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Abstract

Autism spectrum disorders (ASD) display both phenotypic and genetic heterogeneity, impeding the understanding of ASD and
development of effective means of diagnosis and potential treatments. Genes affected by genomic variations for ASD converge in dozens
of gene ontologies (GOs), but the relationship between the variations at the GO level have not been well elucidated. In the current study,
multiple types of genomic variations were mapped to GOs and correlations among GOs were measured in ASD and control samples.
Several ASD-unique GO correlations were found, suggesting the importance of co-occurrence of genomic variations in genes from
different functional categories in ASD etiology. Combined with experimental data, several variations related to WNT signaling, neuron
development, synapse morphology/function and organ morphogenesis were found to be important for ASD with macrocephaly, and
novel co-occurrence patterns of them in ASD patients were found. Furthermore, we applied this gene ontology correlation analysis
method to find genomic variations that contribute to ASD etiology in combination with changes in gene expression and transcription
factor binding, providing novel insights into ASD with macrocephaly and a new methodology for the analysis of genomic variation.

Introduction
Autism spectrum disorder (ASD) is a neurodevelopmental disease
that consists of social interaction abnormalities and repetitive
behaviors (1). Beyond these two core symptoms, ASD patients
may exhibit additional behaviors and comorbidities (2,3) such
as seizures, aggressive behavior, intellectual disability and brain
development abnormalities. Thus, ASD patients manifest sub-
stantial phenotypic heterogeneity. About 25% of ASD patients
display early brain overgrowth (macrocephaly) as a comorbidity
(4,5). Previous studies demonstrated that this overgrowth begins
in mid-gestational fetal development and persists postnatally (4).
Although ASD is often diagnosed by 3 years of age on the basis
of the presence of core symptoms, the later age of onset makes
it difficult to investigate prenatal pathophysiology. As the brain
overgrowth abnormalities precede the behavioral abnormality,
understanding the genetic mechanisms of ASD associated with
macrocephaly could facilitate an earlier diagnosis and potential
therapeutic targets of ASD.

The genetic heterogeneity of ASD is also extensive and has
been broadly accepted. Many de novo, rare inherited and com-
mon genomic variations have been previously reported (6–8).
ASD-related variations cover multiple categories, including sin-
gle nucleotide variants (SNVs), insertions–deletions (INDELs) and
structural variations (SVs) such as larger deletions or duplications
(7,9–11). These variations affect >700 genes (1) in dozens of gene
ontologies (12) (GOs), underscoring the substantial role of genetics
in phenotypic heterogeneity. We believe by focusing on ASD with
a single phenotypic attribute, namely ASD with macrocephaly,

we can minimize the complexity because of ASD phenotypic and
genetic heterogeneity, thereby simplifying the discovery of genetic
mechanisms responsible for this subset of individuals with ASD.

Traditional GO analysis may not be adequate to identify genes
responsible for ASD etiology. First, as a result of population history,
evolution or special function, some regions/genes display high
rates of variation. For example, genes functionally related to bio-
logical/cell adhesion display high rates of evolution in the human
genome (13,14). Variations of these genes can be found in both
ASD patients and normal individuals. Second, rare variations, or
variations on genes with ‘house-keeping’ functions that may be
important for the phenotype, may not cause significant results in
GO analysis, as the number of these genes is relatively small.

Although previous analyses have concluded that genes dys-
regulated in different ASD patients vary greatly, they converge
on similar sets of pathways (12,15). However, the combinatorial
pattern of converged pathways for genomic variants that are
key to ASD etiology remains unclear. It is important to explore
the interaction among GOs enriched with genomic variations
in ASD. A methodology for the analysis of pathway correlation
has recently been developed. ClueGO (16) was developed as a
Cytoscape (17) plug-in capable of grouping GO terms into modules
on the basis of the similarity among GOs. This tool provided a net-
work visualization of GOs overrepresented in gene lists uncovered
in genetic or gene expression analysis. However, the connection
between GOs identified by these methods was determined by the
similarity of genes in GO terms, not the quantitative measure-
ment of GOs affected by genomic variations.
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Furthermore, it is important to integrate the analysis of dif-
ferent types of genetic variations, given that each type accounts
for a small proportion of ASD risk (7,18). Most ASD genomic
studies focused on a single type of genomic variation (9–11). In
several recent review articles, the combinatorial effect of SNVs
and CNVs was identified (18), but the studies lacked efficient
quantitative models. Although most quantitative models were
originally designed to integrate variants of a single type, they may
be repurposed for the integration of different types of data. For
example, DAWN (19,20) and MAGI (21) were designed to combine
de novo mutations into modules with gene expression and protein–
protein interaction networks as supporting information. However,
these models require transmission score or gene expression data,
which could limit the application of these models in ASD research.

Several recent studies for ASD with macrocephaly consistently
found that genes in functional groups encompassing ‘cell
adhesion’ and ‘neuron development’ were enriched with genomic
variations and transcriptionally dysregulated genes (22–24).
Among ASD patients lacking macrocephaly as a comorbidity,
several genes in close proximity to regions identified by GWAS
of ASD were also in these functional groups (25,26). These results
suggested that genes in these functional groups are important for
ASD, although they are not limited to the subgroup of individuals
with ASD and macrocephaly. On the other hand, several studies,
using mouse and human iPSC models, demonstrated that WNT
pathway activity was dysregulated in ASD with macrocephaly,
whereas GO analysis for genes enriched with genomic variations
in ASD seldom detected WNT-related GOs. Therefore, we
hypothesize that the co-occurrence of variations on genes in
different GOs may be critically important for the etiology of ASD,
including ASD with macrocephaly. Evaluation of co-occurrence in
gene expression datasets, such as weighted correlation network
analysis (WGCNA) (27), has proven to illuminate linked pathways
dysregulated in a variety of disorders (22,28).

In the current study, we exploit SNV/INDEL and SV (deletion)
data from both the Simons Simplex Collection (SSC) dataset
(https://www.nature.com/articles/nbt0416-364) from the Simons
Foundation Autism Research Initiative (SFARI) (SFARISSC dataset)
and sequencing data from previously published iPSC models for
ASD with macrocephaly by our laboratory and collaborators (22)
(validation dataset). Both datasets detected SNVs, INDELs and
SVs enriched in ASD with macrocephaly and control individuals.
Traditional GO analysis for genes with these variations identified
a set of GOs that were highly consistent between the two datasets,
including ‘cell-cell adhesion’ and ‘neuron differentiation’, among
others. Using a pipeline we developed, the correlated GO (cGO)
pairs specific to ASD with macrocephaly were identified, helping
us to identify a set of variations that together contributed to
the etiology of ASD with macrocephaly. With the same pipeline
examining samples of ASD microcephaly patients and ASD with
no brain size change, several GO pairs and a group of genomic
variations were identified for each of these subtypes of ASD. These
findings demonstrate the utility of using co-occurring variation
to identify potential links among various genes participating in
disparate GOs in the etiology of various subsets of ASD.

Results
Genomic variations of genes that function in
neurogenesis, neuron development and cell
adhesion were enriched in, but not unique to,
ASD-macro probands
On the basis of ≥2 standard deviations (SD) larger/smaller than
mean head circumference standard (4), 41 ASD-macro and 37

ASD-micro probands were selected from the SFARI-SSC database
(Supplementary Material, Table S1A). Another 38 probands were
selected that displayed head circumferences close to average
(ASD-other, Fig. 1A). The significant increase in head circumfer-
ence of the ASD-macro probands over their siblings confirmed our
method of sample selection (Fig. 1B).

