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Abstract

Objective

We aimed to use mathematical models of SARS-COV-2 to assess the potential efficacy of

non-pharmaceutical interventions on transmission in the parcel delivery and logistics sector.

Methods

We devloped a network-based model of workplace contacts based on data and consulta-

tions from companies in the parcel delivery and logistics sectors. We used these in stochas-

tic simulations of disease transmission to predict the probability of workplace outbreaks in

this settings. Individuals in the model have different viral load trajectories based on SARS-

CoV-2 in-host dynamics, which couple to their infectiousness and test positive probability

over time, in order to determine the impact of testing and isolation measures.

Results

The baseline model (without any interventions) showed different workplace infection rates

for staff in different job roles. Based on our assumptions of contact patterns in the parcel

delivery work setting we found that when a delivery driver was the index case, on average

they infect only 0.14 other employees, while for warehouse and office workers this went up

to 0.65 and 2.24 respectively. In the LIDD setting this was predicted to be 1.40, 0.98, and

1.34 respectively. Nonetheless, the vast majority of simulations resulted in 0 secondary

cases among customers (even without contact-free delivery). Our results showed that a

combination of social distancing, office staff working from home, and fixed driver pairings
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(all interventions carried out by the companies we consulted) reduce the risk of workplace

outbreaks by 3-4 times.

Conclusion

This work suggests that, without interventions, significant transmission could have occured

in these workplaces, but that these posed minimal risk to customers. We found that identify-

ing and isolating regular close-contacts of infectious individuals (i.e. house-share, carpools,

or delivery pairs) is an efficient measure for stopping workplace outbreaks. Regular testing

can make these isolation measures even more effective but also increases the number of

staff isolating at one time. It is therefore more efficient to use these isolation measures in

addition to social distancing and contact reduction interventions, rather than instead of, as

these reduce both transmission and the number of people needing to isolate at one time.

Introduction

Demand for home-delivery services spiked globally during the COVID-19 pandemic, as peo-

ple stayed at home to reduce transmission [1]. In the UK, non-essential retail shops were

closed for much of 2020 and 2021, increasing the demand for online retail and home delivery.

Additionally, stay-at-home orders brought new demand for large items such as furniture and

white goods as many people adjusted to spending more time at home [2]. This new and dis-

placed demand has, on the whole, been successfully absorbed and managed by the delivery

and logistics sector, due in no small part to the efforts of the key workers in those sectors to

keep business moving, while adapting to a changing work environment. Meanwhile, key work-

ers in all sectors were disproportionately exposed to transmission of SARS-CoV-2 [3]. In the

delivery sector, drivers and warehouse workers were also at risk, given their exposure to a large

number of contacts, the likelihood of asymptomatic transmission in SARS-CoV-2, and the

potential economic impact of absence due to the prevalence of flexible or zero-hours contracts

in this sector. Furthermore, studies from other countries indicate that delivery drivers there

could be at much greater risk [4] than the general population, and so is a sector that requires

greater attention.

Mathematical models have been central to understanding transmission of SARS-CoV-2

and in predicting the impact of various interventions. As more data has become available,

models have been developed for a number of specific settings, including schools, hospitals, pri-

sons and workplaces [5–8], to take into account the nuances and unique features of each set-

ting. In this paper we present a model of delivery sector that has been uses to assess the impact

of various measures that some companies have taken, as well as measures that were under con-

sideration. One unique feature of these settings is the high number of brief contacts that deliv-

ery drivers have with members of the public, who themselves may otherwise have very limited

contacts. Another feature in the delivery of heavy or large items is the safety requirement for

employees to handle and deliver goods in pairs, often requiring prolonged close contact and

entry into customers’ properties. Finally, there is still the poorly understood route of fomite

transmission that has the potential to be important in this setting, due to the large volume of

packages being handled. The model we present considers all of these aspects, and where data is

unavailable or uncertain (e.g. for risk of fomite transmission), we consider a wide range of pos-

sible scenarios.

