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Abstract

Resting-state low frequency oscillations have been detected in many functional magnetic resonance imaging
(MRI) studies and appear to be synchronized between functionally related areas. Converging evidence from
MRI and other imaging modalities suggest that this activity has an intrinsic neuronal origin. Multiple consistent
networks have been found in large populations, and have been shown to be stable over time. Further, these pat-
terns of functional connectivity have been shown to be altered in healthy controls under various physiological
challenges. This review will present the biophysical characterization of functional connectivity, and examine
the effects of physical state manipulations (such as anesthesia, fatigue, and aging) in healthy controls.

Key words: aging; anesthesia; connectivity; fatigue; functional magnetic resonance imaging; modulation;
resting-state

Introduction

Recent studies in functional magnetic resonance imag-
ing (fMRI) have shown slowly varying time course fluc-

tuations in resting-state data that are temporally correlated
between functionally related areas. These fluctuations agree
with the concept of functional connectivity: a descriptive
measure of spatiotemporal correlations between spatially dis-
tinct regions of cerebral cortex (Friston et al., 1993). First
shown in the fMRI literature by Biswal et al. (1995), these
low-frequency oscillations have been shown to exist in the
motor, auditory, visual, sensorimotor, and language systems,
among others (Biswal and Ulmer, 1999; Cordes et al., 2000;
Hampson et al., 2002; Hyde and Biswal, 2000; Lowe et al.,
1998; Xiong et al., 1999). More recently, it has been investi-
gated in the so-called ‘‘default-mode’’ network (Greicius
et al., 2003; Raichle et al., 2001).

Studies examining the frequency characteristics have
found the primary signal to lie under 0.1 Hz, in the frequency
band of the blood oxygen level dependent (BOLD) response,
with possible noise sources such as cardiac- and respiratory-
induced noise having a higher frequency response, if sampled
adequately (Cordes et al., 2000; De Luca et al., 2006). Further,
studies employing multi-echo sequences have examined the
T2* dependence of functional connectivity patterns. Our
group found the linear echo-time dependence of functional
connectivity patterns in the motor cortex to agree with the
first-order BOLD signal equation, in the same way as task-
induced activation (Peltier and Noll, 2002). Recently, Bianciardi
et al. (2009) used multi-echo data at 7T to examine the relative

contributions of possible confounds to the connectivity pat-
terns. They found that after removing confounds, the domi-
nant signal was from spontaneous activity, especially at the
region of interest (ROI) level. Thus, both functional connectiv-
ity and ‘‘regular’’ task activation seem to arise from the same
BOLD-related origins.

A limitation of BOLD fMRI is that it is an indirect measure
of neuronal activity. However, research using other imaging
modalities suggests that functional connectivity has neuronal
origins. For example, in perfusion imaging, functional con-
nectivity patterns have been found using both arterial spin la-
beling (Chuang et al., 2008) and CMRO2 (Wu et al., 2009).
Studies investigating resting correlates using electroencepha-
logram (EEG) have found that the different resting-state net-
works can be characterized by their corresponding EEG
signatures (Laufs et al., 2003; Mantini et al., 2007). Further, re-
cent animal studies have demonstrated coupling between the
resting-state BOLD fluctuations and local neuronal activity
employing simultaneous fMRI and neurophysiological re-
cording (Scholvinck et al., 2010; Shmuel and Leopold, 2008),
and spatiotemporal organization of resting-state neuronal ac-
tivity using voltage-sensitive dye imaging (Kenet et al., 2003;
Mohajerani et al., 2010). Thus, converging imaging evidence
suggests that resting-state functional connectivity has under-
lying neuronal origins.

Reproducibility studies have shown resting patterns to be
consistent over large numbers of healthy controls, repeated
over time (Biswal et al., 1997; Shehzad et al., 2009; Van Dijk
et al., 2010). This stability allows investigation of changes in
resting-state patterns between controls and patients. Several
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recent studies have further shown decreased low-frequency
correlations in pathological states such as callosal agenesis
(Lowe et al., 1997) or Alzheimer’s disease (Supekar et al.,
2008), where there can be a disruption or degradation of the
physical connections in the white matter. Further, resting-
state functional MRI has shown differences in a wide variety
of patient populations, such as depression (Berman et al.,
2010), autism (Monk et al., 2009), and schizophrenia (Lynall
et al., 2010). Low-frequency functional connectivity is thus
important as a potential indicator of regular neuronal activity
within the brain.

