ISSN 2414-3146

Received 28 March 2023 Accepted 18 April 2023

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; rhodium; Nbenzoyl-N-phenylhydroxamic acid; triphenylarsine.

CCDC reference: 2257230

Structural data: full structural data are available from iucrdata.iucr.org

(*N*-Benzoyl-*N*-phenylhydroxylaminato)carbonyl(triphenylarsine)rhodium(I)

Mokete A. Motente,* Johan Venter and Alice Brink

Department of Chemistry, University of the Free State, Bloemfontein, 9301, South Africa. *Correspondence e-mail: mokete.motente@gmail.com

The molecule of the title compound, $[Rh(C_{13}H_{10}NO_2){As(C_6H_5)_3}(CO)]$ or $[Rh(BPHA)(AsPh_3)(CO)]$ (BPHA is the *N*-benzoyl-*N*-phenylhydroxylaminate anion), comprises a bidentate *N*-benzoyl-*N*-phenylhydroxylaminate anion coordinating through the O atoms to the soft Lewis acid, rhodium(I), and two monodentate ligands, *viz*. triphenylarsine and carbonyl. The resulting CO₂As coordination environment around the central Rh^I atom is distorted square planar.=

Structure description

The title complex, $[Rh(BPHA)(AsPh_3)(CO)]$, is composed of an *O*,*O*-bidentate *N*-benzoyl-*N*-phenylhydroxylaminate anion, a carbonyl ligand and a monodentate triphenylarsine ligand, all coordinating to the soft rhodium(I) metal atom (Fig. 1 and Table 1). The crystal structure is isotypic with that of $[Rh(BPHA)(PPh_3)(CO)]$ and shows similar Rh–O and Rh–C bond lengths (2.037/2.089 and 1.809 Å, respectively; Leipoldt & Grobler, 1982). The coordination environment in the molecule of $[Rh(BPHA)-(AsPh_3)(CO)]$ is distorted square planar, as shown by the small O1–Rh–O2 bite angle of 79.53 (7)°, which is similar to the bite angles of related structures with *O*,*O*-binding five-membered chelate rings reported in the literature (Elmakki *et al.*, 2017). The C02–Rh–O2 and C02–Rh–O1 angles involving the C02=002 carbonyl ligand were also found to deviate from ideal values, at 99.31 (9) and 178.39 (10)°, respectively, similar to those of related structures (Elmakki *et al.*, 2016).

The crystal packing is dominated by van der Waals interactions (Fig. 2).

Synthesis and crystallization

A stepwise process was pursued in the complexation of the rhodium metal atom by the bidentate *N*-phenyl-*N*-benzoylhydroxylaminate anion. First, [RhCl(CO)₂]₂ was prepared

Published under a CC BY 4.0 licence

OPEN O ACCESS

(cc) 🛈

Figure 1

The molecular structure of the title compound, showing atoms with displacement ellipsoids at the 50% probability level.

in situ by heating RhCl₃·3H₂O in 5 ml of dimethylformamide under reflux for 30 min, followed by addition of the bidentate ligand to the reaction mixture, which then resulted in the formation of a dicarbonylrhodium species, [Rh(BPHA)(CO)₂] (Leipoldt & Grobler, 1982). Rh(BPHA)(CO)₂] (65 mg) was then dissolved in 5 ml of acetone. Triphenylarsine (AsPh₃; 70 mg) was added to the reaction mixture under stirring, resulting in the immediate evolution of CO gas. The reaction mixture was then left to crystallize, resulting in the formation of yellow crystals suitable for X-ray analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2

An illustration of the molecular packing in the unit cell of $[Rh(BPHA)-(CO)(AsPh_3)]$, viewed approximately along the *a* axis; atom labels have been omitted for clarity.

Table 1	
Selected bond lengths (Å).	

Rh1-As	2.3337 (4)	Rh1-O1	2.0338 (18)
Rh1-O2	2.0682 (17)	Rh1-C02	1.813 (3)

Table 2

Experimental details.