For genetic analysis, fathers of these 38 ASD-other probands
were used as controls for ASD-macro and ASD-micro probands.
Fathers from 37 ASD-micro families were used as controls for
ASD-other probands. In total, 320 710 SNV/INDEL loci for these
191 individuals were retrieved from exome sequencing results of
SFARI-SSC samples (Supplementary Material, Table S1A). After
filtering for sample size, SNV/INDEL loci enriched in either ASDs
or controls (enrich rate ≥0.1, see Materials and Methods) from
each of the three groups (ASD-macro, ASD-micro and ASD-other)
were selected. A total of 7373 loci for ASD-macro, 5233 loci for
ASD-micro and 2458 loci for ASD-other were selected for sub-
sequent analysis (Supplementary Material, Table S1B–D). Genes
with these loci enriched in ASD probands were used as input for
GO analysis (457 for ASD-macro, 411 for ASD-micro and 561 for
ASD-other probands; 468, 480 and 491 for controls for these 3
groups, respectively) (Supplementary Material, Table S1E).

GO analysis demonstrated that, in ASD-macro samples, GO
terms for neurogenesis, neuron development, organ morpho-
genesis and biological adhesion were overrepresented by genes
with ASD-enriched loci (Fig. 1C, Supplementary Material, Table
S2A). For ASD-micro samples, GO terms representing external
encapsulating structure organization were most significant,
together with GO terms related to neuron development and
adhesion (Supplementary Material, Table S2B). The GO list for the
ASD-other probands was similar to that of ASD-macro, with less
significant levels for corresponding terms (Supplementary Mate-
rial, Table S2C). These results suggested that the three types of
ASD comorbidities could be characterized on the basis of enriched
genomic variations. Specifically, genes related to neurodevel-
opment and adhesion were more represented in ASD-macro
individuals.

The GO results for SV data confirmed the conclusion from the
SNV/INDEL data. GO terms related to adhesion remained signifi-
cant in ASD-macro and ASD-micro probands, whereas GO terms
for neuron development and neuron differentiation were not the
top terms in ASD-macro individuals, but were still significant
(Fig. 1D, Supplementary Material, Table S1F–I).

Finding GOs associated with ASD comorbidities
by gWGCNA pipeline
We hypothesized that the co-occurrence of genomic variations
affecting genes with different but related biological functions
would be important for the etiology of ASD and that different
co-occurrence patterns of genomic variations would be present
in ASD probands with different comorbidities. To determine this
co-occurrence, we used WGCNA with genomic variation data as
input (so called gWGCNA hereafter) and determined correlated
‘GO modules’ associated with brain size and ASD phenotype.

The 229 SFARI-SSC ASD and control samples were randomly
assigned into two groups (ngroup1 = 115 and ngroup2 = 114). Genes
with SV and SNV/INDEL loci (enrichment rate ≥0.1) were mapped
to each GO for each sample (Supplementary Material, Table S3A).
The gWGCNA pipeline was performed on each group with the
same settings (nGO in module ≥30, module similarity ≤0.85).
Performance of gWGCNA algorithm was similar in these two
groups: the ‘similarity score’ was comparable for majority of
Group 1 and Group 2 modules (Fig. 2A and B). The proportion of
un-clustered GO module (gray module) was similar in the two
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Figure 1. SNV, INDEL and deletions in ASD with macrocephaly and microcephaly from the SFARI Simplex Simons Collection (SFARI-SSC) dataset. (A)
ASD with macrocephaly (red dots) and microcephaly (blue dots) individuals with head circumference 2 SD greater than or 2 SD less than the mean
were selected from 2760 ASD probands in the SSC dataset, whereas ASD with no brain size phenotype (‘ASD-other’, black dots) were selected from the
individuals with head circumference closest to the mean. All other ASD probands were plotted as green dots. (B) Head circumferences of probands with
macrocephaly were significantly larger than their siblings (P = 5.8E-07). (C) The top 15 significant GOs for genes that displayed significant enrichment
for probands over siblings on the basis of exome sequencing (SNV and INDEL) data were selected. Adjusted P-value for top 15 significant GOs from
each of ASD-macro, ASD-micro and ASD-others list was plotted from most to least significant for ASD-macro from top to bottom. The color scale was
proportional to the -log transformed adjust P-value. (D) GOs for genes intersected with deletions found in probands but not control individuals. Adjusted
P-value for top 20 GOs from each of ASD-macro, ASD-micro and ASD-other list was plotted. The color scale was proportional to the -log transformed
adjust P-value.
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groups. GO modules positively associated with ASD (ASD-only),
with brain size (macrocephaly only) and with both (‘ASD-macro’)
were detected in both Group 1 and Group 2 (Fig. 2C and D). Mod-
ules associated with ASD and negatively associated with brain
size were considered ASD-micro modules. Other modules [except
un-clustered GOs (gray module)] were labeled as ‘non-significant’
(Supplementary Material, Table S3C).

The GOs in corresponding module groups between Group 1 and
Group 2 were conserved (Fig. 3A–E, Supplementary Material, Table
S3D), with the highest proportion of overlap between Group 1 and
2 being for ‘ASD-only’ (73.9%, Fig. 3A), followed by ‘ASD-macro’
(65.5%, Fig. 3B), then ‘Macro-only’ (43.1%, Fig. 3C) and lowest for
‘ASD-micro’ (37.1%, Fig. 3D). These results suggested that this
pipeline reliably detected GO modules associated with ASD and
ASD-macro.

GO groups for WNT, neuron
morphology/function and organ morphogenesis
were enriched in GOs associated with ASD
macrocephaly
We next took the overlapped GOs for each module group as input
to determine whether a few functionally similar GO groups (called
‘GO groups’ hereafter) were enriched. We first tested GOs overrep-
resented by genes with ASD-enriched CNVs (12), which included
cell proliferation, GTPase/Ras activity and organ morphogenesis.
In addition, WNT signaling was tested because WNT activity
was decreased in ASD with macrocephaly (22). Furthermore, GOs
presumably related to brain size change such as head/brain devel-
opment and neuron morphology/function were examined.

A proportion test (29) demonstrated that WNT signaling, neu-
ron function/morphology and organ morphogenesis-related GOs
were enriched in GO modules associated with ASD-macro (Fig. 4A,
Supplementary Material, Table S3E). Synapse-related GOs were
enriched in those associated with ASD-only. These results are
supported by previous publications that found the importance of
WNT signaling for ASD with macrocephaly (22). GOs for neuron
and organ morphogenesis were also significant and plausible GO
categories found for brain size change. On the other hand, synapse
function, especially vesicle release related GOs, was enriched in
ASD-only associated GOs (Fig. 4A, Supplementary Material, Table
S3E), suggesting that synapse function was dysregulated to affect
neurological, behavioral and/or cognitive functions associated
with ASD without brain size differences. That adhesion-related
GOs was not enriched in the modules associated with ASD-macro
may be because of the big number of GOs related with adhesion
in non-significant GO modules. Therefore, even the number of
adhesion-related GOs was big in GO modules significantly asso-
ciated with ‘ASD’ or ‘Brain’, the proportion test result was not
significant.

Several GOs, including cell cycle, were enriched
in cGOs for ASD with different comorbidities
The four representative GO groups enriched in GOs associated
with ASD phenotypes (WNT signaling activity, organ morpho-
genesis, neuron and synapse) were used as ‘seeding GOs’ (sGOs)
for further analysis (Supplementary Material, Table S3F). With
these sGOs, we calculated the Pearson correlation for each sGO
versus all other (n = 8425) GOs in ASD-macro, ASD-micro and ASD-
other (Supplementary Material, Table S3G–J). Consistent with our
hypothesis that multiple genomic variations tend to affect genes
with different but related functions and contribute to phenotype
collaboratively in each individual, a set of ‘correlated GOs’

(so called cGOs hereafter) was found. In ASD-macro probands,
there were 630 cGOs positively correlated with WNT sGOs,
2235 with neuron sGOs and 3011 with organ morphogenesis
sGOs (Supplementary Material, Table S3G–I). In the ASD-other
probands, 4322 cGOs were significantly correlated with synapse
sGOs (Supplementary Material, Table S3J). As these positive
correlations were unique to ASD probands (control samples
showed either negative or insignificant correlation), variations on
genes belonging to these GOs may contribute collaboratively to
ASD etiology.

