with blue
and red dots, respectively. Reverse-triggering (RevT) events are seen on breaths #1, #2, #4, #6, and #8, interposed with mandatory passive
events (#3, #5, and #7) in a 1:2 ratio. The first RevT event (breaths #1 and #2) results in breath stacking (BS) (star). A series of mandatory
passive events is seen from breaths #9—#12, where Pmus is zero (flat line). A patient-triggered (PatT) event is seen at the end (breath #13).
Instantaneous calculation of Pmus is represented with vertical dashed lines on breath #6 in the Peso tracing (i.e., difference between chest wall
recoil pressure [Pcw] and Peso). Pcw is the expected increase in Peso during a hypothetical passive inflation with the same VT, calculated as
the product of chest wall elastance and VT (see similarity between Pcw in breath #6 and Peso in breaths #5 and #7, where inflation is passive
but V1 is smaller). The black vertical arrow in the Pmus tracing (breath #2) illustrates the maximum positive deflection in Pmus during each
inspiratory effort (Pmus swing), and the gray area (breath #4) illustrates the pressure—time product. (B) Pmus swings according to the type of
event and mode of ventilation in patients with acute hypoxemic respiratory failure. Median and interquartile range of Pmus swing in healthy
subjects breathing at rest without inspiratory assistance are displayed as gray horizontal full and dashed lines, respectively (comparison with
healthy subjects at rest: RevT without BS and PaT on pressure support, P> 0.05; PatT in A/C, ineffective efforts in assist-control mode [A/C] and
pressure support mode [PSV], P<0.05, PaT during proportional-assist ventilation with adjustable gain factors [PAV+], P<0.01; passive, RevT,
and PaT with BS on A/C, P<0.001). Events with BS are seen in red, showing a higher Pmus swing versus corresponding events without BS.
Numbers of events were as follows: A/C mandatory breath (Mand.) passive, n=10,017; A/C Mand. RevT without BS, n=1,387; A/C Mand. RevT
with BS, n=455; A/C ineffective effort (IE), n=27; A/C PatT without BS, n=1,334; A/C PatT with BS, n=58; PSV IE, n=23; PSV PatT, n=3,212;
and PAV+ PatT, n=2,572. Twelve breathing efforts with Pmus swing higher than 60 cm H,O were removed to improve data visualization. (C)
Pressure-time product per minute for recordings during different modes of ventilation and containing different types of events in patients with
acute hypoxemic respiratory failure. The reference median and interquartile range of PTPmus per minute for recordings of healthy subjects
breathing at rest without inspiratory assistance are displayed as gray horizontal full and dashed lines, respectively (comparison with healthy
subjects at rest: A/C with RevT, PSV, and PAV+, P> 0.05; A/C with only PaT, P<0.05). Numbers of recordings (breathing efforts)
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Table 1. Subjects’ Clinical Characteristics, Clinical Data Simultaneous with Recordings, and Algorithm’s Diagnostic Accuracy