PLOS ONE Modelling SARS-CoV-2 transmission in a home-delivery workplace

PLOS ONE | https://doi.org/10.1371/journal.pone.0284805 May 5, 2023 2 / 25

simulated data presented in the paper can be

accessed at https://doi.org/10.48420/22219564

and scripts to reproduce the plots from this data at

https://doi.org/10.48420/22226266. Additionally,

the source code used to generate the data can be

found at https://doi.org/10.5281/zenodo.7712890,

with input data at https://doi.org/10.48420/

22232833. Further information regarding company

consultations and their subsequent analysis can be

found here https://doi.org/10.3389/fpubh.2022.

864506. Full transcripts of these consultations or

raw data provided by these companies (which are

not required to reproduce the results in this paper)

can not be shared due to commercial sensitivity

and to preserve the anonymity of participants, as

per the data sharing agreements and participation

consent forms in place with these participants.

Funding: This project was funded by the UK

Research and Innovation (UKRI) and National

Institute for Health Research (NIHR) COVID-19

Rapid Response call, Grant Ref: MC_PC_19083.

MvT is the Principal Investigator of the project.

CAW and SD held post-doctoral posts funded by

this grant. LP is supported by the Wellcome Trust

and the Royal Society (grant no. 202562/Z/16/Z).

IH is supported by the National Institute for Health

Research Policy Research Programme in

Operational Research (OPERA, PR-R17-0916-

21001). IH and LP are supported by The Alan

Turing Institute for Data Science and Artificial

Intelligence, EPSRC (EP/V027468/1). CAW, IH, and

LP were also supported by UKRI through the

JUNIPER modelling consortium (grant no. MR/

V038613/1). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0284805
https://doi.org/10.48420/22219564
https://doi.org/10.48420/22226266
https://doi.org/10.5281/zenodo.7712890
https://doi.org/10.48420/22232833
https://doi.org/10.48420/22232833
https://doi.org/10.3389/fpubh.2022.864506
https://doi.org/10.3389/fpubh.2022.864506


We have developed an agent-based network model with stochastic transmission. Therefore,

each realisation of the simulation represents a possible chain of transmission within a work-

place, and so conclusions can only be drawn from the aggregated results of many simulations.

There are commonalities with several models in the literature, including the network models

for COVID-19 transmission in workplaces [8]. The stochastic infection and isolation model is

similar to other agent-based and branching process models [7, 9]. The model was developed

based on a combination of epidemiological data and qualitative information gained from con-

sultations with companies in the logistics sector in the UK.

With global rollout of SARS-CoV-2 vaccines, the most severe impacts of COVID-19 on

public health to be curtailed and so have most of the restrictions and measures in place to

reduce transmission. However, containing the spread of new variants is likely to require good

surveillance testing. There has been considerable debate around the usefulness of Lateral Flow

Device (LFD) antigen tests that can be self-administered and give rapid results [10–12]. Pri-

marily, this centres around the lower sensitivity of LFD antigen tests against Polymerase Chain

Reaction (PCR) testing, particularly at low viral loads [13], and the potential impact of false

positives. However, recent data suggests that LFD antigen test specificity may be at least 99.9%

[14], suggesting that false positives will have a negligible impact. Furthermore, culturable

SARS-CoV-2 virus is only found, at most, in the first 8–10 days following symptom onset [15–

17], when viral load is higher. This suggests that lower sensitivity tests may still be useful at

detecting people when they are most infectious. However, the way tests are performed (e.g.

self-administered vs. trained tester) can have an impact on sensitivity [18], plus the method of

rollout (e.g. supervised vs. unsupervised testing) can affect the adherence to the testing policy.

The model we present accounts for these various factors.