Crystal data	
Chemical formula	[Rh(C ₁₃ H ₁₀ NO ₂)(C ₁₈ H ₁₅ As)(CO)]
M _r	649.36
Crystal system, space group	Triclinic, P1
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.5178 (17), 10.1995 (19), 14.589 (2)
α, β, γ (°)	81.516 (6), 83.142 (6), 72.351 (7)
$V(\dot{A}^3)$	1330.7 (4)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.91
Crystal size (mm)	$0.21\times0.13\times0.03$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.634, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	38485, 6425, 5747
R _{int}	0.065
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.660
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.030, 0.074, 1.07
No. of reflections	6425
No. of parameters	343
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.14, -0.61

Computer programs: *APEX2* and *SAINT* (Bruker, 2012), *SHELXS* (Sheldrick, 2008), *SHELXL* (Sheldrick, 2015), *OLEX2* (Dolomanov *et al.*, 2009) and *DIAMOND* (Brandenburg & Putz, 2005).

Acknowledgements

The University of the Free State and the South African National Research Fund are acknowledged for funding.

References

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Elmakki, M. A., Alexander, O. T., Venter, G. J. S. & Venter, J. A. Z. (2017). Z. Kristallogr. New Cryst. Struct. 232, 831–833.
- Elmakki, M. A., Koen, R., Drost, R. M., Alexander, O. T., Venter, J. A. & Venter, J. A. (2016). Z. Kristallogr. New Cryst. Struct. 231, 781–783.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Leipoldt, J. C. & Grobler, E. C. (1982). Inorg. Chim. Acta, 60, 141-144.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2023). 8, x230355 [https://doi.org/10.1107/S2414314623003553]

(N-Benzoyl-N-phenylhydroxylaminato)carbonyl(triphenylarsine)rhodium(I)

Mokete A. Motente, Johan Venter and Alice Brink

(N-Benzoyl-N-phenylhydroxylaminato)carbonyl(triphenylarsine)rhodium(I)