Similar to the enrichment test we performed for sGOs
(Fig. 4A), we tested if specific GO groups were enriched in
these cGOs (Fig. 4B). Cell cycle was enriched in cGOs correlated
with all three sets of sGOs (sGO WNT, sGOs neuron and sGO
organ_morphogenesis) for ASD-macro. On the other hand, the cell
cycle was not enriched in cGOs correlated with sGO(synapse) for
the ASD-other group. This finding suggested that cell cycle might
be a very important biological process in brain size change in ASD.
Interestingly, cell cycle-related GOs were significantly enriched in
both cGOs found in ASD-macro and ASD-micro samples, except
for the cGOs correlated with WNT sGOs, in which cell cycle-
related GOs were only enriched in ASD-macro samples (Fig. 4B).
These observations may together suggest that variations in WNT
signaling could trigger changes in cell cycle to cause ASD with
macrocephaly, but some other factor(s) may be responsible for
changes in cell cycle in ASD with microcephaly. Two example
plots further elucidate the correlation between cell cycle-related
GOs and GOs related to neuron (Fig. 4C) or organ morphogenesis
(Fig. 4D).

Adhesion-related GOs were never enriched in cGOs in either
the ASD-macro or ASD-other group (Fig. 4B). Only the ASD-micro
group showed deprivation of adhesion-related GOs compared
with either ASD-macro or ASD-other in cGOs correlated with sGO
‘neuron’. These observations do not exclude the contribution of
adhesion to ASD etiology; the suggested adhesion was not specific
to any of these three ASD subgroups. In other words, adhesion-
related variations may not account specifically for brain size
comorbidity in ASD.

‘Neural process’-related GOs were all GOs related to the
nervous system except for those with ‘neuron’ in the name.
It(clarify) is not enriched in cGOs correlated with most sGOs for
ASD-macro except for sGO ‘organ morphogenesis’. Nonetheless,
in cGOs correlated with sGO for ASD-other (‘synapse’), ‘Neural
process’-related cGOs were enriched in both the ASD-macro and
ASD microcephaly group, which may suggest that this GO group
may be too broad to be specifically linked with any sGO.

‘Development’-related GOs were enriched in cGOs correlated
with sGOs for neuron and organ morphogenesis in the ASD-macro
group (Fig. 4B). However, this enrichment was not observed in
the ASD-micro group. Together, this finding could suggest that
common variants on development-related genes may co-occur
with variants affecting neuron/organ morphogenesis to cause
ASD with macrocephaly.

‘Synapse’-related GOs were enriched in cGOs for sGO neu-
ron in the ASD-other group, suggesting that the biological pro-
cess related to neuron and synapse was correlated closer in the
ASD-other group. Again, this endorsed the effect on the behav-
ioral rather than brain morphological side of the synapse-related
variations.

Surprisingly, the ‘head/brain’-related GOs were not enriched in
cGOs correlated with most sGOs except for sGO synapse in the
ASD-micro and ASD-macro group. Our interpretation was that
variations for brain or head morphology changes may not often
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Figure 2. Find GO modules associated with ASD phenotype using WGCNA. (A) and (B) The GO dendrograms from WGCNA based on SNV/INDEL/SV data
mapped to GOs from SFARI-SSC families in (A) Group 1 and (B) Group 2. (C) and (D) GO modules associated with ASD or brain size phenotype in (C)
Group 1 and (D) Group 2. Pearson correlation (r) and P-value between phenotype (‘ASD’ or ‘Brain’) and eigenvalue of each GO module was shown in each
grid, with the density of the red color representing positive correlation and the density of the green color representing negative correlation.
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Figure 3. GOs associated with ASD or brain size phenotype detected by the gWGCNA pipeline. The GOs within each of the significant modules associated
with ASD and/or brain size in Figure 2 were collected. The numbers of GOs detected in Group 1 (blue circle), Group 2 (yellow circle) and overlap between
the two groups (in red color) are displayed in a Venn diagram. Below each Venn diagram, the number of GOs in the GO module and representative GOs was
listed. (A) GO modules that displayed significant positive association with ‘ASD’ and insignificant association with ‘brain’ were considered as ‘ASD-only’.
(B) GO modules that displayed significant positive association with ‘ASD’ and significant positive association with ‘brain’ were considered ‘ASD-macro’.
(C) GO modules that displayed insignificant association with ‘ASD’ and significant positive association with ‘brain’ were considered ‘macro-only’. (D)
GO modules that displayed significant association with ‘ASD’ and significant negative association with ‘brain’ were considered ‘ASD-micro’. (E) All GO
modules that displayed significant association with neither ‘ASD’ nor ‘brain’ were considered as ‘non-significant’.
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Figure 4. GO groups enriched in sGOs and cGOs. (A) The percentage of GOs related to specific functions (GO groups) was calculated for each of the five
types of GO modules as described in Figure 3A–E. GO significantly enriched GO groups were indicated with associated P-values from the proportion
test on the top of the bar. GO groups found to be significant from the analysis of CNVs from previously published results (12) were within the green
shade. Other GO groups, such as ‘head/brain’, ‘cell cycle’, ‘neuron’, ‘synapse’ and ‘wnt’ were selected on the basis of our previously published data
(22). (B) The percentage of selected GO groups (cGOs) for each of the four sGOs significant in (A) (WNT, neuron, organ morphology and synapse).
Red bars represent the percentage of each of the GO groups from ASD-macro, blue bars represent the percentage of ASD microcephaly and green
bars represent the percentage in ASD-other. Significance levels on top of the bars were suggested by asterisks (∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001).
(C)–(F) Example of GO–GO correlation. Genomic variation rate for each sGO was plotted on the x-axis and for each cGO was on the y-axis. Linear
regression equation (y) and variance explained (R2) were on top of the regression line. Each dot represents one proband (ASD-macro in red, ASD
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correlate with genes function on WNT/neuron/organ morphogen-
esis. Instead, they could function independently or tend to co-
occur with variants with other functions such as synapse.

‘Transmembrane’-related GOs were enriched in cGOs for
sGO neuron, sGO WNT and sGO organ morphogenesis in the
ASD-other group, suggesting that the ‘transmembrane’-related
GOs may ‘amplify’ the effect of variants on WNT, neuron
and organ_morphogenesis-related genes in ASD without brain
size changes. ‘Transmembrane’-related GOs were significantly
enriched in cGOs correlated with sGO synapse in both the
ASD microcephaly and ASD-other group. Considering that the
enrichment of vesicle-related GO terms was enriched in sGO
group synapse in the ASD-other group (11 of 43 sGOs for
synapse, proportion test, P < 2.2e-16, Fig. 4A, Supplementary
Material, Table S3F), the correlation between transmembrane
process and vesicle-related synapse function was specific for the
ASD-other group. Some examples may further consolidate this
interpretation. In Figure 4E, the positive correlation between sGO
Synaptic vesicle cycle and cGO sodium ion transmembrane was
specific to the ASD-other group and the correlation in the ASD-
macro and microcephaly groups was negative.

The enrichment of WNT-related GOs in cGOs correlated with
different type of sGOs was not systematically tested but there
were examples that endorsed the correlation between WNT sig-
naling and neuron-related GOs in ASD-macro. For example, the
sGO ‘neuron apoptotic process’ was positively associated with
the cGO ‘cell cell signaling by WNT’ (Fig. 4F), the correlation was
positive in both the ASD-macro and ASD-other groups and the
correlation coefficient was much larger in the ASD-macro group,
whereas the correlation was negative in the ASD-micro group.

