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Abstract

Over the past 30 years, magnetic resonance imaging has become a ubiquitous tool for accurately 

visualizing the change and development of the brain’s subcortical structures (e.g., hippocampus). 

Although subcortical structures act as information hubs of the nervous system, their quantification 

is still in its infancy due to many challenges in shape extraction, representation, and modeling. 

Here, we develop a simple and efficient framework of longitudinal elastic shape analysis (LESA) 

for subcortical structures. Integrating ideas from elastic shape analysis of static surfaces and 

statistical modeling of sparse longitudinal data, LESA provides a set of tools for systematically 

quantifying changes of longitudinal subcortical surface shapes from raw structure MRI data. The 

key novelties of LESA include: (i) it can efficiently represent complex subcortical structures using 

a small number of basis functions and (ii) it can accurately delineate the spatiotemporal shape 

changes of the human subcortical structures. We applied LESA to analyze three longitudinal 

neuroimaging data sets and showcase its wide applications in estimating continuous shape 

trajectories, building life-span growth patterns, and comparing shape differences among different 

groups. In particular, with the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, we 

found that the Alzheimer’s Disease (AD) can significantly speed the shape change of ventricle and 

hippocampus from 60 to 75 years old compared with normal aging.
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1 Introduction

The present study is motivated by using magnetic resonance imaging (MRI) data in 

longitudinal neuroimaging studies, such as the baby connectome project (Howell et al., 

2019) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Weiner et al., 2017), 

to accurately delineate the change and development of the brain subcortical structures (e.g., 

hippocampus) across time and/or groups. Subcortical structures include the diencephalon, 

pituitary gland, limbic structures and the basal ganglia, forming a group of diverse neural 

formations deep within the brain. These structures are not only involved in complex 

activities, such as memory, emotion, pleasure and hormone production, but also act as 

information hubs of the nervous system since they relay and modulate information passing 

to different areas of the brain. As an illustration, Figure 1 shows two extracted subcortical 

regions, lateral ventricle and hippocampus, from one randomly selected ADNI subject 

across four time points. After segmenting lateral ventricle and hippocampus across subjects, 

one may be interested in investigating the quantitative changes of their volumes, three 

dimensional (3D) surface shapes, and surface areas over time and the effect of some 

predictors of interest (e.g., disease status) on the shape change. The primary goal of this 

paper is to develop advanced image processing and statistical tools for characterizing the 

dynamic change of shapes of subcortical brain regions in the longitudinal setting.

Compared with cross-sectional shape analysis (Styner et al., 2006; Qiu and Miller, 2008; 

Kurtek et al., 2010), a distinctive feature of longitudinal shape data is that it has a 

dense spatial dimension, but a sparse temporal dimension (Hyun et al., 2016). Imaging 

measurements of the same individual often exhibit positive correlation temporally and the 

strength of the temporal correlation decreases with the time separation. Moreover, due to the 

inherent biological structure of the human brain, neuroimaging data are spatially correlated 

in nature and contain spatially contiguous regions. Efficiently dealing with such spatial 

and temporal dimensions raises at least three challenges. First, since each subject is only 

measured at a few time points in a typical longitudinal neuroimaging study, it is difficult 

to accurately reconstruct the longitudinal profile of subcortical structures at the individual 

level. Second, most shape representations are in nonlinear manifolds (or rather than their 

quotient spaces), ruling out the direct application of standard longitudinal data models 

developed for Euclidean data. Third, the variability in individual growth patterns across 

subjects is subtle and can be easily overwhelmed by measurement and preprocessing errors.

There are three major types of shape analysis methods in the literature depending on how 

shapes are represented. The first type of methods uses a set of pre-determined shape features 

to quantify shape difference (Morra et al., 2009; Thompson et al., 2004; Madsen et al., 2015; 

Wang et al., 2010; Shi et al., 2015). Some examples include radiomics (van Timmeren et 

al., 2020) and topological data analysis (Amézquita et al., 2020). A potential issue is that 
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such shape feature vectors only represent partial information about the original structures 

and thus, it is difficult to map them back to their corresponding shapes. The second type 

of methods is based on the large deformation diffeomorphic metric mapping (LDDMM) 

technique (Miller et al., 2002, 2006), which has been applied to longitudinal shapes (Tang et 

al., 2015; Tward et al., 2017; Lee et al., 2020). In LDDMM, a diffeomorphism as a smooth 

and bijective infinite-dimensional transformation with an inverse is used to map one shape to 

another and the size of the diffeomorphism provides a metric, called diffeomorphometry, to 

quantify shape difference. Such diffeomorphometry is more natural for quantifying pairwise 

shape changes than modeling the longitudinal shape trajectories (Tang et al., 2015). The 

third one is based on recent developments of longitudinal data modeling on manifolds 

(Muralidharan and Fletcher, 2012; Zhang et al., 2018a,b; Dai et al., 2018, 2020). However, 

since these methods were developed for relatively simple Riemannian manifolds, such as S2, 

it is nontrivial to extend them to the shape space of surfaces. Therefore, one urgently needs a 

computationally simple but statistically powerful framework for the analysis of longitudinal 

subcortical shapes.

This paper aims to develop a Longitudinal Elastic Shape Analysis (LESA) framework. 

Our LESA can efficiently extract and represent shape data from raw MRIs, while 

addressing the aforementioned statistical challenges in longitudinal shape analysis. We 

make three important contributions. First, we use a single parameterization-invariant, 

elastic Riemannian metric to minimize registration variability, while accounting for large 

shape variability. In contrast, most shape analysis methods use different metrics (or 

cost functions) for registration and comparisons (Pizer et al., 2003; Zhao et al., 2014). 