Another avenue of investigation is how the functional con-
nectivity patterns change over time in a healthy brain, in re-
sponse to internal or external modulation. This review will
explore the change in resting connectivity under a variety
of physiological changes, in the short term (fatigue, learning),
medium term (sleep, anesthesia), and long term (develop-
ment and aging). Finally, some future directions will be
discussed.

Physiological Modulation in the Short Term

The resting-state activity of the brain is a dynamic, not static,
entity. The evolving brain state may be influenced by its internal
and external stimulus. It has been shown that prior cognitive
states can influence subsequent ‘‘resting-state’’ activity (Waites
et al., 2005). Experimental manipulations, as well, may modu-
late connectivity in the short term. For example, Napadow
et al. (2008) examined resting-state data before and after acu-
puncture, and found increased connectivity with pain and
memory regions following real, but not sham, acupuncture.
This suggests that resting fMRI in the short term may exhibit
change due to prior activity. Here, we examine short-term mod-
ulation in the specific cases of fatigue and learning.

Fatigue

Prolonged voluntary muscle fatigue can induce substantial
neural signal changes in a number of primary, secondary, and
association cortical areas (Liu et al., 2003). The brain can expe-
rience a disrupted process not only in processing a large
amount of sensory (fatigue) information, but also in continu-
ously forming new commands to drive the fatiguing muscle
to maintain desired muscle output. It has been observed that
the level of activity of the right and left primary motor cortices
can increasingly differ during a repetitive unimanual task (Liu
et al., 2003), indicating a fatigue-related disassociation of the
two hemispheres. It is also known that recovery from fatigue
does not occur immediately (Enoka and Stuart, 1992).

It was investigated whether the neural effects of muscle fa-
tigue persisted after a fatiguing task, using resting-state fMRI
(Peltier et al., 2005a). Resting-state acquisitions were acquired
before and after a unimanual fatigue task (20 min of repetitive
hand clenching) for eight subjects. The interhemispheric
cross-correlation was calculated for voxels in the primary
motor cortices (see Peltier et al., 2005a for more details). We
observed that the resting-state time courses of the primary
motor cortices are more dissimilar after the fatigue task
(Fig. 1A). Moreover, the amount of significant interhemi-
spheric correlations decreased significantly (Fig. 1B, C). Fol-
lowing the fatigue task, there was a 72% reduction of
significant motor interhemispheric correlations ( p < 0.05)
over all subjects. This demonstrates that resting-state func-

tional connectivity can reflect short-term changes in the
state of neural networks.

Learning

Another short-term process that can be investigated with
resting-state functional connectivity is learning (e.g., motor
learning, perceptual learning). Neural plastic effects induced
by training can result in modifications to the brain’s function,
which can persist after the training itself (Schwartz et al.,
2002). The cognitive effects of learning can thus potentially
alter resting-state functional connectivity, even after training
has ended.

Dynamic changes in connectivity have further been seen in
motor or visual learning studies. Albert et al. (2009) acquired
resting-state scans before and after an 11 min motor session.
Dummy tasks were used in between the motor task and the
second resting-state scan. They demonstrated enhancement
in frontoparietal circuit following motor learning, but not
motor performance. Lewis et al. (2009) showed changes fol-
lowing visual perceptual learning in the visual cortex and
frontoparietal areas involved in spatial attention (Fig. 2). By
acquiring resting-state data before and after training on a vi-
sual shape-identification task constrained to one visual quad-
rant, they found that resting-state changes between the visual
cortex and frontoparietal areas correlated with the degree of
perceptual learning. In addition, they found that the effects
could extend to visual areas not involved in the training.
Taken together, these studies demonstrate that the prolonged
effects of processes such as learning may be examined with
resting-state functional connectivity.

Physiological Modulation in the Medium Term

Resting-state patterns are hypothesized to relate to neuro-
nal activity, but their full relationship to conscious processes
is not known (Fukunaga et al., 2006). Toward this end, several
studies have investigated the effects of varying states of con-
sciousness, including sleep (Fukunaga et al., 2006; Horovitz
et al., 2008; Larson-Prior et al., 2009; Spoormaker et al.,
2010), sedation and anesthesia (Alkire et al., 2000; Antognini
et al., 1997; Boveroux et al., 2010; Kiviniemi et al., 2000; Mar-
tuzzi et al., 2010; Peltier et al., 2005b; Ramani et al., 2007;
Schrouff et al., 2011), and vegetative states (Boly et al., 2004;
Owen et al., 2006). In this section, sleep and anesthesia will
be discussed, as reversible examples of physiological modula-
tion in the medium term.