Variations identified on sGOs from ASD with
macrocephaly
With GOs directly (sGOs) and indirectly associated (cGOs) with
ASD or brain size being identified, we next focused on identi-
fying genomic variations important for phenotype in these GOs.
Two factors were considered to prioritize the key variations: the
number of the genes occurring in each of the sGOs or cGOs and
the enrichment of specific gene loci in ASD over control samples.
The product of both factors was defined as the ‘combined score’
and given a standardized value (z-score). Variation loci were then
ranked based on this ‘combined enrichment score’, and only
variations with a z-score > 0 were selected.

In sGOs for ASD-macro, 126 variations (26 SV and 100 SNV/IN-
DEL loci) were on genes from the three groups of sGOs (GOs
related to WNT, GOs related to organ morphogenesis and GOs
related to neuron development/function, inner circle in Fig. 5A,
left panel). The length of each color bar in both the inner and
outer circles was proportional to the number of variants selected
in each corresponding sGO.

About 50% (70 of 126) of variant loci were on genes belonging
to all three types of sGOs (WNT, neuron and organ morpho-
genesis) for the ASD-macro (Group III in Fig. 5A, left panel). On
the other hand >30% of variants selected were unique to either
neuron- (Group VI) or organ morphogenesis- (Group I) related
sGOs (Fig. 5B). These variants may affect specific biological pro-
cess in ASD etiology. The number of variants on genes belonging(?)
to both WNT- and morphogenesis-related sGOs (Group IV) or on

genes belonging to both neuron- and morphogenesis-related sGOs
(Group II) was low (Fig. 5B). The 126 variants on sGOs for ASD-
macro affected in total 86 genes. These genes were enriched with
genes known to relate to ASD (n = 19, proportion test, P = 7.146e –
15), including GRIN2B, PTEN, SMG6, WNT2B, etc. PTEN was known
to be important for macrocephaly (30); another gene on PI3KAKT
pathway (AKT3) further increased the confidence of the variants
we found as new biomarkers for ASD macrocephaly.

Additional variations identified using sGO/cGO
correlations from ASD macrocephaly
Next, we determined whether identifying cGOs with each of the
sGOs would provide further insight into ASD with macrocephaly.
In cGOs in ASD-macro group, 1476 genomic loci (91 SV and 1385
SNV/INDEL loci) were selected (outer circles in Fig. 5A, left panel).

Among these loci >50% (45 SV and 852 SNV/INDEL) were on
cGOs (Group 3 in Fig. 5C, n = 375) correlated with all three types
of sGOs (WNT, neuron and organ morphogenesis), suggesting that
these variants could be ‘triggered’ by variants on genes in all these
three major biological processes to cause ASD macrocephaly. Of
these variants, 136 were on known ASD genes (proportion test,
P < 2.2e-16), including NRXN1, RELN and SEMA5A, whereas 761
variations were on genes not yet related to ASD, including AKAP13,
HTT, NAV2 and TET3. These identified variations are promising
candidates for biomarkers of ASD with macrocephaly. On the
other hand, there was a much smaller number of variants on
cGOs correlated with single type of sGOs (Fig. 5C). For example,
the number of cGOs correlated with sGO for morphogenesis was
large (Group 1 in Fig. 5C, n = 1279), and variations selected from
these cGOs were few (n = 154, 20 SVs, 134 SNV/INDELs). Similarly,
from 528 cGOs correlated with sGO neuron (Group 7), only 25
variants passed the filter standard of the combined score. These
suggest the combined score, which take both frequency of gene
in cGOs and the locus level enrichment in the population into
consideration, would largely suppress potential false positive rate
in candidate loci detection from cGOs.

One exception was cGOs specifically correlated with sGO for
WNT signaling (Group 5 in Fig. 5C). In 68 cGOs, 105 variations
passed the combined score filter. This higher ratio of variants
selected per cGO suggested that genes interacted with WNT
signaling tend to be involved in multiple biological processes (GOs)
and carry variants enriched in ASD.

Above average ratio of variants selected per cGO was also
observed in the 106 cGOs correlated with both WNT and morpho-
genesis sGOs (Group 4 in Fig. 5C) and in 81 cGOs correlated with
both neuron and WNT sGOs (Group 6). A total of 89 variants were
selected in each group by combined score. These results together
emphasized the variants, not only those on genes belonging to
WNT signaling pathway but also those functionally interacting
with WNT signaling, were important for ASD with macrocephaly,
rendering them good biomarkers.

High consistency between SFARI-SSC and
validation dataset results
We next determined whether any of our findings from the
SFARI-SSC dataset could be replicated. Using the ASD and
control fibroblast cell lines from a previous publication (22), we
detected SNVs/INDELs using exome sequencing and detected

microcephaly in blue and ASD-other in green). (C) GO central nervous system neuron differentiation versus GO cell cycle. (D) GO sensory organ
morphogenesis versus GO cell cycle phase transition. (E) GO synaptic vesicle cycle versus GO sodium ion transmembrane transport. (F) GO neuron
apoptotic process versus GO cell–cell signaling by WNT.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac300#supplementary-data
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Figure 5. Genomic variations enriched in sGOs and cGOs. (A)–(C) Genomic variations detected in ASD-macro samples. (A) Summary of genomic variants
on genes belonging to GOs directly associated with ASD phenotype (sGOs, inner circle) and on genes belonging to cGOs (outer circle). (B–C) Summary of
genomic variants on sGOs (B) and cGOs (C). The number of SV, SNV/INDELs on each sGO/cGO group and representative genes/GOs was listed. Bold: SV,
Red: Known ASD gene. (D) Summary of genomic variations detected in ASD-other samples.
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SVs using matepair sequencing (These variations were called
validation dataset hereafter). In detail, there were 333 846 SNV loci
(Fig. 6A), corresponding to 837 180 SNV events (Fig. 6B) in 8 ASD
and 5 control samples. There were 33 908 INDEL loci (Fig. 6C),
corresponding to 69 031 INDEL events (Fig. 6D). Importantly,
80.82% of the 1924 selected genomic variation loci from SFARI-
SSC ASD-macro samples had matches in the validation dataset
(Fig. 6G, Supplementary Material, Tables S4A, S6A and S6E).

In total, 761 deletions were detected in the validation dataset
(Fig. 6E). Exome sequencing data showed exonic regions over-
lapped with deletions we detected have reduced reads compared
with nearby up/downstream regions (Fig. 6F). Of the deletion loci
selected using combined score from SFARI-SSC dataset, 16.4%
could find matches with these deletions (Fig. 6G). The relatively
low matching rate could be accounted for by the lower fre-
quency of deletions compared with SNVs/INDELs in population
and would tend to be missed in the small sample size validation
dataset (Fig. 6G, Supplementary Material, Table S8A).

GOs overrepresented by genes enriched with SNVs/INDELs/SVs
in ASDs over controls in the validation dataset largely over-
lapped with GOs overrepresented by genes with ASD-enriched
variations in the SFARI-SSC dataset in the ASD-macrocephaly
group (Fig. 6H and I). This GO pattern similarity confirmed that,
although high individual heterogeneity exists at the gene level, the
overall genetic machinery of ASD macrocephaly was conserved at
the level of GOs and could be distinguished from those of control
individuals and other ASD subgroups. In this sense, the RNASeq,
ATAC-Seq and ChIPSeq data collected from the validation dataset
could be related to genomic variations selected from the SFARI-
SSC dataset with high confidence.

Interaction among genomic variations, gene
expression and transcriptional regulation related
to WNT/β-catenin in ASD macrocephaly
WNT signaling activity was significantly reduced in both mouse
and human(?) neural progenitor cell (NPC) models of ASD with
macrocephaly. For the 1514 loci we selected from the SFARI-
SSC ASD-macro group, ChEA analysis showed that transcription
factors (TFs) related to the WNT pathway (e.g. TCF4, SOX2, SMAD4,
etc.) were overrepresented (Supplementary Material, Table S8G).