Second, the use of the elastic Riemannian metric leads to an effective low-dimension 

Euclidean representation of subcortical shape through using principal component analysis 

(PCA) in tangent spaces of the shape space. Our numerical data analyses demonstrate 

that the shape PCA in LESA has better representation power than popular approaches 

based on spherical harmonics representation (Shen et al., 2009) and sampling points on 

surfaces (Styner et al., 2006). Moreover, trajectories of longitudinal shapes reduce to 

those of scalar numbers in Euclidean space, facilitating the use of advanced statistical 

methods for studying longitudinal shapes (Yao et al., 2005; Wood, 2012; Fan and Gijbels, 

2018). Our LESA integrates the developmental patterns of all subjects together, so it 

avoids large estimation errors caused by the standard two-stage approaches, including the 

estimation of individual temporal trajectories of shapes and the integration of all estimated 

shape trajectories (Singh et al., 2015; Fletcher, 2013). Third, the analysis examples and 

code for LESA along with its documentation are freely accessible from our websites at 

https://wuyx5.github.io/LESA/ and https://github.com/BIG-S2/Longitudinal-Elastic-Shape-

Analysis-of-Brain-Subcortical-Structures.

The remainder of this paper is structured as follows. Section 2 introduces three motivating 

data sets and their related scientific questions. Section 3 presents all major components of 

the LESA framework. Section 4 presents the data analysis results for the three motivating 

data sets. Section 5 concludes the paper with some discussions.
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2 Motivating Data Sets and Scientific Questions

Understanding the growth pattern of subcortical structures and the effects of disease on 

such pattern is extremely important for aging and neuropsychiatric and neurodegenerative 

disorders. We consider MRIs obtained from three different longitudinal neuroimaging 

studies: the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Petersen et al., 2010; 

Weiner et al., 2013; Basaia et al., 2019), the Human Connectome Project (Glasser et al., 

2016), and the OpenPain (Vachon-Presseau et al., 2016).

ADNI data set:

We extracted the MRI data set from the ADNI database (adni.loni.usc.edu). The initial goal 

of ADNI was to test whether MRI, positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The 

ADNI has four phases, including ADNI, ADNI-GO, ADNI2, and ADNI3, among which 

all subjects in ADNI-GO, ADNI2, and ADNI3 were scanned on 3T scanners. We included 

subjects with T1 MRI images in ADNI-GO and ADNI2 aged between 60 and 90 years old. 

These MRI T1 images were acquired using MPRAGE sequence with a resolution around 1 

× 1 × 1.2 mm3. After the data processing (refer to Sections 3.1 and 3.2), we conducted a 

careful quality control and removed outlying surfaces. Specifically, we first computed the 

sampled Karcher mean and then calculated the geodesic distance between each surface with 

the template. Next, we used a 95% confidence interval to detect potential outlying surfaces. 

We then visualized the potential outlying surfaces to manually remove the abnormal ones. 

Finally, we obtained a data set, called ADNIGO2, containing 1045 subjects with 3443 scans 

for the left lateral ventricle and 974 subjects with 3044 scans for the left hippocampus.

Human Connectome Project (HCP) test-retest data set:

The Human Connectome Project (https://db.humanconnectome.org/) contains high-quality 

MRI data from around 1200 healthy young adults aged from 22 to 37. The T1 MRI images 

were acquired on a 3T Siemens Prisma scanner using multi-band sequence with a resolution 

of 0.7 × 0.7 × 0.7 mm3. We included all the HCP young-adult subjects. Most of them just 

have one visit, while a small subset of subjects have two visits, resulting in longitudinal 

data with two time points. Similar to the ADNIGO2 data set, we applied the same data 

processing and quality control protocol. We obtained 1113 subjects with 1158 scans for the 

left lateral ventricle and 1082 subjects with 1125 scans for the left hippocampus.

OpenPain dataset:

The OpenPain study (http://www.openpain.org/) is a five-year longitudinal study of the 

transition to chronic back pain. It contains 122 subjects aged from 21 to 69. MRI scans 

were collected across four visits (two weeks, three months, six months, one year, and 2–3 

years later). OpenPain’s T1 MRI images were acquired on a 3T Siemens Trio whole-body 

scanner using the MPRAGE sequence with a resolution of 1 × 1 × 1 mm3. Similar data 

processing and quality control were applied, and we ended up with 429 lateral ventricle and 

hippocampus surfaces from 117 subjects.
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Table 1 shows more detailed statistics on the two subcortical regions studied and Figure 2 

shows the age distribution of the three data sets. The three data sets together cover a lifespan 

age ranging from 20 to 90, allowing us to study the lifespan growing pattern during [20, 

90] for lateral ventricle and hippocampus. We are particularly interested in the following 

scientific questions:

• (Q1) How to measure developmental changes in the shape of subcortical 

regions?

• (Q2) How to quantify the effect of disease or other covariates on subcortical 

shape changes?

To address (Q1) and (Q2), we need to develop an advanced longitudinal shape analysis 

pipeline below.

3 Methodology

In this section, we formally introduce LESA. Figure 3 presents a schematic overview of 

LESA, consisting of four key components: (i) surface extraction and parameterization; (ii) 

elastic shape analysis of surfaces; (iii) Euclidean representation of surface trajectories; and 

(iv) trajectory fitting and regression analysis. In the following subsections, we introduce 

each component in details.

3.1 Subcortical Surface Extraction and Parameterization

To analyze longitudinal subcortical shapes quantitatively, LESA represents each subcortical 

shape as a parameterized function given by f :S2 ℝ3. This representation brings more 

convenience in analyzing the shape of subcortical structure, while removing shape 

confounding transformations, such as translation, rotation, and re-scaling. Our proposed 

LESA can also handle the parameterization variability, which controls the registration 

between surfaces; see Section 3.2 for details. Figure 4 illustrates our three-step pipeline to 

extract a parameterized subcortical shape. The first step is to segment the subcortical region, 

create a three-dimensional (3D) volume, and fill any holes inside the volume. This step is 

performed by using the FIRST tool inside the FMRIB Software Library (FSL) (Patenaude 

et al., 2011). It is done for each MRI T1 image at an individual level without registering 

them to a template. The second step is to build a surface mesh from the volume and use 

an area-preserving, distortion minimizing spherical mapping (Jermyn et al., 2017) to map 

vertices on the mesh to a unit sphere for spherical parametrization. The third step is to refine 

our shape representation by improving the sample grid on S2 through using a uniformly 

sampled grid along the polar and azimuthal angles and fitting the corresponding function 

values in ℝ3. Finally, we obtain a parameterized surface as a mapping from S2 to ℝ3 as 

shown in the third column of Figure 4.