Sleep

Sleep is a rapidly reversible system-level process, character-
ized by loss of motor responsiveness, loss of consciousness,
and reduced metabolism (Braun et al., 1997; Iber et al., 2007).
These suppressive effects are also accompanied by increased
memory consolidation (Stickgold, 2005). Stages of sleep in-
clude rapid eye movement (REM) and non-REM, which is fur-
ther classified into multiple sleep stages based on EEG,
electrooculography (EOG), and electromyography (EMG) ac-
tivity (Iber et al., 2007). The reduced states of arousal in sleep
afford an opportunity to investigate resting-state fluctuations
in the absence of conscious activity (Fukunaga et al., 2006; Hor-
ovitz et al., 2008), as well as investigating possible mechanisms
of sleep-induced loss of consciousness.
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Several studies have examined functional connectivity
during awake and sleep states using simultaneous EEG/
fMRI. This allowed simultaneous characterization of the
sleep state while acquiring resting-state fMRI data. Fuku-
naga et al. (2006) found that the resting-state visual network
persisted during sleep, and that the levels of signal fluctua-
tion were higher in sleep compared to the awake state,
and comparable to levels during visual stimulation. Horo-
vitz et al. (2008) found that the resting-state default-mode
activity persisted during light sleep (Fig. 3A). Further,
Larson-Prior et al. (2009) found that connectivity in six rest-
ing-state networks (attention, default, executive, somatomo-
tor, visual, and auditory) was maintained between awake
and light sleep (Fig. 3B). In a recent study, Spoormaker
et al. (2010) examined connectivity across sleep stages, and
found that there was a loss in thalamic connectivity in
moving from wake to sleep states, and a loss in general corti-
cal connectivity in slow-wave sleep. This may help inform
further investigations of consciousness.

These studies suggest that the resting-state activity, instead
of being undirected conscious thought, does not require ac-
tive cognitive processes, instead perhaps serving a critical
role in cortical system integrity maintenance.

Anesthesia

Anesthesia is a (hopefully) reversible state of central ner-
vous system suppression. However, the mechanism of anes-
thesia is not completely understood. Part of the problem is
that it is not a uniform entity, and has several physiological
endpoints of interest, including ablation of motor responses,
memory function, and consciousness (Veselis, 2001). Both
the regional suppressive effects on individual brain struc-
tures, as well as the global disconnective effects between
brain networks, need to be explained (Veselis et al., 2002;
White and Alkire, 2003).

Previous studies involving anesthesia-induced unconscious-
ness have suggested that disrupted thalamocortical networks
are a central mechanism (Alkire et al., 2000; Ries and Puil,
1999). White and Alkire (2003) found reduced thalamic activity
using halothane and isoflurane. However, Långsjö et al. (2004)
found an increase in activity in the thalamus using ketamine as
the anesthetic agent. These studies may support a hypothesis
that disruption of the thalamocortical network plays a central
role in anesthesia-induced unconsciousness.

In our previous work (Peltier et al., 2005b), we examined
resting-state functional connectivity at different concentrations

FIG. 1. Example of short-
term modulation of functional
connectivity after motor
fatigue. (A) Average time
courses for the left (blue, solid)
and right (red, dashed) motor
cortices for a typical subject,
before (top) and after (bottom)
fatigue. (B) The mean
interhemispheric correlation
for each voxel in the motor
cortex for a typical subject,
before and after fatigue. (C)
Histogram of the mean
interhemispheric correlation
values over all subjects (n = 8).
The dashed line corresponds
to the significant threshold of
p < 0.05. The number of
significant correlations
decreases after the fatigue
task. Adapted from Peltier
et al. (2005a).
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FIG. 2. Modulation of spontaneous functional connectivity after perceptual learning. The task involved training on a shape-
identification task constrained to one visual quadrant. Flattened brain representation with ROIs in trained visual cortex and
dorsal attention network (A) and in untrained visual cortex and default network (B). Bar graphs report Pearson correlation
coefficients between trained visual cortex and dorsal attention ROIs and untrained visual cortices and default network
ROIs before (black) and after (gray) perceptual learning. Two-tail Student’s t-test, p < 0.05; error bars – SEM. Adapted from
Lewis et al. (2009). The asterisk denotes significant difference in the graphed data.
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of sevoflurane (Fig. 4). By employing gradations of anesthetic
influence, we were able to explore the effect of anesthesia on
baseline, task-independent connectivity. In particular, changes
in the functional connectivity of the motor network were ana-
lyzed. We observed a reliable resting-state motor network in
the awake condition, as expected from previous studies
(Cordes et al., 2000; Lowe et al., 1998; Peltier and Noll, 2002).
In the deep anesthetic state, the network was first completely
attenuated, and then, after recovering to the light state, the net-
work response was confined to the hemisphere where the
motor seed was placed. The observed reduction and recovery
of functional connectivity complements previous work by
Biswal et al. (1997) showing reversible reductions of functional
connectivity during hypercapnia. The loss of temporal syn-
chronization between motor cortices may impair motor perfor-
mance (Serrien and Brown, 2004), and help to explain the
suppressive effect of sevoflurane anesthesia on motor respon-
siveness (Galinkin et al., 1997; Ibrahim et al., 2001; Serrien and
Brown, 2004). The circumscribed functional network during