These SFARI-SSC ASD-macro results overlapped largely with
the results from the ChEA analysis on genes overlapped with SV
(deletion)s specific to ASD samples in validation dataset (Sup-
plementary Material, Fig. S3, Supplementary Material, Table S8I).
The overlap of ChEA results between SFARI-SSC ASD-other and
the ASD-specific SV was much smaller (Supplementary Material,
Fig. S3). Combined, these findings show that genomic variations
affecting WNT signaling pathway-regulated transcriptional activ-
ity could contribute to the etiology of ASD with macrocephaly.

To further explore the effect of WNT-related transcription reg-
ulation on ASD with macrocephaly, we used publicly available
ChIPSeq β-catenin binding data in human embryonic stem cells
[hESCs; (31)], because β-catenin is the transcriptional effector of
the canonical WNT pathway. Estaras et al. found 11 621 binding
peaks distributed among various genomic regions (Fig. 7A) that
bound a total of 4036 genes that were active in NPCs by ATAC-
seq (Fig. 7B). A total of 227 β-catenin-bound genes overlapped with
selected genomic variation loci from SFARI-SSC ASD-macro sam-
ples (Fig. 7B), which was much more frequent than the overlap
(n = 74) with genes carrying loci selected from SFARI-SSC ASD-
other samples (Fig. 7C). These results support the relationship
between WNT/β-catenin signaling and ASD with macrocephaly.

We next examined whether any of the identified genes in the
ASD loci displayed differences in gene expression in the NPCs
from the iPSCs (define) from eight ASD and five control lines
used in our validation dataset. Consistent with previous studies
with these cell lines (22,32), the number of differentially expressed
genes between ASD and control NPCs was small (n = 191, Sup-
plementary Material, Table S5A). Among them, 40 overlapped
with genomic variations selected from the SFARI-SSC ASD-macro
samples (Fig. 7B) and eight overlapped with SFARI-SSC ASD-other
samples (Fig. 7C). GO analysis of the 191 deferentially expressed
(DE) genes did not yield any significant results. When we com-
pared expression levels in each of the NPC lines with the average
expression level of all four control lines, an additional 664 ‘indi-
vidualized DE genes’ were detected (Fig. 7C and D, Supplementary
Material, Table S5A).

The single gene identified that was differentially expressed,
bound by β-catenin and was a known ASD gene was SMG6
(Fig. 7B). An SNV in the second exon of SMG6 (SMG6, Chr17:
2203025, T- > G) was enriched in both ASD-macro (by 17.5%)
and ASD microcephaly probands (by 12.4%), but not in ASD-
others from SFARI-SSC. This gene is a known ASD gene (33) and
mainly functions in nonsense-mediated mRNA decay. This locus
was also found in one ASD-macroc proband (ARCH) from the
validation dataset. This locus is close to the TSS of SMG6 (Fig. 7D),
which increased the possibility that this variation would affect
TF binding. The β-catenin ChIPSeq peaks overlapped with SMG6
but not with this locus, so the function of this locus is unclear.
We speculate that this locus could affect the interaction between
β-catenin binding to the intron region of SMG6 and some other
TFs that bind to TSS of SMG6. The RNASeq results demonstrated
a significant decrease in SMG6 in the ASD NPC line (ARCH)
compared with control lines.

One of the five genes that were differentially expressed and
bound by β-catenin but not identified as known ASD gene, GPR39,
contains an ASD-macro enriched SNV (Chr2:133174999, A- > G)
(Fig. 7B and E). This gene encodes a rhodopsin-type G-protein-
coupled receptor (GPCR) and is related to the pathophysiology
of depression (34). It contains a binding target of β-catenin, and
this variation (Chr2:133174999, A- > G) was in the ChIP binding
area close to the TSS, which suggested that it could affect the
binding of β-catenin to GPR39. The frequency of this allele in ASD
in the SFARI-SSC ASD-macro samples was 18% higher than in
control (Supplementary Material, Table S4A). This locus also dis-
played a 30% higher frequency in ASD than control in the valida-
tion dataset (Supplementary Material, Table S6A). RNASeq results
demonstrated that GPR39 was downregulated in ASD (Fig. 7E).
These findings combined suggest that this SNV in GPR39 may be
a new biomarker for ASD with macrocephaly.

A second example within the five genes identified that was
differentially expressed, bound by β-catenin and was not a known
ASD gene, was AKAP13, which contains an SNV (chr15:86284342,
C- > T, Fig. 7B, C and F). This gene encodes an A-kinase anchor
protein, which is functionally related to both GPCR signaling and
mTOR signaling (35). This SNV demonstrated a higher alternative
allele frequency in ASD subjects than in controls in both the
SFARI-SSC ASD-macro and SFARI-SSC ASD-micro samples (Sup-
plementary Material, Table S6A). In contrast, the SFARI-SSC ASD-
other samples did not demonstrate enrichment for this locus,
suggesting that this locus might contribute to the brain size
changes associated with ASD. The expression of AKAP13 was
upregulated in one ASD NPC line (ABLE) but downregulated in
another ASD sample (ARCH), which may be attributed to the stop
gain mutation on CTNNB1 (coding for β-catenin) in the ARCH line.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac300#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac300#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac300#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac300#supplementary-data
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Figure 6. SNVs INDELs and SVs in validation dataset. (A)–(D) Venn diagrams of number of loci detected in the validation dataset for SV events (A),
Blue: ASDs, Red: Controls. SNV events (B), INDEL loci (C) and INDEL events (D). Blue: ASDs, Red: Controls. (E) SV (Deletions) detected in eight ASD
with macrocephaly and two control individuals. Horizontal bar beside each sample name represents the total number of deletions detected in that
sample. Control samples were in red and ASD samples in blue. Each row of the dot matrix corresponds to one sample and each column corresponds
to one set of deletion loci with the same distribution pattern among these samples. Each vertical histogram bar represents the recurrence of a specific
distribution pattern. Also, the recurrence number for each combination was labeled on top of the histogram bar. (F) Z-score of reading depth of exonic
regions overlapped with deletions in ASD samples (red) demonstrated a significant reduction compared with genomic regions 10 KB upstream (blue) and
downstream (green) of the deletion event. (G) The proportion of selected genomic loci from the SFARI-SSC dataset (as in Fig. 5B–D, nASD_macro = 1514, n

asd_other = 410) that overlapped with the validation dataset. (H) GOs for genes with SNV/INDELs enriched in ASD from the validation dataset corresponding
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Considering the binding of β-catenin to both TSS and TTS region
of AKAP13, this SNV loci could play a role linking WNT signaling
and mTOR signaling to regulate brain development in the context
of ASD.

Finally, we found TRIM2, which was bound by β-catenin and not
a known ASD gene, overlapped with a deletion (chr4:154125517-
154260572) that was enriched in ASD-macro samples (Fig. 7B,
Supplementary Material, Fig. S3B). This gene plays a neu-
roprotective role and functions as an E3-ubiquitin ligase in
proteasome-mediated degradation of target proteins. This ASD-
macro enriched deletion covered the middle part to the 3′ end
of the TRIM2. This deletion overlapped with both the ATAC-
Seq peak and β-catenin binding peak within a HiC interval,
and this interval looped with another HiC interval covering the
5′ end of the same gene. These results suggested that TRIM2
may be the transcriptional target of β-catenin, and the deletion
(chr4:154125517-154260572) may be an important biomarker for
ASD with macrocephaly. However, we did not find this deletion
in our small validation dataset, so the functional effect of this
deletion (e.g. effect on TRIM2 gene expression) could not be
directly tested.