3.2 Elastic Shape Analysis of Surfaces

For a given subcortical region, we observe longitudinal surface data fij for subject i at time 

point (or age) tij for i = 1, …, n and j = 1,…, mi. We use an elastic Riemannian metric 

to compare all surfaces {fij} under a Riemannian framework, called elastic shape analysis. 
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Such elastic shape analysis refers to a set of comparison methods of shapes of surfaces in 

a manner that is invariant to rigid motions, global scaling, and re-parameterization. These 

methods solve for dense, optimal registrations of points across surfaces, while comparing 

their shapes and not as a pre-processing step. Therefore, the registered surfaces reserve the 

shape heterogeneity, but they minimize the cross-sectional variance. Examples of elastic 

shape analysis of 3D objects include Younes (2010) and Bauer and Bruveris (2011). In 

this paper, we take the approach introduced in Jermyn et al. (2012) that uses a specific 

square-root representation to transform complicated, but important invariant Riemannian 

metrics into standard Euclidean metrics.

Let ℱ be the set of surfaces consisting of all smoothed maps f :S2 ℝ3 with a finite L2

norm, and Γ be the set of all orientation-preserving diffeomorphisms of S2. For any surface f 
∈ ℱ and γ ∈ Г, the composition f ° γ is simply a re-parameterization of f and has the same 

shape as f. We consider any two surfaces, f1 and f2 such that f1(s) is registered to f2(s) for all 

s ∈ S2. If we re-parameterize f2 by a γ ∈ Г, then f1(s) is now registered to f2(γ (s)).

Thus, γ here controls the correspondence or registration among points between surfaces. 

In order to compare shapes of surfaces, we need a metric that can invariantly compare 

surfaces with arbitrary reparameterizations, motivating the following normal vector field 

representation of surfaces.

For s ∈ S2, the vector  nf(s) = ∂f
∂u (s) × ∂f

∂v (s) denotes the normal to f at the point f(s), where 

(u, v) ≡ s are the local coordinates on S2. Then, the square-root normal field (SRNF) of f is 

defined to be the normal vector field q:S2 ℝ3 by q(s) = nf(s)/ nf(s) , where |·| denotes the 

vector norm. As described in Jermyn et al. (2012), the L2-metric under SRNF representation 

has some critical invariant properties and can be used to compare shapes of surfaces. The 

essential advantage of using such representation is that it is easy to remove shape-preserving 

transformations (reparameterizations) from this representation. The SRNF of a surface is 

already invariant to its translation. Scaling can be separated by re-scaling all surfaces to have 

unit area: f(s) = f(s)/ αf, where αf = ∫S2 nf(s) ds is the surface area of f. However, the size of 

subcortical regions is an important feature, so it will be preserved and analyzed separately.

After appropriately removing scaling and translation, we handle rotation and re-

parameterization as follows. Let SO(3) be the rotation group (the set of all 3 × 3 

rotation matrices). Applying a rotation O ∈ SO(3) and a re-parametrization γ ∈ Г to a 

surface f is given by O (f ° γ). Thus, the SRNF representation of O (f ° γ) becomes 

O q ⋆ γ ≡ O Jγ q ∘ γ , where Jγ is the determinant of the Jacobian of γ. The removal of 

rotation and re-parameterization leads to the following registration problem:

O*, γ* = arg min
O ∈ SO(3), γ ∈ Γ

q1 − O q2 ⋆ γ , (1)

where q1 and q2 are the SRNFs of normalized and centered f1 and f2, respectively. The 

optimal O* is solved by using Procrustes Analysis, and the optimal γ* is solved by using a 

gradient-based optimization over Γ (Jermyn et al., 2012; Kurtek et al., 2010). The minimum 
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value of the objective function, call it ds, forms the elastic shape metric between f1 and f2, 

and γ* represents the optimal registration of points across the two surfaces.

3.3 PCA-based Dimension Reduction

The goal of this step is to jointly align all surfaces and then perform principal component 

analysis (PCA) to obtain their finite-dimensional representations. It allows us to transform 

the complex shape trajectory into a trajectory in ℝr, leading to a simple downstream 

analysis.

Let {fij} be a set of normalized surfaces (after removing translation and scaling). The group 

alignment of {fij} involves (i) the computation of a template shape and (ii) the pair-wise 

alignment of every fij to the template. Specifically, we use the Karcher mean under our 

elastic shape metric as the template, which is defined as fμ = arg minf∑f = 1
n ∑j = 1

mi ds f, fij
2, 

where ds(·,·) denotes the shape metric. We approximate the optimum using an iterative 

approach. In each iteration, we register the given surfaces to the current estimate of the 

mean, and then we update this estimate by a mean of the current registered shapes. In the 

process of calculating Karcher mean, we also have all fijs aligned to the Karcher mean. 

Denote the aligned surface as fij
*, and fij

* = O* fij ∘ γ* , where (O*, γ*) = argminO ∈SO (3),γ∈Г 

∥ qμ − O (qij
⋆ γ) ∥, in which qμ is the SRNF of fμ.

With the Karcher mean fμ and aligned shapes fij
*, we perform dimension reduction in 

the tangent space at fμ. Specifically, we compute the shooting vectors or deformations, 

that take the mean shape fμ to individual surfaces fij
*s as follows. Although there is an 

elaborate procedure for computing these deformations using the geometry of the shape 

space as described in Kurtek et al. (2010), we approximate these deformations by taking 

simple differences according to vij = fij
* − fμ for simplicity. This Euclidean metric is different 

from the L2 metric in (1) used for aligning surface shapes. The metric in (1) provides 

optimal registrations between surfaces, but the subsequent analysis can get computationally 

expensive. If the underlying variability is small, the results from the two approaches are not 

that different, motivating us to use the simple Euclidean metric for downstream analyses. 

Next, we use the Gram-Schmidt procedure to generate an orthogonal basis for the set {vij}. 