the light anesthetic concentration, as opposed to a global inte-
grated network in the awake state, is reminiscent of reports on
anterior–posterior dissociations of synchronized brain activity
as measured by surface EEG (Lee et al., 2009).

These studies demonstrate that functional connectivity can
be studied under anesthesia, and may be associated with
changes in consciousness or network disassociation. Animal
studies have also demonstrated coherent resting-state fMRI
activity that may be altered under anesthesia (Moeller et al.,
2009; Vincent et al., 2007). An open area of investigation is
the effect of different anesthetic agents and/or different con-
centration levels. Results using sevoflurane, propofol, and so
on, in humans have varied in the degree and direction of con-
nectivity modulation (Table 1). These varied agents may have
differing central effects and may be dose dependent (Alkire
et al., 2000; Ries and Puil, 1999; Veselis et al., 2002), and
thus modulate connectivity differently. Careful examination
of agent type and dosage level will help to elucidate this mat-
ter further. Multimodal investigations using EEG and CBF

FIG. 3. Comparison of resting-state connectivity maps in awake (top) and light sleep (bottom) states. (A) Statistical composite
maps showing temporal correlation with seed time courses in the visual cortex (visual) and posterior cingulate (default). Adap-
ted from Horovitz et al. (2008). (B) Conjunction analysis of cognitive network seed correlations; locations of seed ROIs are lo-
cated by blue circles. Adapted from Larson-Prior et al. (2009).

FIG. 4. Modulation of functional connectivity under graded levels of sevoflurane anesthesia. (A) Experimental paradigm;
subjects had resting-state fMRI scan in awake state, followed by deep state (2% sevoflurane), followed by light state (1% sevo-
flurane). Subjects were held constant at each anesthetic level for 15 min before fMRI acquisition. (B) Functional connectivity
results in the motor cortex under the awake, deep, and light states. (C) Functional connectivity results for three contiguous
slices in a representative subject under light anesthesia, for left (red) and right (blue) motor cortex seed ROIs. Arrows indicate
the location of the seed ROIs. Adapted from Peltier et al. (2005b). fMRI, functional magnetic resonance imaging.
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measures, while controlling for physiological variables such
as blood pressure (Kannurpatti et al., 2003), can also help as-
certain the underlying mechanism of anesthesia (Liu et al.,
2011). For further review of the effects of anesthesia on func-
tional connectivity, please see Nallasamy and Tsao (2011).

Physiological Modulation in the Long Term

When considering functional and structural connectivity in
younger and older subjects, brain maturation needs to be con-
sidered as a factor. Changing white matter and gray matter
volumes in early childhood, during adolescence, and in old
age can alter the functional and structural networks, with

consequent possible age-dependent differences between tar-
get groups of interest. It has also been shown that structural
and functional connectivity are correlated; a high degree of
structural connectivity can imply a higher degree of func-
tional connectivity (Honey et al., 2009; Koch et al., 2002;
Skudlarski, et al., 2008; see also Honey et al., 2010 for review).
In this section, the effects of development and aging on the
resting-state networks are considered.

Development

Studies investigating human cerebral development have
investigated white matter structural changes that occur

Table 1. Resting-State Functional Magnetic Resonance Imaging Studies

Examining the Effects of Anesthesia in Humans

Author Anesthetic Findings

Schrouff
et al. (2011)

1.5–2.8 lg/mL propofol Total integration within brain networks was significantly lower
during deep sedation as compared to resting-state wakefulness.