Discussion
Overall significance
ASD is characterized by phenotypic and genetic heterogeneity.
The different comorbidities of ASD patients have been used to
divide ASD patients into different phenotypic subgroups that
may also reduce the genetic heterogeneity to facilitate the clar-
ification of ASD genetic mechanism. However, one challenge of
this approach is how to tease apart the genetic factors that
mainly contribute to the comorbidities (macrocephaly, aggres-
sive behavior, seizure, etc.) from those that mainly contribute
to the defining behavioral abnormalities found in ASD. Here, we
developed a new quantitative approach to detect the co-occurring
genomic variations important for the development of ASD with
and without macrocephaly, an important comorbidity in ∼20–
25% of ASD individuals (4). In detail, 160 genomic variations
were identified through GOs directly associated with ASD and
brain size phenotype, 1565 genomic variations were identified
through GO–GO correlations and 104 of these 1715 variations
were identified by both. These genes and variations, especially
their combinatorial patterns, may provide novel biomarkers for
different ASD subtypes. This pipeline could also be applied to
analysis of other-omic data types, such as RNAseq, ChIPseq and
ATACseq.

Dissection of ASD and brain size phenotype
In the current study, 922 GOs associated with ASD-only probands
were identified. Synapse-related GOs were enriched in these
seeding(?) or sGOs, which suggested that dysregulation at the
synapse level might be specifically associated with behavioral
abnormalities in ASD independent of brain size. For synapse-
related sGOs, ‘transmembrane process’ related correlated or
cGOs were significantly enriched. As transmembrane process was
often functionally related to synapse development and function
(e.g. synaptic vesicle recycling), this observation further supports

the importance of synapse dysfunction in behavioral changes
diagnostic for ASD (36).

On the other hand, WNT-, neuron- and organ morphogenesis-
related GOs were enriched in 777 GOs associated with ASD-macro.
This result is consistent with previous findings that increased
neuron numbers in ASD with macrocephaly probands (4) and
decreased WNT signaling pathway activity (22) are important for
ASD with macrocephaly. For sGOs of WNT, neuron and organ
morphogenesis, both ASD macro and micro probands showed
enrichment of cell cycle-related cGOs, which is consistent with
the conclusion on the basis of gene expression change in blood
from ASD with macrocephaly probands (23). We validated the
importance of the Wnt pathway correlation by performing RNA-
seq, ChIP-seq for β-catenin and ATAC-seq on the ASD and control
lines used as the validation dataset, which led to the identification
of SMG6 as a Wnt-regulated ASD gene (Fig. 7D).

New biomarkers for ASD with macrocephaly
We identified six genes (AKAP13, BSG, DNAH11, GPR39, SMG6,
SUMF1) as potential biomarkers for ASD with macrocephaly,
as they were supported by our gWGCNA pipeline computation
results from the SFARI-SSC dataset, β-catenin ChIPSeq and
differential expression data from the validation dataset. Among
these genes(?), SMG6 had already been reported to be related
to the ASD gene (33), which increased the confidence that this
gene was an ASD-macro biomarker. The other five genes were
not previously linked to ASD, and our results suggest they could
be new biomarkers for ASD-macro and require independent
replication. In ASD-other samples from SFARI-SSC, AKAP13 was
selected by our pipeline, confirmed by ChIPSeq and differential
expression data from validation dataset. Considering it is one
of the six candidates found in ASD-macro samples, it may be
a new biomarker for ASD, not necessarily limited to ASD with
macrocephaly.

We noticed a sharp decrease in the number of candidate loci
selected by our gWGCNA pipeline and the number of loci vali-
dated by RNASeq, ChIPSeq data. Two factors could account for
this decrease: first, the purpose of the gWGCNA pipeline was
to determine the co-occurrence of genomic variations, and the
expression level changes for these co-occurred variations in ASD
NPC lines would be more complex than simply differential gene
expression from control individuals at the single gene level. Sec-
ond, we only have eight ASD-macro and five control cell lines in
the validation dataset, which was >5-fold and less than the SFARI-
SSC dataset sample size. Some low frequency variations could
not be found in the validation dataset and, more importantly,
many co-occurrence patterns could not be found in the rather
small dataset. In the future, when larger expression/ChIPSeq
datasets with genomic/clinical information available can be used
as validation datasets, we believe a much higher proportion of our
co-expression results could be determined and validated.

Cell cycle-related genes may affect both macro
and microcephaly
We identified that cell cycle-related GOs were enriched in cGOs
correlated with sGOs for WNT, neuron, organ-morphogenesis in
ASD-macro and ASD-micro probands compared with ASD-other
probands (Fig. 4B, Supplementary Material, Table S3G, I and J).

to top 15 GOs for each SFARI-SSC group (as in Fig. 1C). Color scale was proportional to -log transformed adjusted P-value. The blue rectangle depicted
SFARI-SSC results; the purple rectangle depicted validation results. (I) GOs for genes with ASD-specific SVs from validation dataset corresponding to
top 20 GOs for each SFARI-SSC group (as in Fig. 1D).

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac300#supplementary-data
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Figure 7. Possible effect of selected loci on gene expression and β-catenin transcription regulation. (A) Functional annotation of β-catenin binding peaks.
(B) Selected genomic loci from SFARI-SSC ASD-macro samples that overlapped with β-catenin targets, DE genes and known ASD genes. Genes with loci
selected by gWGCNA pipeline, showing differential expression and bound by β-catenin, were listed below the Venn diagram. SMG6, which meets all these
criteria and is a known ASD gene, was labeled in the Venn diagram. Names of loci selected to be plotted individually were bold. (C) Selected genomic
loci from SFARI-SSC ASD-other samples overlapped with β-catenin targets, DE genes and known ASD genes. (D) Example plot for SNV (Chr17:2203025,
T- > G) on SMG6, black tracks: β-catenin ChIPSeq (upper: inactivated, lower: activated by WNT3A); orange tracks: ATACseq data; purple track: H3K27Ac
ChIPSeq from UCSC. Right panel: RPKM for ASD line with this variation (ARCH) and CTRL NPC lines. (E) SNV (Chr2:133174999, A- > G) on GPR39. Right
panel: RPKM for ASD and CTRL NPC lines. (F) SNV (chr15:86284342, C- > T) on AKAP13. Right panel: RPKM for ASD line with this variation (ABLE and
ARCH) and CTRL NPC lines. Significance level of difference in gene expression between ASD and CTRL group was indicated using asterisks on top of the
bar (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001).
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This finding suggested that cell cycle is a biological process
dysregulated in ASD-micro/macro probands, potentially affecting
neural precursor cell/neuron proliferation/differentiation and
altered neuron number in the brain, which is not surprising
in an of itself. However, the correlation between WNT-related
sGOs and cGOs for cell cycle suggested that variations in WNT
signaling genes may be upstream of variations in cell cycle-
related genes in ASD with macrocephaly genetic architecture,
a novel observation. Similarly, variations in genes from sGOs
for neuron and organ morphogenesis may be downstream of
cell cycle to affect specific neuronal/developmental functions
in ASD macro/microcephaly. In the 88 GOs associated with
ASD microcephaly, WNT-related GOs were not overrepresented
(Fig. 4A) but, using sGOs identified in ASD with macrocephaly,
cell cycle-related cGOs were enriched in the ASD microcephaly
samples (Fig. 4B). This result suggests that a WNT-cell cycle
correlation exists in ASD with microcephaly, but this correlation is
not as strong as that in ASD with macrocephaly. Importantly, this
finding suggests that WNT signaling may be one of the upstream
factors for cell cycle change in ASD microcephaly but is probably
not the major factor.

WNT signaling for ASD with macrocephaly
Previous publications showed β-catenin/BRN2 transcriptional
activity was decreased in human (22) and mouse models (37) for
ASD with macrocephaly. Also, the gene expression level for WNT-
related genes was downregulated in ASD with macrocephaly
postmortem brain samples (38). Our results provide genomic
level evidence of the dysregulation of WNT signaling in the
context of ASD with macrocephaly. More importantly, our results
elucidated how genomic variations in the WNT signaling pathway
interact with other genomic variations in the context of ASD
with macrocephaly. In detail, 62 WNT-related variations were
identified on genes from sGOs, including 14 known ASD genes,
such as DLG1, GRIN2B, WNT2, GPC6, TNN, etc. The other 48 genes
may be potential new candidate loci for ASD with macrocephaly,
including variations on HES1, FZD3, DKK1, GLI2, PRKN, AKT3, etc.
Considering their potential effect on transcriptional regulation
(Fig. 7B, Supplementary Material, Table S4A), TNN and GLI2
(Figs 5B and 7B) are good candidate biomarkers for ASD with
macrocephaly. These loci were correlated with 1105 variations
on cGOs (Supplementary Material, Table S4A), affecting genes
including AKAP13, ESR1, CNTNAP2, GPR39, SEMA5A, etc. These
results provide an example of how a small number of variations
within WNT signaling co-occurred with a large number of
variations on genes with a higher variation rate (e.g. neuron
development) to cause complex disease.