Let vk
′  be the new orthogonal basis resulting from the Gram-Schmidt process. Thus, each 

original shooting vector vij can be projected onto the basis vk
′  and is represented as a vector 

of coefficients cij with its k-th element cijk = vij, vk
′ . The original aligned surface fij

* can be 

recovered by fij
* = fμ + ∑k = 1cijkvk

′ . In this step, there is no loss of information since vk
′  is 

just a new orthogonal basis for the subspace spanned by the shooting vectors {vij} at the 

tangent space of fμ.

These coefficients {cij} denote Euclidean representations of original shapes, and we 

perform PCA in the coefficient space. We calculate the sample covariance matrix as 

K = ∑i = 1
n ∑j = 1

mi cijcij
T / ∑i = 1

n mi − 1  and its spectral decomposition k = U ⋀ U T, where ⋀ = 

diag(λ1, λ2, ⋯) is a diagonal matrix formed from the eigenvalues of k and the columns of U 
form the eigenvectors of k. Let uj be the j-th column of U corresponding to the j-th largest 

eigenvalue of k. Thus, the Euclidean representation of fij
* can now be approximated using the 
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projection: cij = Ur
Tcij, where Ur = [u1, …, ur] is the first r columns of U, and cij ∈ ℝr. The k – 

th element in cij is denoted as cijk, representing the k – th principal component (PC) score for 

the shape surface fij
*, and its corresponding PC direction is given as vk = ∑i = 1ukiv′i, where 

uki is the i – th elements in uk.

Figure 5 (a) shows the Karcher mean of all 3443 left ventricles in the ADNIGO2 dataset 

discussed in Section 2. Figure 5 (b) shows the cumulative percentage of variance explained 

by the number of principal components. As shown here, the use of 32 PCs can represent 

the 95% variation of all surfaces. Figure 5 (c) shows the first PC direction in the shape 

space by reconstructing the principal geodesic as fμ + t λ1 * PC1, where PC1 represents the 

first principal direction, i.e., v1. The PC1 mainly describes the shape change of anterior and 

posterior ends of the ventricle. In the following ADNI data analysis, significant differences 

can be observed in these regions between normal controls and AD people. We then bring the 

temporal labels back (the time of each observation) and plot the area trajectories for 1045 

subjects in Figure 5 (d) and PC1 score trajectories in Figure 5 (e).

3.4 Dense Trajectory Fitting and Longitudinal Data Analysis

The goal of this step is to estimate continuous trajectories of shapes for all subjects and 

conduct longitudinal data analysis based on the outputs of Sections 3.1–3.3, including a 

surface area trajectory αi1, …, αimi  and PC score trajectories ci1, …, cimi  for each subcortial 

region from subject i. There are two challenges. The first challenge is that we only have 

sparse observations per subject in longitudinal neuroimaging studies, i.e., each mi is a small 

integer. The second challenge is the non-uniform spacing of time points, i.e., the surfaces are 

observed at different times for different subjects. Due to these challenges, the independent 

fitting of sparse longitudinal points to trajectories does not work (James et al., 2000).

We develop two approaches for estimating continuous curves by borrowing information 

from all trajectories in the data set. The first approach is a semi-parametric mixed-effects 

model and the second approach is the functional data analysis of sparse longitudinal data.

Mixed Effects Model.—We first use a semi-parametric mixed effects model to model the 

k-th PC (or area) trajectory as follows:

ci ⋅ k(t) = μk + ϕk(t) + P (t)Tηi + ϵi(t)   for   i = 1, …, n, (2)

where k is the PC index, ci ⋅ k tij = cijk, ϕk(t) is an unknown fixed function of t, P(t) represents 

the polynomial vector (1, t, ⋯ tp)T, and ϵi(t) is a random noise process with mean zero and 

variance σ2. Moreover, ηi is a (p + 1) × 1 vector of random effects. We approximate the 

fixed effect function ϕk(t) by using penalized regression spline. The covariance component 

associated with ηi are estimated using restricted maximum likelihood. Moreover, the fixed 

effect μk + ϕk(t) models the mean trajectory for the population and the random effects 

P(t)T ηi allows for individual variation. The Akaike information criterion is used to select 

the number of spline basis functions (i.e., p). To fit model (2), we use the gamm function 

provided in publicly available package mgcv (Wood, 2012).
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The proposed mixed-effects model has many advantages when compared with an 

independent fit of each trajectory. The model estimates the continuous trajectory ci ⋅ k t
using all observed data rather than just those from the subject i. Therefore, when there 

is insufficient data for subject i, we can borrow information from all other subjects and 

still have a reasonable estimate at the individual level. From a theoretical perspective, the 

maximum likelihood method used to estimate unknown parameters in the model allows 

different weights to different observations, resulting in estimators with asymptotic optimality 

properties.

To estimate the covariance component for ηi, we must estimate (p + 1)(p + 2) / 2 different 

parameters. Given the sparse data (sometimes, we only have one to two observations for 

some individuals), these estimates can be highly variable, and the estimation algorithm 

may be trapped in local maxima. A possible solution is to employ a more adaptive 

and representative basis to fit each trajectory. This motivates the use of functional 

principal component analysis (fPCA) and principal components analysis through conditional 

expectation (PACE) (Yao et al., 2005).

PACE.—The PACE model assumes

ci ⋅ k(t) = μk(t) + ∑
p = 1

∞
ξikpϕp(t) + ϵi(t), (3)

where μk(t) describes the population mean for the k-th PC trajectory, ϵi(t) is random 

noise with mean zero and variance σ2, and ∑p = 1
∞ ξikpϕp(t) models the individual trajectory’s 

deviance from the population mean. Moreover, {ϕp(t)} is the set of basis functions, {ξikp} is 

the vector of corresponding coefficients, and τi ⋅ k = μk + ∑p = 1
∞ ξikpϕp denotes the unobserved 

true k-th PC score trajectory for subject i. The goal of PACE is to estimate τi · k.