Crystal data	
$[Rh(C_{13}H_{10}NO_2)(C_{18}H_{15}As)(CO)]$	Z = 2
$M_r = 649.36$	F(000) = 652
Triclinic, $P\overline{1}$	$D_x = 1.621 \text{ Mg m}^{-3}$
a = 9.5178 (17) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
b = 10.1995 (19) Å	Cell parameters from 9339 reflections
c = 14.589 (2) Å	$\theta = 2.3 - 28.3^{\circ}$
$a = 81.516 (6)^{\circ}$	$\mu = 1.91 \text{ mm}^{-1}$
$\beta = 83.142 (6)^{\circ}$	T = 100 K
$\gamma = 72.351 (7)^{\circ}$	Plate, yellow
$V = 1330.7 (4) \text{ Å}^3$	$0.21 \times 0.13 \times 0.03 \text{ mm}$
Data collection	
Bruker APEXII CCD	6425 independent reflections
diffractometer	5747 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{int} = 0.065$
Absorption correction: multi-scan	$\theta_{max} = 28.0^{\circ}, \theta_{min} = 2.1^{\circ}$
(SADABS; Krause <i>et al.</i> , 2015)	$h = -12 \rightarrow 12$
$T_{min} = 0.634, T_{max} = 0.746$	$k = -13 \rightarrow 13$
38485 measured reflections	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$wR(F^2) = 0.074$	$w = 1/[\sigma^2(F_o^2) + (0.0141P)^2 + 1.8613P]$
S = 1.07	where $P = (F_o^2 + 2F_c^2)/3$
6425 reflections	$(\Delta/\sigma)_{max} = 0.002$
343 parameters	$\Delta\rho_{max} = 1.14 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta\rho_{min} = -0.61 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Rh1	0.25715 (2)	0.53736 (2)	0.27266 (2)	0.01779 (6)	
As	0.12957 (3)	0.72691 (2)	0.35181 (2)	0.01699 (6)	
02	0.39711 (19)	0.38301 (18)	0.19949 (12)	0.0210 (4)	
01	0.42339 (19)	0.62308 (18)	0.22612 (13)	0.0217 (4)	
O02	0.0140 (2)	0.4121 (2)	0.33366 (15)	0.0313 (4)	
N1	0.5303 (2)	0.5365 (2)	0.17371 (15)	0.0207 (4)	
C1	0.5119 (3)	0.4183 (2)	0.15914 (16)	0.0169 (4)	
C26	-0.0798 (3)	0.7588 (2)	0.38511 (18)	0.0197 (5)	
C8	0.6478 (3)	0.5925 (3)	0.13234 (17)	0.0198 (5)	
C14	0.2129 (3)	0.7244 (3)	0.46672 (17)	0.0189 (5)	
C20	0.1411 (3)	0.9043 (3)	0.28753 (17)	0.0207 (5)	
C15	0.2025 (3)	0.8463 (3)	0.50321 (19)	0.0241 (5)	
H15	0.1470	0.9331	0.4741	0.029*	
C7	0.6819(3)	0.3597 (3)	0.01447 (18)	0.0212 (5)	
H7	0.6631	0.4551	-0.0082	0.025*	
C27	-0.1418 (3)	0.7798 (3)	0.47479 (19)	0.0237 (5)	
H27	-0.0816	0.7815	0.5218	0.028*	
C13	0.6118 (3)	0.7151 (3)	0.07297 (19)	0.0241 (5)	
H13	0.5113	0.7637	0.0637	0.029*	
C2	0.6182 (3)	0.3193 (3)	0.10122 (17)	0.0190 (5)	
C19	0.2907 (3)	0.5971 (3)	0.51116 (18)	0.0237 (5)	
H19	0.2958	0.5138	0.4873	0.028*	
C02	0.1092 (3)	0.4594 (3)	0.31095 (18)	0.0224 (5)	
C6	0.7729 (3)	0.2591 (3)	-0.03845 (19)	0.0250 (5)	
H6	0.8153	0.2862	-0.0978	0.030*	
C28	-0.2931 (3)	0.7983 (3)	0.4956 (2)	0.0304 (6)	
H28	-0.3356	0.8119	0.5570	0.036*	
C9	0.7931 (3)	0.5246 (3)	0.15114 (19)	0.0232 (5)	
H9	0.8160	0.4439	0.1950	0.028*	
C3	0.6475 (3)	0.1796 (3)	0.13401 (19)	0.0247 (5)	
H3	0.6039	0.1518	0.1928	0.030*	
C18	0.3607 (3)	0.5920 (3)	0.59044 (19)	0.0280 (6)	
H18	0.4137	0.5054	0.6211	0.034*	
C11	0.8703 (3)	0.6955 (3)	0.0429 (2)	0.0296 (6)	
H11	0.9472	0.7295	0.0106	0.036*	
C31	-0.1692 (3)	0.7556 (3)	0.3171 (2)	0.0268 (6)	
H31	-0.1268	0.7393	0.2559	0.032*	
C12	0.7241 (3)	0.7658 (3)	0.0274 (2)	0.0290 (6)	
H12	0.7011	0.8487	-0.0144	0.035*	
C16	0.2733 (3)	0.8406 (3)	0.58217 (19)	0.0284 (6)	
H16	0.2669	0.9234	0.6069	0.034*	
C4	0.7403 (3)	0.0805 (3)	0.0812 (2)	0.0298 (6)	
H4	0.7616	-0.0149	0.1044	0.036*	
C10	0.9049 (3)	0.5768 (3)	0.1046 (2)	0.0275 (6)	
H10	1.0053	0.5304	0.1155	0.033*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C17	0.3531 (3)	0.7141 (3)	0.6246 (2)	0.0301 (6)	
H17	0.4033	0.7106	0.6779	0.036*	
C5	0.8022 (3)	0.1204 (3)	-0.0057(2)	0.0300 (6)	
Н5	0.8644	0.0523	-0.0423	0.036*	
C29	-0.3810 (3)	0.7971 (3)	0.4275 (2)	0.0332 (6)	
H29	-0.4841	0.8107	0.4420	0.040*	
C25	0.2759 (3)	0.9299 (3)	0.2743 (2)	0.0390 (7)	
H25	0.3614	0.8592	0.2938	0.047*	
C24	0.2892 (4)	1.0577 (4)	0.2327 (2)	0.0417 (8)	
H24	0.3829	1.0747	0.2256	0.050*	
C21	0.0196 (3)	1.0048 (3)	0.2526 (2)	0.0324 (6)	
H21	-0.0736	0.9871	0.2583	0.039*	
C23	0.1672 (4)	1.1593 (3)	0.2019 (2)	0.0368 (7)	
H23	0.1750	1.2480	0.1759	0.044*	
C30	-0.3194 (3)	0.7760 (3)	0.3380 (2)	0.0340 (7)	
H30	-0.3802	0.7755	0.2911	0.041*	
C22	0.0335 (4)	1.1316 (3)	0.2091 (3)	0.0442 (8)	
H22	-0.0499	1.1994	0.1841	0.053*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rh1	0.01456 (9)	0.02186 (10)	0.01630 (10)	-0.00485 (7)	0.00038 (7)	-0.00246 (7)
As	0.01309 (12)	0.02045 (12)	0.01611 (13)	-0.00335 (9)	-0.00019 (9)	-0.00199 (9)
O2	0.0163 (8)	0.0257 (9)	0.0210 (9)	-0.0066 (7)	0.0018 (7)	-0.0040 (7)
01	0.0176 (8)	0.0245 (9)	0.0235 (10)	-0.0066 (7)	0.0048 (7)	-0.0087 (7)
O02	0.0258 (10)	0.0340 (10)	0.0364 (12)	-0.0152 (8)	0.0031 (8)	-0.0022 (9)
N1	0.0172 (10)	0.0252 (10)	0.0200 (11)	-0.0067 (8)	0.0012 (8)	-0.0046 (8)
C1	0.0154 (11)	0.0209 (11)	0.0138 (11)	-0.0045 (9)	-0.0014 (8)	-0.0012 (8)
C26	0.0126 (10)	0.0187 (11)	0.0253 (13)	-0.0023 (8)	0.0003 (9)	-0.0014 (9)
C8	0.0196 (11)	0.0245 (12)	0.0178 (12)	-0.0091 (9)	0.0011 (9)	-0.0066 (9)
C14	0.0139 (11)	0.0261 (12)	0.0159 (12)	-0.0045 (9)	-0.0007 (9)	-0.0031 (9)
C20	0.0212 (12)	0.0222 (11)	0.0182 (12)	-0.0065 (9)	0.0007 (9)	-0.0019 (9)
C15	0.0234 (13)	0.0254 (12)	0.0220 (13)	-0.0053 (10)	-0.0005 (10)	-0.0033 (10)
C7	0.0176 (11)	0.0281 (12)	0.0190 (12)	-0.0074 (10)	-0.0039 (9)	-0.0023 (9)
C27	0.0212 (12)	0.0280 (13)	0.0215 (13)	-0.0086 (10)	0.0014 (10)	-0.0014 (10)
C13	0.0223 (12)	0.0258 (12)	0.0260 (14)	-0.0085 (10)	-0.0019 (10)	-0.0056 (10)
C2	0.0144 (11)	0.0244 (12)	0.0191 (12)	-0.0053 (9)	-0.0025 (9)	-0.0056 (9)
C19	0.0224 (12)	0.0245 (12)	0.0218 (13)	-0.0039 (10)	-0.0005 (10)	-0.0024 (10)
C02	0.0218 (12)	0.0228 (12)	0.0191 (13)	-0.0018 (10)	-0.0015 (10)	-0.0019 (9)
C6	0.0183 (12)	0.0381 (14)	0.0191 (13)	-0.0076 (11)	-0.0006 (10)	-0.0074 (10)
C28	0.0236 (13)	0.0376 (15)	0.0277 (15)	-0.0089 (11)	0.0093 (11)	-0.0058 (12)
C9	0.0202 (12)	0.0259 (12)	0.0235 (13)	-0.0059 (10)	-0.0029 (10)	-0.0042 (10)
C3	0.0257 (13)	0.0275 (13)	0.0218 (13)	-0.0086 (10)	-0.0020 (10)	-0.0038 (10)
C18	0.0286 (14)	0.0314 (13)	0.0204 (14)	-0.0045 (11)	-0.0044 (11)	0.0010 (10)
C11	0.0248 (13)	0.0402 (15)	0.0294 (15)	-0.0187 (12)	0.0039 (11)	-0.0069 (12)
C31	0.0197 (12)	0.0335 (14)	0.0267 (14)	-0.0051 (10)	-0.0008 (10)	-0.0087 (11)
C12	0.0314 (14)	0.0333 (14)	0.0258 (15)	-0.0154 (12)	-0.0009 (11)	-0.0023 (11)