Acute Hypoxemic Respiratory Failure Cardiac: SBT Healthy Subjects
Subjects’ Clinical DERIV VALID DERIV VALID DERIV VALID
Characteristics (n=26) (n=28) (n=5) (n=4) (n=5) (n=4)
Age, yr, mean (SD) 61.7 (13.7) 65.4 (11.7) 4.0 (6.48) 62.2 (13.9) 23.8 (3.50) 24.6 (3.51)
Female, n (%) 5 (18) 8 (31) 0 (0) 2 (40) 0 (0) 0 (0)
Height, cm, mean (SD) 171 (8.12) 169 (9.23) 72 (12.2) 172 (10.7) 175(8.81) 180 (3.96)
APACHE Il score 4.9 (25.0) 92.8 (34.1) — — — —
Comorbidities, n (%)
Hypertension 12 (43) 13 (50) 4 (80) 4 (100) 0 (0) 0 (0)
COPD 7 (25) 1(4) 0 (0) 0 (0) 0 (0) 0 (0)
Diabetes 10 (36) 11 (42) 4 (80) 1 (25) 0 (0) 0 (0)
Chronic kidney disease 5(18) 6 (23) 0 (0) 0 (0) 0 (0) 0 (0)
Left ventricular failure 6 (21) 1(4) 1 (20) 0 (0) 0 (0) 0 (0)
Oncohematologic 2(7) 4 (15) 0 (0) 0 (0) 0 (0) 0 (0)
Etiology of hypoxemia, n (%)
Pneumonia 20 (71) 20 (77) — — — —
Aspiration 2(7) 6 (23) — — — —
Trauma 3 (11) 1(4) — — — —
Nonpulmonary sepsis 3(11) 3(11) — — — —
Drug toxicity 0 (0.0) 2 (8) — — — —
Clinical data simultaneous with
recordings
Days on MV up to the recording, 6 (4-7) 5 (3-8) — — — —
median (IQR)
Prone-position recordings, n (%) 4(7) 0 (0) — — — —
SAS, median (range) 3 (1-5) 2 (1-4) — — — —
P0.1, cm H,O, median (IQR) 2.9 (1.8-4.2) 2.1 (1.5-3.8) — — — —
(recordings with patient-triggered
breaths)
Pao,:Fio, mm Hg, median (IQR) 220.0 (162.0-268.0) 184.0 (159.9-221.1) — — — —
pH, ‘median (IQR) 7.37 (7.32-7.42) 7.39 (7.36-7.43) — — — —
Paco, mm Hg, median (IQR) 44.0 (38.0-50.0) 44.0 (40.2-53.3) — — — —
Midazolam-infusion recordings, n (%) 18 (32) 13 (46) — — — —
Propofol-infusion recordings, n (%) 15 (26) 8 (29) — — — —
Opioid-infusion recordings, n (%) 5 (79) 23 (82) — — — —
NMBA-infusion recordings, n (%) 10 (18) 5 (18) — —
Algorithm performance (VALID) Effort detection: Acc=0.95, Se=0.93, Sp=0.98, PPV 0.99, NPV 0.87
Total 7,471 respiratory cycles plus PatT vs. Mand: Acc=0.99, Se=0.98, Sp=0.99, PPV =0.99, NPV =0.98
50 IEs BS: Acc=1.00, Se=0.96, Sp=1.00, PPV =0.94, NPV =1.00

Overall RevT: Acc=0.97, Se=0.90, Sp=0.98, PPV =0.89, NPV =0.99
RevT without BS: Acc=0.98, Se=0.88, Sp=0.99, PPV =0.87, NPV =0.99
RevT with BS: Acc=1.00, Se=0.95, Sp=1.00, PPV =0.96, NPV =1.00
PatT with BS: Acc=1.00, Se=0.79, Sp=1.00, PPV =0.66, NPV =1.00
IEs: Acc=1.00, Se=0.69, Sp=1.00, PPV =0.70, NPV =1.00

Definition of abbreviations: Acc = accuracy; APACHE = Acute Physiology and Chronic Health Evaluation; BS = breath stacking; COPD = chronic
obstructive pulmonary disease; DERIV = derivation data set; |E = ineffective effort; IQR = interquartile range; Mand = mandatory; MV = mechanical
ventilation; NMBA = neuromuscular-blocking agents; NPV = negative predictive value; PO.1 =airway occlusion pressure; PatT = patient triggered;
PPV = positive predictive value; RevT =reverse triggered; SAS = sedation agitation score; SBT = spontaneous breathing trial; Se = sensitivity;

Sp = specificity; VALID = validation data set.

efforts during assisted ventilation (Figure 1). Methodological details approximations of Pmus. Then, each respiratory cycle (defined by

are available at https://figshare.com/s/0al46e152c25519f1b34. zero crossings of flow) was associated with an effort when present and
The algorithm automatically recognized efforts and their start classified into one of the categories shown in Figure 1, using a
and end by using the first- and second-derivative difference decision tree based on the timing of effort versus the respiratory cycle.

Figure 1. (Continued). were as follows: A/C with RevT, n=18 (n=2,333); A/C only PatT, n=4 (n=887); PSV PatT, n=21 (n=_3,029); and PAV+
PatT, n=24 (n=2,564). TSixty-three efforts out of 10,017 mandatory passive events were erroneously detected by the algorithm because of an
artifact in the Peso signal in passive breaths (rate of false positives < 1%), resulting in measurement of effort (Pmus swing). Paw = airway
pressure; PTPmus = pressure-time product measured according to the algorithm; PTPmus[mean] = mean pressure-time product measured
according to the algorithm for one recording.
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Each effort was characterized with maximum positive deflection
(Pmus swing), the integral of Pmus over the whole effort (PTPmus),
and effort per minute (PTPmus/min) (Figure 1).

A sample size of 40 recordings including 7,600 events was
necessary for algorithm validation to detect efforts and classify reverse
triggering with a sensitivity of >89%, specificity of >94%, o of 0.05,
and power of 0.8, considering a rate of effort of >50% and reverse
triggering of 15% (6, 7).

Descriptive statistics are expressed as proportions, mean (SD), or
median (interquartile range); normality was assessed using the
Shapiro-Wilk test.