Assuming that {τi · k} for i = 1,…, n are realizations of a stochastic process with the mean 

function μk and covariance function Ck(·,·). Let Ck t1, t2 = ∑p = 1
∞ ρpϕp t1 ϕp t2  be the eigen-

decomposition of Ck(·,·). By the Karhunen-Loéve theorem, with probability one we have 

τi ⋅ k(t) = μk(t) + ∑p = 1
∞ ξipϕp(t), indicating that any realization of this stochastic process can be 

represented as a linear combination of {ϕp(·)} and coefficients. The basis {ϕp(·)} derived 

from the eigen-decomposition of Ck(·,·) also facilitates a parsimonious representation of 

τi·k using the first P basis functions (eigenfunctions) in terms of minimum expected mean 

integrated squared error. That is, if ep p = 1
∞  is a complete orthogonal basis system for 

representing any τi·k, then Ei τi ⋅ k − μk − ∑p = 1
P τi ⋅ k − μk, ep ep

2
 is minimized by taking ep 

= ϕp for p = 1, 2,…, P. PACE utilizes this important theoretical result by estimating 

an empirical Ck from the given sparse data and utilizing its first P eigenfunctions ϕp to 

replace the ϕp in (3). Both the empirical population mean μk and covariance function 

Ck are estimated using local linear smoothers (Yao et al., 2005; Fan and Gijbels, 2018). 

To obtain a good estimate of {ξikp}, PACE assumes that ξikp and ϵi(t) are jointly 

Gaussian. Let cik = ci1k, …, cimik
T , μik = μk t1 , …, μk tmi

T , and ϕip = ϕp t1 , ⋯, ϕp tmi
T . Under 
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Gaussian assumptions, the best estimate of ξikp is given by the conditional expectation 

ξ ikp = E ξikp ∣ cik = ρpϕip
T Σcik

−1 cik − μik , where the (a, b)-th element of Σcik
−1 is Ck ta, tb + σ2δab with 

δab = 1 if a = b and 0 if a ≠ b. The final estimated trajectory for the k-th PC score for subject 

i is given as τ i ⋅ k(t) = μk(t) + ∑p = 1
P ξ ikpϕp(t). The P is selected using the cross-validation 

method introduced in Yao et al. (2005). Note that ξ ikp is the best estimator under Gaussian 

assumptions and best linear prediction of ξikp given the information from the i-th subject 

irrespective of the Gaussian assumptions.

Using either the mixed effects model or the PACE model, we can estimate smooth and 

continuous shape trajectories fi
*(t) = αi(t) * fμ + ∑k = 1

r τ i ⋅ k(t)vk , where αi(t) and τ i ⋅ k are, 

respectively, the recovered surface area trajectory and the k-th shape PC trajectory for the 

i-th subject.

Longitudinal Data Analysis.—Assuming that there is a set of covariates xi ∈ ℝK from 

each subject (e.g., gender and disease status), we are interested in learning the effects of xi 

on longitudinal surface trajectories. We refer to this analysis as shape-trajectory-on-scalar 

regression. Let fi
*(t, s), in which t indexes the time and s indexes the location on the surface, 

e.g., s ∈ S2, be the shape trajectory. It is assumed that the mean of fi
*(t, s) is a function of 

scalar predictive variables, given by

E fi
*(t, s) ∣ xi = μ(t, s) + ∑

j = 1

K
xijψj(t, s), (4)

where μ(t,·) is a 3D shape and ∑j = 1
K xijψj(t, ⋅ ) deforms μ(t,·) to the mean of fi

*(t, ⋅ ). With 

PACE, each sparsely observed shape trajectory fi
* t1, ⋅ , …, fi

* tmi, ⋅  is represented as a rP 

× 1 vector yi = ξ i11, …, ξ i1P, ⋯, ξ ir1, …, ξ irP
T ∈ ℝrP , where ξ ik1, …, ξ ikP

T  comes from the k-th 

PC score trajectory after applying PACE (or mixed effects model). The elements in yi are 

obtained by two layers of PC analysis, and therefore, they are independent of each other. 

This nice property significantly reduces the complexity of our regression problem in (4) - we 

can conduct a simple regression for each element in yi, separately. With the fitted models, 

for a given new xi, we can easily predict yi, the corresponding PC score trajectories, and the 

shape trajectory.

4 Longitudinal Shape Data Analysis Results

In this section, we carry out a comprehensive data analysis of the three data sets introduced 

in Section 2 in order to address (Q1) and (Q2).

4.1 Efficient Representation of Surface Shapes in LESA

We compare LESA with spherical harmonic-based point distribution model (SPHARM-

PDM) (Styner et al., 2006) in terms of terseness and efficiency of representation. The 

SPHARM-PDM is a widespread technique in medical shape analysis. The efficiency 

of a representation is quantified using the number of PCA coefficients needed for 
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representing shapes up to a fixed reconstruction error. Let f be a surface and f r

be the reconstructed surfaces with r PCs. We also define the reconstruction error as 

f − fr = ∫s
2 f(s) − f r(s) 2ds. For a fix r, the method that leads to smaller reconstruction 

error is more efficient in shape representation. Figure 6 presents the obtained results 

for left lateral ventricle surfaces in ADNIGO2 dataset. Similar results are found for 

other subcortical region and data sets. Figure 6 (a) presents the reconstruction errors of 

all individual surfaces versus r for the SRNF representation in LESA (blue lines) and 

SPHARM-PDM (red lines). Figure 6 (b) shows the total distances of all reconstructed 

surfaces to their original surfaces under different r, showing that SRNF outperforms 

SPHARM-PDM in representation efficiency. Figure 6 (c) quantifies this out-performance 

by the percentage of improvement, indicating that our SRNF framework has much better 

performance in the sparse cases when only a few PC scores are used to represent the shape.