C16	0.0336 (15)	0.0320 (14)	0.0210 (14)	-0.0097 (12)	-0.0012 (11)	-0.0083 (11)	
C4	0.0307 (14)	0.0233 (12)	0.0339 (16)	-0.0036 (11)	-0.0030 (12)	-0.0074 (11)	
C10	0.0185 (12)	0.0381 (15)	0.0286 (15)	-0.0095 (11)	0.0004 (10)	-0.0115 (11)	
C17	0.0311 (15)	0.0407 (16)	0.0190 (14)	-0.0101 (12)	-0.0046 (11)	-0.0040 (11)	
C5	0.0222 (13)	0.0328 (14)	0.0337 (16)	-0.0007 (11)	-0.0025 (11)	-0.0153 (12)	
C29	0.0153 (12)	0.0405 (16)	0.0431 (18)	-0.0075 (11)	0.0029 (12)	-0.0081 (13)	
C25	0.0228 (14)	0.0416 (17)	0.048 (2)	-0.0094 (12)	-0.0029 (13)	0.0112 (14)	
C24	0.0386 (17)	0.0452 (18)	0.046 (2)	-0.0252 (15)	0.0003 (15)	0.0052 (15)	
C21	0.0230 (13)	0.0269 (13)	0.0418 (18)	-0.0032 (11)	0.0029 (12)	0.0005 (12)	
C23	0.0518 (19)	0.0258 (13)	0.0319 (17)	-0.0152 (13)	0.0118 (14)	-0.0041 (12)	
C30	0.0199 (13)	0.0419 (16)	0.0415 (18)	-0.0075 (12)	-0.0050 (12)	-0.0101 (13)	
C22	0.0405 (18)	0.0228 (14)	0.058 (2)	0.0006 (13)	0.0035 (16)	0.0053 (14)	