Application of gWGCNA pipeline to analysis of
RNASeq and ChIPSeq data
We have shown that the gWGCNA pipeline could integrate mul-
tiple types of genomic variations (SNV, INDEL, SV). This pipeline
could also be applied to analysis of RNASeq and ChIPSeq data.
It would be a promising next step to analyze HiC data with the
gWGCNA pipeline in the context of complex human disease.
The cGO (or gene, variation) pairs identified by gWGCNA and
looping patterns detected by HiC could show how physically
interacting deoxyribonucleic acid (DNA) regions and functionally
related genes interplay to affect disease etiology. We believe the
integration of different types of -omic level data would generate
a more complete picture of ASD genetics.

Materials and Methods
Selection of samples from SFARI-SSC database
Brain circumferences of ASD probands from 2760 SSC families (1)
were normalized by the age of the measurement. In detail, we
calculated linear regression of head circumference versus age at
measurement (in month) for SSC probands. Then the expected
head circumference was compared with each real measurement,
the difference between expected and measured value was divided
by SD of the head circumferences (Supplementary Material, Table
S1J). Probands with larger than 2 SD above average were labeled as
ASD-macro (ASD probands with macrocephaly comorbidity) and
those with 2 SD below average were labeled as ASD-micro (ASD
with microcephaly). This standard resulted in the identification of
47 and 52 probands with macrocephaly and microcephaly, respec-
tively. We next selected 52 probands from the same database with
the smallest difference from average and labeled them as ‘ASD-
other’ (probands with no brain size phenotype).

Genomic variation data from SSC dataset
SNV/INDEL data from the 41 ASD-macro, 37 ASD-micro and 38
ASD-other probands and their fathers were downloaded from the
(SFARI-SSC database (https://www.sfari.org/resource/). Fathers
from ASD-other families (n = 38) were used as controls for ASD-
macro and ASD-micro probands. Fathers from the ASD-micro
group (n = 37) were used as controls for ASD-other probands for
subsequent genomic variation analysis (Supplementary Material,
Table S1A).

In total 320 710 SNV/INDEL loci were downloaded. As the
minimum sample number for each group for specific loci was
required to be eight (nsample ≥8), a total of 60 617 loci were anno-
tated using ANNOVAR. Variations in the intergenic, upstream or
downstream regions [>10 kb distance from transcriptional start
site (TSS) or transcription termination site (TTS)] were identified
and excluded for further analysis. For each of the remaining loci,
ALT allele frequencies were compared between each ASD group
and controls. Loci with an increased ALT frequency of 10% or
more in ASD than in CTRL were considered ‘ASD-enriched loci’.
There were 7373, 5233 and 2458 ASD-enriched SNV/INDEL loci
in ASD-macro, ASD-micro and ASD-other groups, respectively
(Supplementary Material, Table S1B–D). These loci affected 457,
411 and 562 genes in each of the groups (Supplementary Material,
Table S1E). These gene lists were the input for GO analysis using
Gene Set Enrichment Analysis (GSEA) (39).

SV data were also obtained from the SFARI-SSC database. Only
deletions were used for subsequent analysis. After filtering by
nsample ≥8 in each group, 1044, 1330 and 1223 deletion loci were
included for ASD-macro, ASD-micro and ASD-other, respectively
(Supplementary Material, Table S1G–I). These loci were annotated
by AnnotSV (40). The same standard identifying ASD-enriched loci
as applied to SNV/INDEL data was used. GO analyses were per-
formed for genes intersected with the ASD- or control-enriched
deletions (Supplementary Material, Table S1F) using GSEA (see
above).

Mapping genomic variations to GOs
The GO and gene lists were downloaded from a GSEA database
(‘msigdb.v7.1.symbols.gmt’ under ‘All gene sets’). Genomic varia-
tion rate per GO was calculated based on these loci (in the for-
mula listed below). Specifically, for each selected ASD or control
individual from the SSC dataset, the number of ASD-enriched
loci (increase of alternate (ALT) allele frequency in probands over
controls ≥0.1) in each type of variation (SNV/INDELs and SVs) for
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each gene (genei) was summed for all genes in each GO (GOj)
and normalized by the total number of genes in that GO to get
variation_rateGOj.

Variation_rateGOj

=
∑ngene_GOj

i=1 nSNVgenei
+∑ngene_GOj

i=1 nINDELgenei
+∑ngene_GOj

i=1 nsvgenei
ngene_GOj

The variation-rateGO was calculated for all 10 131 GOs. GO with
zero counts for all samples (n = 1845) was excluded from subse-
quent analysis. The individuals from each of the six groups (ASD-
macro, ASD0micro and ASD-other, CTRL-macro, CTRL-micro and
CTRL-other) were randomly divided into Group 1 and Group 2,
with 115 and 114 samples, respectively (Supplementary Material,
Table S3A).

gWGCNA analysis of genomic variation data
We employed a WGCNA, a datamining method used for
studying biologicalnetworks on the basis of pairwise correlations
between variables (27), to analyze GO correlations. With WGCNA
default settings selected (soft threshold power = 6; minimum
module size = 30), the sample tree was first generated for Group
1 on the basis of inter-sample Spearman correlation using
variation_rateGO. Next, the WGCNA network was constructed
with dissimilarities among modules to be at least 15%.

After the construction of the network, the eigengene for
each module was associated with each of the two ‘phenotypes:’
ASD_vs_CTRL (labeled as ‘ASD’) (all ASD samples coded as 1
and controls as 0); and brain size (labeled as ‘Brain’) [all SSC
probands with macrocephaly coded as 2, SSC proband with
microcephaly as 0 and probands from ‘ASD-other’ group as
1, all control individuals (fathers) coded as 1] using Pearson
correlation. Modules with significant correlation (P < 0.05) for
either phenotype were detected for Group 1 samples. On the basis
of the correlation with ASD and brain phenotypes, GO modules
were defined as several ‘module groups’ such as ASD-macro,
ASD-micro, etc. (Supplementary Material, Table S3B).

The same settings were then applied to network construction
for Group 2 samples to detect GO modules associated with ASD
and brain size. Venn diagrams were generated to find results from
Group 1 that could be confirmed by those from Group 2 for each
module group.

In the ‘confirmed’ GOs, if a few representative GO groups (e.g.
GOs related to ‘WNT signaling’) were enriched in each module
group, they were tested using a proportions test (29).

Correlation among GOs related to ASD
The enriched representative GOs detected above were used as
sGOs. Pearson correlation among these sGOs and all other GOs
for ASD and Control samples were calculated for each of three
sets of samples: ASD-macro, ASD-micro and ASD-other. The cor-
relation matrix was flattened using an R library ‘corrplot’, and
the P-value for each GO pair was calculated. Using P < 0.05 as
the cutoff, GO pairs that displayed positive and significant cor-
relation in ASD samples and negative or insignificant correla-
tion in control samples were considered ‘cGO’ for subsequent
analysis.

Detection of loci enriched in seeding and cGOs
Total occurrence of each gene in each of the eight GO groups was
calculated (4 sGO groups and 4 cGO groups, Supplementary Mate-
rial, Table S3F–I) four sGO groups (GOs related to ‘neuron’, ‘WNT’,
‘organ morphogenesis’ and ‘synapse’, Fig. 5) and four groups of

GOs correlated to each of the sGO. The occurrence value was
standardized into a z-score.