4.2 From Discrete to Continuous – Fitting Shape Trajectory

We compare PACE with the mixed-effects model (denoted as MGCV from here) in LESA 

by using them to fit continuous shape trajectories based on the observed discrete data for 

the left ventricle and hippocampus in ADNIGO2. Figure 7 shows the observed sparse data 

and the fitted smooth trajectories (with PACE and MGCV) for the surface area (the first 

row) and PC1 score (the second row). The solid lines in different colors present individual 

trajectories, whereas the black dashed lines present the mean trajectories. We observe 

that the mean trajectories fitted by PACE and MGCV follow very similar trajectories, 

but some individual trajectories fitted by MGCV diverge from the range of observed data 

significantly, which is probably caused by the high variability of the estimated parameters 

in MGCV. The third row of Figure 7 illustrates the surface trajectories reconstructed 

based on fi(t) = αi(t) * fμ + ∑k = 1
r τ i ⋅ k(t)vk , with t ∈ [60, 90] and r = 32 for left ventricle 

and 64 for left hippocampus, respectively. The surface trajectories built under PACE and 

MGCV have some agreements with the aging process. Specifically, the left ventricle surface 

tends to enlarge and its shape mainly deforms at the anterior and posterior ends. The left 

hippocampus surface tends to shrink and its shape mostly changes in both anterior and 

posterior ends.

Figure 8 presents trajectory fitting results of three randomly selected individual subjects. 

Inspecting Figure 8 (a) and (b) reveals that both approaches can capture the patterns of 

original trajectories and make reasonable predictions. The reconstructed dense individual 

surface trajectories in panel (c) are also consistent with the raw observations.

Let MSPEα = n−1∑i = 1
n mi

−1∑j = 1
mi αi tij − αi tij

2 be the mean square-root prediction 

error (MSPE) of surface area trajectories. Moreover, we also define 

MSPEτk = n−1∑i = 1
n mi

−1∑j = 1
mi τ i ⋅ k tij − ci ⋅ k tij

2 to be the MSPE of PC score trajectories. 

To compare trajectory fitting methods, we compute MSPEα and MSPESτk, in which we set n 

= 1045 for the left ventricle and n = 974 for the left hippocampus. Table 2 shows that results 

are consistent across the two brain regions: PACE results in better prediction accuracy on the 
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area and PC trajectories. Therefore, in the following data analysis, we will utilize only the 

PACE method for trajectory fitting.

4.3 Life-span Shape Change

To address (Q1) for the left ventricle and left hippocampus, we integrate the ADNIGO2, 

HCP test-retest, and the OpenPain datasets into a single data set and then apply LESA to 

it. Figure 9 shows the observed sparse area trajectories (from all three data sets used in 

this paper) and their mean trajectories fitted by PACE. The area of the left ventricle keeps 

increasing after the age of approximately 30 years old. The speed of change is relatively 

slow before 60 years old, but after 60 years old, the enlargement of the ventricle speeds up. 

In contrast, the size of the hippocampus reduces with age, while the speed of the shrinking 

increases after around 60 years old. Figure 9 (c) shows the mean surface trajectories for the 

two brain regions from the age of 22 to 90 years old. In addition to size change, we observe 

the changes in shapes due to aging. Specifically, for the left ventricle, the anterior end 

becomes smoother and fatter with aging, while the posterior end enlarges the most among 

the whole surface. The whole left hippocampus surface gets thinner with aging, while the 

anterior and posterior ends atrophy the most.

4.4 Longitudinal Analysis of Shape Trajectories

LESA facilitates simple but effective longitudinal analysis of surface trajectories. We use 

LESA to analyze the ADNIGO2 data set in order to address questions similar to the Q2 

through (i) identifying group differences in longitudinal shape data and (ii) quantifying the 

contributions of the covariate(s) to the longitudinal shape change.

Group Difference Analysis: In the ADNIGO2 data set, we have three diagnosis groups: 

AD, mild cognitive impairment (MCI), and normal control (NC). To delineate the group 

difference, we computed mean trajectories for each of the three groups. Figure 10 (i) and 

(ii) presents the mean trajectories of the three groups for the left ventricle and those for the 

left hippocampus. Within each panel, panel (a) shows the surface area trajectory, panel (b) 

shows the area changing rate, defined as 100 × {α(ti +1) − α(ti)} / α(ti), as a description of 

shape deforming speed with positive numbers representing enlarging and negative numbers 

representing shrinking, and panel (c) shows the reconstructed shape trajectory. The shape 

trajectory is recovered as fμ + ∑k = 1
r τ i ⋅ k(t)vk , which is different from the previous surface 

trajectory that incorporates the area information. From Figure 10 (i), we observe the 

following patterns for the left ventricle:

• The AD group has the largest surface area from 60 to 90 years old, followed by 

the MCI and NC groups.

• The surface area increases with age for all groups, but at different speeds (see 

Figure 10 panel (b)). Between 60 and 75 years old, the AD group has the largest 

enlarging speed. The MCI group also enlarges faster than the NC group, but is 

slower than the AD group. The enlarging speeds of different groups converge at 

around the age of 75 years old. After 85 years old, due to smaller sample sizes 

and potential sampling bias, our estimation might have larger variation and so we 

do not try to interpret it to avoid over-interpretation.
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• Most of the shape differences between the AD and NC groups are visible in the 

anterior and posterior ends. The AD group has the fattest ends, and the NC group 

has a similar trend in turning fatter with aging but at a much slower pace than the 

AD group.

From Fig. 10 (ii), for the left hippocampus, we observe the following patterns:

• The AD group has the smallest mean surface area all the time from 60 to 90 

years old, followed by the MCI group;

• The surface area tends to shrink with age in most of the time for all three groups. 

Between 65 and 80 years old, the AD group shrinks the fastest. The shrinkage 

speeds of different groups converge at around 82 years old. Given the significant 

acceleration of the AD group’s shrinkage speed from 60 to around 70 years old, 

it seems that the hippocampal atrophy happens much more rapidly for the AD 

group.

• The atrophy or shrinking happens mainly at the posterior end for all three groups. 

The posterior end contains a mixture of several essential sub-fields, including 

CA1, CA1, CA2, and CA4 (DeKraker et al., 2020). The AD group has the 

sharpest posterior end (severest atrophies), and the NC group deforms the least 

with aging.

Overall, normal aging, MCI, and AD have a similar effect on the subcortical structure. At 60 

years old, the AD group already has a significant shape difference in hippocampi compared 

with normal controls. However, most subjects were diagnosed with AD after 60 years old, 

indicating that subcortical brain atrophy may happen long before the clinical diagnosis 

(Coupé et al., 2019).