Boveroux et al.
(2010)

1.5–2.8 lg/mL propofol Decrease in consciousness linearly correlated with decreased
corticocortical and thalamocortical connectivity in frontoparietal
networks.

Martuzzi
et al. (2010)

1% end-tidal
sevoflurane

fc-fMRI patterns did not significantly differ in sensory cortex and
in the DMN, whereas, in high-order cognitive regions (memory
and pain circuits), it was significantly altered by anesthesia.

Peltier et al.
(2005b)

1% and 2% end-tidal
sevoflurane

A network involving the primary motor cortex, sensorimotor area,
and SMA was found in the awake state. Connectivity of this
network was diminished under light anesthesia and virtually
absent under deep anesthesia.

Kiviniemi
et al. (2000)

6.3 mg/kg/h
intravenous
thiopental boluses

Concentrated signal fluctuations were observed near the primary
sensory areas. Thiopental was suspected to cause an increase in
the amplitude and reduction in the frequency of these
fluctuations.

fMRI, functional magnetic resonance imaging.

FIG. 5. Comparison of
resting-state functional
connectivity maps in adults
and children. Seed region
(solid black circle) in mPFC
(ventral: -3, 39, -2). (A) Adult
connectivity pattern exhibits
expected response in default-
mode network. However, the
connectivity map in children
significantly deviates from
that of the adults. Functional
connections with regions in
the posterior cingulate and
lateral parietal regions
(highlighted with blue open
circles) are present in the
adults but absent in children.
(B) These qualitative
differences between children
and adults are confirmed by
the direct comparison
(random effects) between adults and children. mPFC (ventral) functional connections with the posterior cingulate and lateral
parietal regions are significantly stronger in adults than children. Adapted from Fair et al. (2008).
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prior to adulthood. White matter volume increases approx-
imately linearly with age until early adulthood, while gray
matter volume increases into adolescence, then decreases
postpubescence into adulthood (Gogtay et al., 2004; Sowell
et al., 2003), with total cerebral volume similar in adults
and adolescents (Giedd, 2004; Giedd et al., 1999). These
structural changes appear to be region specific, occurring
with differing temporal courses across adolescence, with
the frontal lobes maturing later than other cortical regions
(Romine and Reynolds, 2005). The observed differences
arise due to multiple processes including loss of synapses,
increases in myelination, and changes in receptor density
(e.g., glutamate receptors in the prefrontal cortex) (Giedd
et al., 1999; Spear, 2000). In addition, diffusion tensor im-
aging has demonstrated changes in white matter micro-
structure (i.e., increased density) with increasing age
(Barnea-Goraly et al., 2005; Schneider et al., 2004; Snook
et al., 2005).

The developing brain thus has dynamic changes in the un-
derlying structural connectivity that may alter the activity of
resting-state networks. Several studies have started to inves-
tigate effects of development using fMRI resting-state connec-
tivity. Fransson et al. (2007) found incomplete default-mode
networks in infants. Fair et al. (2008) investigated the
default-mode network in children of ages 7–9 and in adults
of ages 19–31. They found that the network is only loosely
connected in children, while being highly integrated in the
adult population (Fig. 5). Both these studies indicate a devel-
opmental effect on the resting-state brain. Even further, Dos-
enbach et al. (2010) used resting-state data from over 200
subjects to predict physical age from the resting-state data.
Using multivariate pattern analysis, they achieved 92% accu-
racy in classifying children from adults, controlling for brain
volume and movement, with brain maturity being predicted
by weakening of short-range connections between functional
networks, and strengthening within networks. This pattern
of network ‘‘pruning’’ and consolidation with increasing
age may also be accompanied by a reduction in power of
the resting-state fluctuations (Littow et al., 2010).

Aging

Cortical aging brings reductions in memory, inhibitory
control, and processing speed. These may be the results of
neurotransmitter receptor depletion, gray matter atrophy,
and white matter deterioration (Reuter-Lorenz and Cappell,
2008). Gray matter decreases with age, with regionally vari-
ant losses, with increased reductions in the frontal lobes
(Good et al., 2001; Jernigan et al., 2001; Raz et al., 1997).
Age-associated white matter loss and/or demyelination can
also lead to cognitive decline (O’Sullivan et al., 2001; Pfeffer-
baum and Sullivan, 2004).