Geometric parameters (Å, °)

Rh1—As	2.3337 (4)	C6—C5	1.379 (4)
Rh1—O2	2.0682 (17)	C28—H28	0.9500
Rh1—O1	2.0338 (18)	C28—C29	1.376 (4)
Rh1-C02	1.813 (3)	С9—Н9	0.9500
As—C26	1.933 (2)	C9—C10	1.395 (4)
As—C14	1.932 (2)	С3—Н3	0.9500
As—C20	1.939 (2)	C3—C4	1.386 (4)
O2—C1	1.301 (3)	C18—H18	0.9500
01—N1	1.367 (3)	C18—C17	1.387 (4)
O02—C02	1.144 (3)	C11—H11	0.9500
N1-C1	1.319 (3)	C11—C12	1.387 (4)
N1—C8	1.437 (3)	C11—C10	1.375 (4)
C1—C2	1.479 (3)	C31—H31	0.9500
C26—C27	1.388 (4)	C31—C30	1.384 (4)
C26—C31	1.392 (4)	C12—H12	0.9500
C8—C13	1.387 (4)	C16—H16	0.9500
С8—С9	1.385 (4)	C16—C17	1.381 (4)
C14—C15	1.395 (3)	C4—H4	0.9500
C14—C19	1.393 (3)	C4—C5	1.391 (4)
C20—C25	1.371 (4)	C10—H10	0.9500
C20-C21	1.384 (4)	C17—H17	0.9500
С15—Н15	0.9500	С5—Н5	0.9500
C15—C16	1.388 (4)	С29—Н29	0.9500
С7—Н7	0.9500	C29—C30	1.385 (4)
С7—С2	1.397 (4)	C25—H25	0.9500
С7—С6	1.391 (4)	C25—C24	1.390 (4)
С27—Н27	0.9500	C24—H24	0.9500
C27—C28	1.395 (4)	C24—C23	1.371 (5)
С13—Н13	0.9500	C21—H21	0.9500
C13—C12	1.385 (4)	C21—C22	1.391 (4)
C2—C3	1.389 (4)	C23—H23	0.9500
С19—Н19	0.9500	C23—C22	1.374 (5)
C19—C18	1.390 (4)	С30—Н30	0.9500