Shape-trajectory-on-scalar Regression Analysis: We are interested in 

understanding the effects of some predictors of interest on the variability in subcortical 

shape trajectories by using the ADNIGO2 data set for both the left ventricle and left 

hippocampus. We included gender, marriage status, education years, diagnostic status (NC, 

MCI, AD), and ApoE4 type (type 0: e3/e3, type 1: e3/e4, type 2: e4/e4) as covariates of 

interest. The whole data were split into training (80%) and testing (20%). The training data 

were used to fit continuous surface trajectories and perform the shape-trajectory-on-scalar 

regression. We then conducted two sets of analyses: (i) shape prediction accuracy evaluation 

using the test data; and (ii) controlling the other covariates, only change one covariate to 

explore its effect on the surface trajectory.

Figure 11 shows the result for the first set of analyses. After training the regression model, 

we used the covariates in the testing data to predict surface trajectories. To evaluate 

the prediction accuracy, we defined a metric named average prediction error (APE): 

APEi = 1/mi ∑j = 1
mi fi tij − f i tij , where fi(tij) is the observed surface at time point tij 

for subject i, and f i tij  is the predicted surface using the regression model. Note that the 

regression model only predicts ξijk, we need to use these ξijks’ to recover the PC score 

trajectories, and then the surface trajectories. We compared the regression model with a 

baseline model that uses the mean trajectory fμ to predict every subject’s surface trajectory 
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f i. Figure 11 (a) presents the percentage of APE improvement compared with the baseline 

model. Figure 11 (b) presents some examples of fi(tij) (original surface), f i tij  (reconstructed 

surface based on the regression model), and fμ(tij) (mean surface). The results clearly 

indicate that the regression model explains part of the variation in the surface trajectories 

and gives better prediction than the baseline model.

Next, we explore how some covariates of interest would affect the shape trajectory of either 

the left ventricle or hippocampus. Figure 12 (i) presents some results for the left ventricle. 

In the sub-panel (a), we show the predicted area trajectories and PC1 score trajectories by 

letting gender = female (0), marriage status = married (1), education years = 16, and ApoE 

type = 1 (e3/e4), and varying the diagnosis status to be AD, MCI, and NC. Comparing the 

AD group with the MCI and NC groups, we can see that in the AD group the left ventricle 

tends to be larger and moves along the positive direction of the first shape PC. A similar 

analysis is performed in the sub-panel (b) by varying the ApoE4 types. We observe that type 

2 (with two e4 alleles) has a pretty different effect than types 0 and 1. Specifically, subjects 

having two e4 alleles tend to have larger left ventricle and more deformation along the first 

shape PC direction. The sub-panel (c) shows the reconstructed shape trajectories for varying 

the diagnosis status to be AD, MCI, and NC. We observe that the AD status has more effect 

on the left ventricle shape trajectory compared with the MCI, and the AD is making the 

ventricle fatter. Figure 5 (c) presents how an increasing PC1 score changes the ventricle 

shape.

Figure 12 (ii) shows a similar set of analyses for the left hippocampus. The sub-panel (a) 

shows how diagnosis status changes the predicted area and PC1 score trajectories. We see 

that AD makes the hippocampus smaller and changes the shape mainly along the positive 

PC1 direction. The sub-panel (b) shows how ApoE4 type changes the predicted area and 

PC1 score trajectories. We observe that the double e4 alleles have a shrinking effect on the 

hippocampus’s size and change the shape along the positive PC1 direction. Existing studies 

also found that double e4 alleles have significant effect to the volume and shape change in 

aging (Striepens et al., 2011; O’Dwyer et al., 2012; Li et al., 2016). The sub-panel (c) shows 

the predicted shape trajectories by varying the diagnosis status, and we see that compared 

with NC, the AD status contributes to the shape change at the posterior end. Moreover, the 

difference between NC and MCI is much less the difference between NC and AD.

5 Discussions

This paper introduces a comprehensive LESA framework for statistically analyzing 

longitudinal brain subcortical regions. LESA contains five major components, including 

subcortical surface extraction, elastic shape analysis, principal components analysis (PCA) 

of shapes, continuous shape trajectory fitting, and shape-trajectory-on-scalar regression. We 

then applied LESA to study the ADNIGO2, HCP, and OpenPain data sets with subjects 

ranging from 20 to 90 years old and demonstrated several key properties and applications of 

LESA. First, we illustrated that the elastic shape analysis and PCA in LESA are efficient in 

creating low-dimensional representations of each shape surface, making statistical modeling 

much more straightforward. Next, we solved the challenge of estimating a continuous shape 

trajectory from super sparse longitudinal observations using two advanced functional data 
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analysis techniques - mixed-effects model and PACE. The PACE outperforms the mixed-

effects model in the three data sets due to its flexibility and parsimonious representation of 

the longitudinal data. Another advantage of LESA is that each shape trajectory is eventually 

represented as a low-dimensional vector with uncorrelated elements (under the PACE 

model). Consequently, a simple shape-trajectory-on-scalar regression can be developed and 

applied to study the shape change in ADNI data. The results clearly show that AD has strong 

adversarial effects on the ventricle and hippocampus.

Applying LESA to the three data sets (totally, 2275 subjects and 9628 shape surfaces), 

we studied the developmental shape trajectories of left ventricle and left hippocampus 

in the life-span from 20 to 90 years old. We found that shape change (the atrophy) of 

these subcortial regions starts very early (~30 years old) and speeds up after 60 years old. 

Moreover, the AD further speeds up the atrophy compared with normal aging between 60 

and 70 years old. The use of LESA allows us to accurately identify the location of the shape 

change on the subcortical surfaces. For the left hippocampus (see Figure 10), the atrophy 

mainly happens at the posterior end, which includes several essential sub-fields, including 

CA1, CA1, CA2, and CA4 (DeKraker et al., 2020). Moreover, the regression component of 

LESA estimate the covariates’ effect to the surface trajectory. Applying LESA reveals that 

the AD status and genetic risk (two ApoE4 alleles) all contribute to more severe atrophy of 

subcortical regions in the aging process.

