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3 Defining the Genetic Landscape of Idiopathic Pulmonary Fibrosis:

Role of Common and Rare Variants

Idiopathic pulmonary fibrosis (IPF) is a disease with complex
pathophysiology, in which genetic and environmental factors play
significant roles; however, their relative contributions remain
undefined (1). Understanding the genetic basis of IPF can help define
its heritability, risk, pathogenic mechanisms, and therapeutic targets.
Evidence for genetic risk stems from observations that 5-20% of
patients with IPF have relatives with fibrotic interstitial lung disease
and that genetic variants identified in familial forms of pulmonary
fibrosis (FPF) are present in nonfamilial, or “sporadic,” IPF (2).

As genetic determinants could significantly contribute to disease,
investigators have sought to identify the full scope of genetic variants
that account for IPF risk.

Increasingly powerful methodologies have elucidated the genetic
landscape of IPF, including candidate gene screens, genome-wide
association studies, whole exome sequencing (WES), and most
recently whole genome sequencing (WGS). These methods have
identified both common (typically with minor allele frequency
[MAF] = 0.05) and rare variants (RVs) (variably defined as
MAF = 0.0001-0.01). Common variants are more likely to be found
in healthy individuals, whereas RV tend to cosegregate with affected
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families and more clearly contribute to disease pathogenicity (3).
To date, at least 25 genetic loci have been associated with IPF (4, 5).
The most prevalent is the MUC5B risk allele, which accounts for up
to 30% of IPF risk and is also present in 10-20% of the general
population (6, 7). IPF RVs have been identified in the telomere-
related genes (TRGs) TERT, RTELI, and PARN (8-12); surfactant-
related genes (13-15); and the mitotic spindle gene KIFI5 (4, 16).
Of note, non-TRGs have not been consistently replicated across
studies and methodologies (7, 10, 12, 16-18).

In this issue of the Journal (pp. 1194-1202), Peljto and colleagues
(19) further define the scope of RVs in IPF by using WGS from the
Trans-omics for Precision Medicine (TOPMed) program. Compared
with prior methods, WGS provides a more unbiased analysis of both
coding and noncoding regions. Peljto and colleagues included 2,180
IPF cases and 2,457 control subjects (without interstitial lung disease),
split into discovery and validation cohorts. Cases of IPF were defined
using diagnostic criteria from international society guidelines (20).
The primary analysis focused on putative loss-of-function RV's
(MAF = 0.01). Five RVs were significantly associated with IPF in the
discovery cohort, but only RTELI remained significant in the
validation cohort. A prespecified secondary analysis included
missense variants and identified only TERT as significant. However,
SPDLI, a gene involved in cell division checkpoint regulation, was
modestly associated with IPF, as previously reported (4, 21, 22).
Notably, the authors used the Rare Variant Filtering Tool to
determine that a single variant in each of RTEL1, TERT, and SPDL1
genes accounted for most of the increased risk for IPF for that RV.
Patients with FPF were more likely to carry the influential variant in
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TERT but not in RTELI and SPDLI. Two potentially novel common
variants were also identified (in MCLI and ENSG00000260803) that
require further validation.

Peljto and colleagues were among the first to use WGS to
examine genomic noncoding regions for RVs in IPF and have
affirmed previous findings that TRGs represent the most significant
RVs in IPF. The authors used well-defined and prespecified
preliminary, primary, secondary, and meta-analyses, which limits
potential biases. Use of the Rare Variant Filtering Tool provides
potentially useful information by highlighting individual RV in
genes with the strongest influence on IPF risk. This may be important
in prioritizing variants for prognostication and personalizing care for
patients with IPF and their families. These results are further
supported by a contemporary WGS study of exonic variants that
identified TERT and RTEL] as the only significant RVs contributing
to risk (23).

Major contributions of this study are determining that the
genetic heritability of IPF is 32% and providing additional evidence
that most heritability is determined by common variants. Hence, we
agree with the conclusion that the overall SNP contribution to IPF
heritability may only modestly change as larger and more diverse
population genomes are studied. However, efforts to identify
additional RV should continue, as their discovery will provide novel
insights into IPF pathogenesis. For example, the discovery of KIF15
(16), a mitotic spindle-related gene, could uncover novel disease
mechanisms and contribute to drug discovery. As the cost of
sequencing decreases and more patients undergo genetic testing, it will
be important to continue defining pathogenic RV using larger studies
in diverse populations with refinement of statistical methodologies.