Functional MRI aging studies have begun to apply MR
connectivity to examine age-related declines. Andrews-
Hanna et al. (2007) showed reductions in the default-mode
network and dorsal attention network during a semantic
task in older subjects, compared to younger subjects (Fig. 6).
These reductions were associated with white matter degrada-
tion and reduced functional performance, and were present
even in those older subjects screened against having preclinical
Alzhiemer’s disease. Following this, Damoiseaux et al. (2008)
reported reduced activity in the default-mode network for

older versus younger subjects. In addition, they correlated this
reduction with age and reduced processing speed in the older
subjects. Langan et al. (2010) demonstrated increased interhemi-
spheric connectivity in the bilateral motor network. This corre-
lated with increased bilateral recruitment during a motor task
in older adults, suggesting loss of interhemispheric inhibition
(please see Fling et al., 2011, for further discussion). These studies
suggest that alterations to brain network connectivity may play
an important role in gauging the effect of physical aging.

Discussion

The physiological manipulations discussed in this review
have modulations of functional connectivity over a range of
time scales. It is likely that the underlying biophysical mech-
anism in each case may be different. In the short term, tasks
such as fatigue and learning may affect cortical excitability,
which in turn may suppress or enhance network communica-
tion (Lewis et al., 2009; Peltier et al., 2005a). The medium-term
effects of anesthesia can involve neural activity, metabolism,
and neurovascular coupling (Liu et al., 2011; Williams et al.,
2010), leading to both suppressive and disconnective effects
on functional networks (Alkire et al., 2000; Peltier et al.,
2005b). Finally, the effects of development and aging may re-
flect the long-term changes in white matter connectivity. Fur-
ther work may better define the time signature of these
different biophysical processes, and their resultant effect on
spontaneous functional connectivity patterns.

In addition to time-dependent signals of interest, there are
also potential time-varying confounds in resting-state func-
tional MRI. Cardiac- and respiration-induced variations can

FIG. 6. Reduction of anterior to posterior functional correla-
tions with aging. The time course within the medial prefron-
tal cortex (mPFC) was correlated with the time course within
the posterior cingulate/retrosplenial cortex (pC/rsp) for
young (black) and old (green) participants. The resulting
z-transformed correlation coefficient z(r) for each participant
is plotted against age. The black regression line, shown for
illustrative purposes only, indicates a strong negative rela-
tionship between anterior-posterior functional correlations
and age across both groups. The green regression line indi-
cates a negative relationship with age in the older group
alone (r =�0.53, p < 0.001). Green data points outlined in
black represent individuals without amyloid beta deposition
as determined by positron emission tomography. Adapted
from Andrews-Hanna et al. (2007).
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cause artifacts in resting-state analyses (Birn et al., 2006).
Changes in blood pressure can also alter the resting-state fluc-
tuations (Kannurpatti et al., 2003). In addition, time-varying
psychological processes such as mental fatigue should be con-
sidered when designing resting-state experiments.

Resting-state functional connectivity is an emergent field,
with continual refinement of techniques. Besides the seed cor-
relation method that is used in a large number of studies, data-
driven approaches can also be used to detect resting-state
networks with reduced user bias (Beckmann and Smith,
2004; Calhoun et al., 2008; Peltier et al., 2003). Additionally,
new acquisitions that can acquire brain volumes with sub-
second TRs can also help with separating out physiological
noise, as well as acquire data with greater temporal degrees
of freedom (Feinberg et al., 2010). The dynamic nature of func-
tional connectivity networks may also be exploited further.
As noted in Chang and Glover (2009), functional networks
are a dynamic entity, with temporal variations and chang-
ing spatial associations over the time course of an fMRI
scan. Applying real-time and pattern classification approaches
(LaConte et al., 2005, 2007) in the monitoring of these dynamic
changes may help to explore the full range of resting-state
activity. Advances in all of these areas will help to increase
the sensitivity and accuracy of resting-state analyses.

Conclusion

Resting-state MRI functional connectivity seems to arise
from ongoing spontaneous brain activity; thus, low-frequency
functional connectivity is important as an indicator of normal
neuronal activity. This review has dealt with physiologic
changes in functional connectivity in healthy brains, and
demonstrated that resting-state connectivity can monitor
physiological changes in the short, medium, and long term.
Application of these same techniques to patient populations
and animal studies can help develop to better characterize
disease states, functional loss and recovery, and develop pre-
dictive imaging biomarkers of disease states (Craddock et al.,
2009).
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