Although we focus the analysis results of the left ventricle and hippocampus, those for 

the right ventricle can be found in the Supplementary Materials (Supplementary Figures 

5–9). These results are similar to those of left surfaces. In conclusion, LESA is an easy but 

powerful tool for analyzing longitudinal subcortical surfaces. Implementation of LESA and 

detailed documentation can be found at https://wuyx5.github.io/LESA/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An example of three different representations of lateral ventricle and hippocampus across 

four time points for a randomly selected subject. The first row shows the repeated MRI data 

with segmented lateral ventricle and hippocampus and the second and third rows show their 

3D volumes and 3D surface shapes across time, respectively.
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Fig. 2. 
Panel (a) shows the age distributions of the ADNIGO2, HCP, and OpenPain data sets. 

Panels (b), (c), and (d) show the temporal information on scans for each subject in the HCP, 

OpenPain, and ADNIGO2 data sets, respectively.
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Fig. 3. 
A schematic overview of LESA consisting of four key components: 1. surface extraction, 2. 

elastic shape analysis of surfaces, 3. Euclidean representation of shapes, and shape trajectory 

fitting and regression analysis.
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Fig. 4. 
An illustration on how to extract a parameterized subcortical shape in LESA.
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Fig. 5. 
The PCA results of the ADNIGO2’s left ventricle surfaces: (a) the Karcher mean of all 

left ventricle surfaces; (b) the cumulative percentage of variance explained by the number 

of PCs; (c) the first dominant PC direction reconstructed as fμ + t λ1PC1, in which the five 

shapes in the front view from left to right correspond to t = {−1, −0.5, 0, 0.5,1} and the 

color denotes the relative shape change; (d) surface area trajectories, and (e) PC1 score 

trajectories.
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Fig. 6. 
Comparison of the representation efficiency of the SRNF framework in LESA to that of 

SPHARM-PDM using left lateral ventricle surfaces from ADNIGO2. (a) Individual surface 

reconstruction error versus the number of PCs. (b) Total reconstruction error of all surfaces 

versus the number of PCs, and (c) percentage of performance improvement of our SRNF 

method over the SPHARM-PDM in Styner et al. (2006).
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Fig. 7. 
Trajectory fitting results of LESA from the observed sparse data in ADNIGO2. In the first 

two rows, the first column shows observed sparse trajectories (for area and PC1 score), 

and the second and third columns show the continuous trajectories fitted by PACE and 

MGCV, respectively. In the third and fourth rows, we show the reconstructed mean surface 

trajectories fitted by PACE and MGCV, respectively, in which color indicates the shape 

deformation compared with the first shape and we use abbreviations, including A - anterior 

and P - posterior.
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Fig. 8. 
Individual surface trajectories fitted with LESA in ADNIGO2. Panels (a) and (b) show 

the raw and fitted trajectories for the surface area and PC1 score, respectively. Panel (c) 

illustrates the reconstructed surface trajectories based on the fitted surface area and PC score 

trajectories.
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Fig. 9. 
The life-span growth trajectories from 22 to 90 years old for the left ventricle and left 

hippocampus. Panels (a) and (b) show the observed sparse data and fitted mean trajectories 

(black solid line), respectively; and panel (c) shows the reconstructed life-span mean surface 

trajectories. Color on each surface indicates the surface’s deformation size compared with 

the surface at age 22 years old.
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Fig. 10. 
Comparisons of shape change patterns among AD, MCI and NC using ADNIGO2 data. 

(a) Mean surface area trajectories of the three groups (blue: AD; red: MCI; yellow: NC); 

(b) Changing rate of the area trajectories-calculated as 100* (α(ti+1) −α(ti)) / α(ti); and (c) 

reconstructed mean shape trajectories fμ + ∑k = 1
r τ i ⋅ k(t)vk . Color on the surface represents 

shape difference compared with the NC surface at the corresponding time point.
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Fig. 11. 
Evaluation of the shape-trajectory-on-scalar regression in the ADNIGO2 data. Panels (i) 

and (ii) show results for the left ventricle and the left hippocampus, respectively. Each 

sub-panel (a) shows the histogram of the percentage of improvement in prediction error 

when comparing the shape-trajectory-on-scalar regression with the baseline model. Each 

sub-panel (b) shows some examples of original sparse surface, surface reconstructed by the 

regression’s prediction, and the global mean surface. The color on the reconstructed and 

mean surfaces indicates their difference to the original surface.
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Fig. 12. 
Exploration of the covariates’ effect to the surface trajectory in the ADNIGO2 data set. 

In each sub-panel (a), we fixed gender, marriage status, education years and ApoE4 type 

and varied the diagnosis status. In each sub-panel (b), we fixed the others and varied the 

ApoE4 type. Each sub-panel (c) shows the reconstructed shape trajectory by only varying 

the diagnosis status. Color on each surface represents shape deformation compared with the 

NC surface at the same age.
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Table 1

Summary characteristics of the three data sets included in our study.

Regions Dataset Name Subject Number Scan Number Age Range (Median) (Years) Gender Ratio (M/F)

Lateral Ventricle ADNIGO2 1045 3443 [60, 90](74.5) 547/498

HCP 1113 1158 [22, 37](29) 503/610

OpenPain 117 429 (21, 69)(44.1288) 65/52

Hippocampus ADNIGO2 974 3044 [60, 90](74.2) 491/483

HCP 1082 1125 [22, 37](29) 486/596

OpenPain 117 429 (21, 69)(44.1288) 65/52
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Table 2

Mean square-root prediction errors (MSPEs) of PACE and MGCV in ADNIGO2

PACE MGCV

Area 59.7086 70.5375

PC1 0.0357 0.0424

PC2 0.0248 0.0256

PC3 0.0448 0.0526

PC4 0.0208 0.0225

PC5 0.0531 0.0580

… … …

PC Average 0.0383 0.0400

(a) Left ventricle

PACE MGCV

Area 17.7408 22.7865

PC1 0.0238 0.0239

PC2 0.0462 0.0474

PC3 0.0316 0.0383

PC4 0.0695 0.0852

PC5 0.0272 0.0293

… … …

PC Average 0.0350 0.0359

(b) Left hippocampus
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