С6—Н6	0.9500	C22—H22	0.9500
O2—Rh1—As	171.06 (5)	C29—C28—H28	119.8
O1—Rh1—As	91.66 (5)	С8—С9—Н9	120.6
O1—Rh1—O2	79.53 (7)	C8—C9—C10	118.8 (2)
C02—Rh1—As	89.53 (8)	С10—С9—Н9	120.6
C02—Rh1—O2	99.31 (9)	С2—С3—Н3	119.9
C02—Rh1—O1	178.39 (10)	C4—C3—C2	120.2 (3)
C26—As—Rh1	118.78 (7)	C4—C3—H3	119.9
C_{26} As C_{20}	103.15 (10)	C19—C18—H18	120.1
C14—As—Rh1	112.68 (7)	C17—C18—C19	119.7 (3)
C14—As— $C26$	104.81(11)	C17—C18—H18	120.1
C14 - As - C20	100.97(11)	C12—C11—H11	1197
C_{20} As R_{h1}	114 44 (8)	C10—C11—H11	119.7
C1 - O2 - Rh1	111.54(15)	C10-C11-C12	120.6(3)
N1 - O1 - Rh1	110.33(13)	$C_{26} = C_{31} = H_{31}$	119.9
01-N1-C8	114 38 (19)	C_{30} C_{31} C_{26}	120.3(3)
C1 - N1 - O1	119.1 (2)	C_{30} C_{31} H_{31}	110.9
C1 - N1 - C8	1262(2)	C_{13} C_{12} C_{11}	119.9 119.9(3)
$\Omega^2 - \Omega^1 - N^1$	120.2(2) 1193(2)	C_{13} C_{12} H_{12}	120.0
02-C1-C2	117.3(2) 117.1(2)	C11_C12_H12	120.0
N1 - C1 - C2	117.1(2) 123 5 (2)	$C_{12} = C_{12} = C_{12}$	120.0
C_{27} C_{26} A_{8}	123.3(2) 122.12(19)	C_{17} C_{16} C_{15}	120.1 110.8(3)
$C_{27} = C_{20} = A_3$	122.12(1)	$C_{17} = C_{16} = C_{15}$	120.1
$C_{21} = C_{20} = C_{31}$	119.0(2) 118.27(10)	C_{1}^{3} C_{4} H_{4}	110.0
$C_{13} C_{20} A_{3}$	118.27(19) 118.2(2)	$C_3 = C_4 = C_5$	119.9 120.2(3)
C_{0} C_{8} N1	110.2(2) 120.5(2)	$C_5 = C_4 = C_5$	110.0
$C_{9} = C_{8} = C_{13}$	120.3(2) 121.3(2)	C_{3} C_{10} H_{10}	119.9
$C_{15} = C_{15}$	121.3(2) 121.74(10)	C_{11} C_{10} C_{0}	119.9 120.1(3)
C10 - C14 - As	121.74(19) 118.28(10)	$C_{11} = C_{10} = C_{9}$	120.1 (5)
$C_{19} = C_{14} = A_{3}$	110.20(19) 110.0(2)	$C_{18} = C_{17} = H_{17}$	119.9
$C_{13} = C_{14} = C_{13}$	119.9(2) 118.6(2)	$C_{16} = C_{17} = C_{18}$	119.0 120.7(3)
$C_{23} = C_{20} = A_{3}$	118.0(2) 118.7(3)	$C_{10} = C_{17} = C_{18}$	120.7 (5)
$C_{23} = C_{20} = C_{21}$	110.7(3) 122.7(2)	$C_{10} = C_{17} = M_{17}$	119.0 110.7(2)
$C_{21} = C_{20} = A_{3}$	122.7 (2)	C6 C5 H5	119.7 (2)
$C_{14} = C_{15} = C_{14}$	120.1 110.0(2)	C_{0}	120.1
$C_{10} = C_{13} = C_{14}$	119.9 (2)	$C_{4} = C_{5} = 115$	120.1
$C_{10} = C_{13} = H_{13}$	120.1	$C_{20} = C_{29} = C_{129}$	120.0 120.1(3)
$C_2 = C_1 = H_1$	120.2	$C_{20} = C_{20} = C_{30}$	120.1(3)
C_{0}	120.2	$C_{20} = C_{29} = H_{29}$	120.0
$C_0 - C_1 - C_2$	119.5 (2)	$C_{20} = C_{23} = H_{23}$	119.5
$C_{20} = C_{27} = C_{28}$	120.2 110.7(2)	$C_{20} = C_{23} = C_{24}$	121.0(5)
$C_{20} = C_{27} = C_{28}$	119.7 (5)	$C_{24} = C_{23} = H_{23}$	119.5
$C_{20} = C_{27} = H_{12}$	120.2	$C_{23} = C_{24} = H_{24}$	120.0 120.0(2)
$C_{12} = C_{13} = C_{13}$	120.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.0(3)
$C_{12} = C_{13} = C_{0}$	119.1 (5)	$C_{23} = C_{24} = \Pi_{24}$	120.0
C_{12} C_{13} C	120.4 122.2(2)	$C_{20} = C_{21} = C_{22}$	117.7
$C_{1} = C_{2} = C_{1}$	123.2(2)	$C_{20} = C_{21} = C_{22}$	120.3 (3)
U3-U2-U1	11/.0(2)	U22-U21-H21	119.9