Accuracy for the detection of events was compared with the gold
standard in the validation data set. PTPmus was compared with the
classical pressure-time product (time references were based on flow)
(8) for purely spontaneous or synchronous breaths (end of effort
simultaneous to the end of insufflation).

We used mixed-effects regression models to account for
repeated measures (random intercept for participants) with Tukey
adjustment for pairwise comparisons between effort in different event
categories.

MATLAB version R2018b (The MathWorks) was used for
algorithm development and R version 4.1.2 (www.R-project.org) for
statistical analyses.

Results
Characteristics of subjects and diagnostic accuracy of the algorithm
are displayed in Table 1. Accuracy was 95% for effort detection and
97% for reverse triggering. Bias in the measurement of PTPmus per
breath versus classical pressure-time product (8) was low: 0.4 cm
H,O - s (limits of agreement, 2.9 to —2.1 cm H,O - s).

Degrees of effort for the different types of breaths and modes of
ventilation in patients with AHRF are shown in Figure 1.

Discussion

Our approach for accurate detection and quantification of the
magnitude of synchronous and dyssynchronous efforts using
Pmus allows to characterize all types of efforts in patients with
AHRF and to compare them with those of healthy subjects.

We deliberately targeted a specific population. Patients with
hypoxemic respiratory failure requiring prolonged mechanical
ventilation are among the most vulnerable ICU patients, in whom
attention to the interaction with the ventilator in the first days
may be essential.

Previous techniques for dyssynchrony detection did not quantify
the magnitude of effort and were restricted to specific dyssynchronies,
modes of ventilation, or ventilators (9). Our approach measures
instantaneous effort and effort per minute. Pressure-time product per
minute could not be obtained during dyssynchronies using classical
methods (8), because of the lack of reference time points in the flow.
Pressure-time product per minute correlates with the oxygen cost of
breathing and quantifies power (i.e., energy per unit of time) applied
to the lung by the respiratory muscles. Several dyssynchronies exist
under the category of patient-triggered events (2). However, we
focus here on the comparison between patient-triggered and
reverse-triggered breaths, given the high prevalence of these two in
the first days of mechanical ventilation for patients with AHRF (7).
Reverse triggering is recognized as a frequent event that can generate
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breath stacking, excessive effort, or volume and its magnitude can be
quantified by the algorithm, thus offering an estimate of its protective
versus injurious effects (4). Effort during reverse triggering without
breath stacking was similar to that in healthy subjects at rest. Stronger
efforts were observed overall during breath stacking in assist-control
mode, being potentially injurious to the lung and diaphragm, with
large individual variations. Surprisingly, patient triggering in assist-
control mode showed the highest effort, probably due to high drive in
moderate and severe AHRF combined with limited peak flow, VT,
and/or insufflation time. This concerning finding will need further
exploration.

The need for Peso and the calculation/estimation of chest
wall recoil pressure impose limitations. However, if the clinical
relevance of the magnitude of synchronous and dyssynchronous
effort is further demonstrated, this might justify using Peso for
monitoring more often. The algorithm can be implemented in real
time. We did not aim here to describe the epidemiology of
breathing efforts, and analysis of BEARDS will offer an
epidemiological description and evaluation of the clinical
consequences of different types of effort. M
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To the Editor:

Ground-level ozone (O;), a regulated air pollutant in many
countries, contributes significantly to the global burden of

disease (1). People are advised to stay indoors when outdoor O3
concentrations are elevated. This conventional wisdom implies that
a substantial fraction of O; disappears as if into a black hole during
outdoor-to-indoor transport. However, O; loss results in the
generation of reaction products (2, 3). Hence, building inhabitants
inhale not only O3 but also airborne products derived from
reactions that consume Os. Some of these products (e.g.,
formaldehyde, methacrolein, and organic peroxides) are known to
be toxic or irritating, although short-term exposures of humans to
05 oxidation products in a chamber study failed to compromise
respiratory function or neurobehavior performance (4, 5).

Ozone reaction products are present as a complex mixture of
both gaseous and particulate species, and neither single nor classes of
chemical species can be readily measured in a real-world setting to
define this mixture. Here we present a novel approach that uses O
loss as a proxy for O; reaction products, calculated by subtracting
indoor concentration from outdoor concentration at a given time.
As inferred by theory (2) and demonstrated through measurements
(3), O; loss is proportional to the net concentration of gas-phase O3
products. Given that O; may be too reactive to reach the distal
lung, whereas Oj; reaction products can, we hypothesized that Os loss
exposure is adversely associated with more biomarkers of pulmonary
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