The alternate allele frequency difference between ASD and
CTRL (≥0.1, see above) was also standardized into a z-score. The
‘combined enrichment score’ for each locus was defined as the
product of the z-score for gene frequency in a specific GO group
and the z-score for alternate allele enrichment. Loci with positive
combined enrichment score were selected.

Detection of SNV/INDEL loci enriched in ASD or
controls in validation dataset
Whole genome DNA was extracted from fibroblast cell lines
of eight ASD with macrocephaly and five gender/age-matched
control individuals previously published with the clinical
phenotype (22). Genomic variations detected in these cell lines
were called ‘validation dataset’ in this paper. Exome libraries
were produced in the Case Western Reserve University (CWRU)
Genome Core using the Illumina ultra-sensitive exome library
protocol. The libraries were sequenced on Illumina HiSeq 2500
at 8 libraries/run, which yielded ∼100–150 million reads per
library. The reads were aligned to the hg19 reference genome
using BWA (41) with default settings (Gap open penalty = 6,
Mismatch penalty = 4, etc.) and yielded about 20× coverage of
the human genome in each library. Vcftools (42) were used to
call variants. The SNV lists were generated after filtering out loci
with low reading depth (<10), low number of reads in support of
variant (n < 3), low alignment quality (q < 20) and low base quality
(Q < 30). ANNOVAR (43) was used to annotate the SNVs. The ASD-
enriched SNV/INDELs were those with significant P-value for ALT
allele frequency difference between ASD and control [5000 times
resampling using R, similar to previously reported method (44)].
All SNV/INDELs were compared with records in dbSNP. Filters
used for calling INDELs were the same as those used for SNVs. The
annotation of INDEL was performed using SeattleSeq Annotation
138 (45). GO analysis was performed on genes harboring selected
SNV/INDELs using GSEA. SNVs under negative selection were
found using Funseq (46).

Matepair sequencing and calling of deletions in
validation dataset
‘Jumping libraries’ for matepair sequencing from eight ASD sam-
ples with macrocephaly and two control samples (aforemen-
tioned) were built using Illumina Nextera Mate Pair Sample Prep Kit.
The libraries were sequenced in the CWRU sequencing core using
an Illumina HiSeq 2500 machine with eight samples/run, which
yield ∼60 million reads per library. The reads were first trimmed
off adapter sequences and reverse complemented using Nxtrim
and then aligned to hg19 using BWA, resulting in an average
physical coverage of about 2× and actual coverage of human
genome of ∼50×.

The bam files were used as input for DELLY (47) and LUMPY
(48) (version 0.2.13) to call deletions. The start and end inter-
vals of each structural variant (SV) from both algorithms were
intersected using BEDTools (49). The matched intervals were used
for the final inference of deletion breakpoints (Supplementary
Material, Fig. S4). The deletions from all samples were collapsed if
they overlapped. The frequency of deletions among ASD samples
was calculated for these collapsed deletion events. The deletions
from two control samples were inferred following the same pro-
cess (‘control deletion list’). The deletions were classified as ‘ASD-
Control-shared deletions’ if the ASD deletions overlapped with
the control list or ‘ASD-specific deletions’ otherwise. Deletions

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac300#supplementary-data
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Biological_network
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac300#supplementary-data
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were then annotated using AnnotSV (40). GO analysis for genes
intersected with the deletions was performed using GSEA.

To test if the variations selected by our pipeline from SFARI-
SSC samples were enriched by putative targets of any TFs, we
applied CHEA analysis (50) for the genes that carried the 1514
loci selected from SFARI-SSC ASD-macro samples and 410 loci
selected from SFARI-SSC ASD-other samples. Using the CHEA
online (https://maayanlab.cloud/chea3/#top) function ‘ChIP-Seq-
> Literature’ library. Similarly, genes affected by the 515 ASD-
specific deletions in the validation dataset were tested with CHEA
online tools. The results from the three input sets were compared
using a Venn diagram (Supplementary Material, Fig. S5).

RNASeq for NPCs from validation dataset
Total ribonucleic acid (RNA) was extracted from NPCs from eight
ASD-macro and five control lines as mentioned above. One control
line (COVE) was excluded from subsequent analysis as its kary-
otype was abnormal. The RNA was purified and quantified, and
samples of high quality (RIN ≥7.0) were used. The Illumina TruSeq
Stranded Total RNA kit with Ribo Zero Gold (for rRNA removal
by hybridization/bead capture) was used for library preparation.
Optimized libraries were then loaded onto the HiSeq 2500 flowcell
(8 libraries/lane) for 50 bp single-end sequencing.

Adapter sequences were trimmed and filtered using cutadapt
(51). Reads that passed quality filter were aligned to hg38 using
HISAT2 (52) and converted to sorted BAM files with samtools
(53). Identification of differentially expressed genes and statistical
analyses was performed using DESeq2 (54).

ChIPSeq for NPCs from validation dataset
ChIPSeq libraries for BRN2 were prepared using NPCs from three
ASD lines and three control lines. About 10 million NPCs for each
library were collected between Passages 6–9 at Day 3 (about 80%
confluency) and cross linked using 4% formaldehyde for 10 min
at room temperature. The cells were resuspended in lysis buffer,
sonicated and incubated with antibody [POU3F2 (D2C1L) from
Cell Signaling] linked DynaBeads Protein G overnight at 4◦C. The
DynaBeads were washed and then reverse crosslinked at 65◦ for
12 h. RNA and antibody were removed with RNase A (Ambion
Cat # 2271) and proteinase K (Invitrogen, 25530-049). The pulled-
down DNA was end-repaired, and a ploy-A tail was added, linked
with adapter and PCR amplified. The PCR product was gel purified
and fragments in the 250–400 bp were excised and purified with
Qiagen MinElute Gel Extraction kit (Qiagen, 28606). The Bioana-
lyzer DNA 1000 assay (Agilent) was used to access the quality
of the libraries. Seventy-five bp single-end reads were generated
for high-quality libraries using the HiSeq 2500 (8 libraries/lane
on flowcell) sequencing pipeline. Reads were adaptor trimmed
with fastx_clipper, aligned with hg19 using BWA (41) and further
processed using SamTools (53). Peaks were called by MACS14 (55)
with default settings using sorted bam files with redundant reads
removed. Called peaks were overlapped with published BRN2 on
human NPC (56) and ATAC-Seq data from sample NPC lines (57)
(see below).

Further bioinformatic processing of RNASeq,
ChIPSeq and HiC data
The genes with selected genomic variation loci and differentially
expressed between ASD and control NPCs were illustrated using
Venn diagrams (https://bioinformatics.psb.ugent.be/webtools/
Venn/). The ATAC-Seq data for three ASD and two control NPC
lines (57) were obtained from the Gage laboratory through
collaboration. These lines were a subset of the NPC lines on

which we performed RNASeq and ChIPSeq experiments. Overlap
between ATAC-seq peaks and BRN2 ChIPSeq were found using
BedTools (49). Published BRN2 ChIPSeq data at NPC stage (with
2 samples) (56) were downloaded. To ascertain that the BRN2
binding positions were in actively transcriptional sites, BRN2
peaks from at least two control lines or published BRN2 peaks
from both NPC samples needed to overlap with ATAC-Seq peak
from both control lines.

Similarly, published β-catenin ChIPSeq from hESCs (31) were
obtained from GEO and overlapped with control NPC ATAC-Seq
data. The ATAC-Seq confirmed BRN2 and β-catenin ChIPSeq peaks
were annotated using HOMER (58).

Published HiC data from human NPCs were obtained (59). Both
sides of significantly associated HiC intervals were overlapped
with selected genomic variations using BedTools.
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Supplementary Material is available at HMG online.
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