C3—C2—C7	119.7 (2)	С24—С23—Н23	120.3
C14—C19—H19	120.1	C24—C23—C22	119.5 (3)
C18—C19—C14	119.8 (2)	С22—С23—Н23	120.3
C18—C19—H19	120.1	C31—C30—C29	120.0 (3)
O02—C02—Rh1	178.5 (2)	С31—С30—Н30	120.0
С7—С6—Н6	119.7	С29—С30—Н30	120.0
C5—C6—C7	120.7 (3)	C21—C22—H22	119.8
С5—С6—Н6	119.7	C23—C22—C21	120.3 (3)
C27—C28—H28	119.8	C23—C22—H22	119.8
C29—C28—C27	120.4 (3)		
	(-)		
Rh1—O2—C1—N1	4.4 (3)	C8—C9—C10—C11	1.5 (4)
Rh1—O2—C1—C2	-177.62 (16)	C14—C15—C16—C17	-0.4(4)
Rh1—O1—N1—C1	1.5 (3)	C14—C19—C18—C17	-0.2(4)
Rh1—O1—N1—C8	175.94 (16)	C20—C25—C24—C23	-1.8(6)
As-C26-C27-C28	-178.1 (2)	C20—C21—C22—C23	-1.2(5)
As-C26-C31-C30	179.1 (2)	C15—C14—C19—C18	-1.6(4)
As—C14—C15—C16	-175.2 (2)	C15—C16—C17—C18	-1.4(4)
As—C14—C19—C18	175.6 (2)	C7—C2—C3—C4	0.4 (4)
As-C20-C25-C24	-176.8 (3)	C7—C6—C5—C4	-0.1(4)
As-C20-C21-C22	178.4 (3)	C27—C26—C31—C30	1.4 (4)
O2—C1—C2—C7	137.2 (2)	C27—C28—C29—C30	0.6 (5)
O2—C1—C2—C3	-39.0(3)	C13—C8—C9—C10	-4.1 (4)
O1—N1—C1—O2	-4.1 (3)	C2—C7—C6—C5	-0.8(4)
O1—N1—C1—C2	178.1 (2)	C2—C3—C4—C5	-1.3(4)
O1—N1—C8—C13	-58.9 (3)	C19—C14—C15—C16	1.9 (4)
O1—N1—C8—C9	121.5 (2)	C19—C18—C17—C16	1.7 (4)
N1—C1—C2—C7	-45.0 (4)	C6—C7—C2—C1	-175.5 (2)
N1—C1—C2—C3	138.8 (3)	C6—C7—C2—C3	0.6 (4)
N1-C8-C13-C12	-175.6(2)	C28—C29—C30—C31	0.3 (5)
N1—C8—C9—C10	175.5 (2)	C9—C8—C13—C12	4.0 (4)
C1—N1—C8—C13	115.1 (3)	C3—C4—C5—C6	1.1 (4)
C1—N1—C8—C9	-64.5 (3)	C31—C26—C27—C28	-0.5(4)
C1-C2-C3-C4	176.7 (2)	C12—C11—C10—C9	1.2 (4)
C26—C27—C28—C29	-0.5(4)	C10-C11-C12-C13	-1.3(4)
$C_{26} = C_{31} = C_{30} = C_{29}$	-1.3(5)	C_{25} C_{20} C_{21} C_{22}	-3.2(5)
C8—N1—C1—O2	-177.9(2)	C_{25} C_{24} C_{23} C_{22}	-2.7(5)
C8 - N1 - C1 - C2	4.3 (4)	C_{24} C_{23} C_{22} C_{21}	4.2 (5)
C8-C13-C12-C11	-1.3 (4)	$C_{21} - C_{20} - C_{25} - C_{24}$	4.7 (5)