There are several limitations to the study. First, the analysis of
Peljto and colleagues was restricted to IPF cases of European ancestry,
which potentially reduces the pool of RVs. For example, KIF15 was
identified in WES and WGS studies when non-European individuals
were included (4, 24). Second, MAF cutoffs have been inconsistent
across studies. In a large cohort WES study, the MAF was 0.005 (10),
which is lower than that used by Peljto and colleagues. Third, because
RVs are, by definition, rare, splitting the sample into a discovery and
validation cohort may have resulted in loss of significance of RVs in
the validation cohort that were significant in the discovery cohort.
Together, these limitations may explain why only two RV (three if
significance limitations are less stringent) were associated with IPF,
whereas previous studies identified additional non-TRG RVs, such as
SFTPC (13) and KIF15 (16). Last, in the bulk of the analysis, familial
and sporadic IPF were grouped together. As FPF is more strongly
associated with pathogenic RVs, it may be useful to investigate
genetic risk solely in sporadic IPF.

We believe that this study represents an important contribution
to further refine the genetic landscape of IPF; however, it may be
difficult to estimate the risk of acquiring IPF by genetic studies alone,
as myriad gene—gene and gene—environment interactions are likely to
contribute to the phenotypic penetrance of individual genetic
variants. To fully determine the genetic and environmental
contribution to IPF risk, more studies are needed on the “exposome,”
which integrates the entirety of an individual’s exposure starting from
conception, including genomic, metabolic, and other -omics
approaches (25). Continued efforts at understanding factors that
contribute to IPF risk will ultimately allow better prognostication and
therapies for patients and their families. M
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3 Could DNA Fragments Be the Key to Early Detection of Lung Cancer?

In the United States, lung cancer remains the leading cause of cancer-
related mortality, accounting for an estimated 136,000 deaths in 2023
(1). The survival of patients with lung cancer at 5 years after diagnosis
has improved to 23%, although it remains considerably lower than
survival rates observed for other common cancers such as breast,
colon, and prostate cancer. Multiple clinical trials have now confirmed
the efficacy of annual low-dose computed tomographic (LDCT)
screening in reducing lung cancer mortality (2-4); however, the
implementation of LDCT screening at the population level has proven
difficult because of challenges in eligibility determination and concerns
regarding potential harm from false-positive imaging results, radiation
exposure, and morbidity from invasive diagnostic procedures (5).
Internationally, lung cancer screening implementation remains
limited; although there has been more rapid uptake in some
countries in Asia, the inclusion of low-risk individuals may influence
population-level outcomes (6, 7). Thus, in the short run, the use of
LDCT is likely to have only a limited impact on the global disease
burden of lung cancer. Advocates of alternative noninvasive
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approaches to lung cancer screening have suggested that accurate
blood-based assays have the potential to overcome many of the
limitations observed with LDCT.

The ability to noninvasively interrogate genomic and epigenomic
changes in circulating cfDNA may transform the landscape of early
lung cancer detection. Plasma cell-free DNA (cfDNA) arises from
chromatin fragmentation that occurs during cell death; it is shed into
circulation and can be isolated from plasma obtained through a
routine blood draw (8). Plasma cfDNA contains circulating tumor
DNA (ctDNA), which is DNA specifically shed from tumor cells and
represents only a small fraction of the total fDNA molecules. ctDNA
can be detected by utilizing highly sensitive sequencing assays to
identify tumor-specific genetic alterations. The use of ctDNA, often
termed “liquid biopsy,” is already an integral part of routine clinical
practice for noninvasive tumor genotyping in advanced non-small cell
lung cancer as well as other malignancies; however, its use remains
limited for the detection of early-stage disease. Although
advancements in sequencing methodologies and computational
biology have improved the yield of rare ctDNA somatic variant
detection, the scarce amount of ctDNA shed into circulation by small
tumors, typically <0.1% of the total cfDNA concentration, is often
below the limit of detection of current sequencing assays (9). In
addition, most cancer-derived DNA fragments are unmutated and are
thus not detected by mutation-based technologies. Several tumor
genotype—naive cfDNA-sequencing strategies have emerged to help
mitigate this limitation for early cancer detection that assess
epigenetic features such as methylation and fragmentation patterns.
Whole-genome sequencing analyses have shown that cfDNA
fragment sizes are more variable in cancer patients, compared with
those in healthy individuals (10-13), and that tumor-derived cfDNA
fragments tend to have shorter size distributions compared with
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