The aim of this paper is to estimate the efficacy of different workplace interventions with a

model particularly tailored to the home-delivery sector. We considered several interventions

and scenarios based on formal consultations with company representative from this sector. A

secondary aim is to estimate the potential impact of presenteeism (working while sick) with

COVID-19 symptoms. Flexible or ‘gig’ contracts are common in the home delivery sector, as

well as the use of self-employed couriers, all of which are factors associated with increased pre-

senteeism [19], so this is an important factor to consider.

Materials and methods

The project was reviewed and approved by the University Research Ethics Committee at Uni-

versity of Manchester, Ref: 2020-9787-15953. Consent to participation was verbally obtained

before the commencement of the interviews. Written informed consent for participation was

not required for this study in accordance with the national legislation and the institutional

requirements.

Data collection and company consultations

We carried out recorded consultations via teleconference with representatives from six compa-

nies between July and August 2020 (Round 1), and May and June 2021 (Round 2), three of

these companies were interviewed in both rounds. Companies were recruited via engagement

e-mails (via University of Manchester Business Engagement Services). Companies that volun-

teered then elected representatives to participate in the studies. Participants’ contact details

were retained by the researchers for communication purposes but no other personal informa-

tion was collected or stored. Each semi-structured interview lasted 60–90 mins and was based

around a set of open-ended questions regarding how the pandemic had impacted on the oper-

ations of the business and what measures had been put in place to protect staff and customers.
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As part of these consultations we asked questions regarding the number of staff working at

typical sites and the frequency of contacts between employees and the public. Additionally,

two companies provided data on staff numbers and deliveries, which are detailed in S1.1 in S1

Text. A summary report was sent to each company for comments and corrections to verify

that we had interpreted their answers accurately, and the data correctly. Further details on the

consultations are published in [2]. Fitted data regarding the number of deliveries per day over

time from these companies is displayed in S1 Fig.

We also used data from an online contact survey aimed at delivery drivers in the UK [20],

which received 170 responses (104 of which were from the workers involved in the delivery of

small packages and/or large items). This survey was elective so was not statistically representa-

tive. The results of this survey are to be published elsewhere but a few results are utilised in this

paper. Namely, only 5.3% reported working while having symptoms of COVID-19 or with a

member of their household having a suspected or confirmed case of COVID-19. Conversely,

17.2% reported having isolated with symptoms of COVID-19 or due to a member of their

household having a suspected or confirmed case of COVID-19. This suggests approximately 1

in 4 failing to isolate for one of these reasons. For this reason we consider two pisol values (0.5

and 0.9) as ‘low’ and ‘high’ isolation rates, noting the likely caveat of reporting biases. Staff

reported large numbers of daily contacts (mean 15.0) at their place of work, which, tallying

with the results of consultations, we interpreted as a result of repeated interaction within a

work cohort (with only rare random interactions on top). Hence our assumed cohort size for

drivers of� 13.

Finally, fitted community incidence levels for March-June 2020 were used to mimic work-

place ingress rates during an active pandemic, see S2 Fig.

Workplace network model

In this section we present an overview of the model details, with further details supplied in

S1.2 in S1 Text. The model we use is a stochastic agent-based network model of disease trans-

mission. The parameters and symbols used in the following section are all described in

Table 1.

The model is parameterised to represent two archetypal delivery workplaces, a Small Parcel

Delivery Depot (SPDD) and a Large-items Delivery Depot (LIDD). These represent depots

that ship directly to customers. The SPDD is representative of a typical depot for (inter)

national couriers shipping small packages that can be handled by a single person. The LIDD

case represents a depot for logistics companies that specialise in items such as furniture and

white goods, and may also offer installation/assembly of the products as part of delivery. As

shown in Table 1, the LIDD model has fewer staff, longer delivery times (as the deliveries tend

to be more spatially separated), longer customer contact durations (because items tend to be

delivered into the home and may be assembled/installed) and thus an order of magnitude

fewer deliveries per day than the SPDD model.

The model considers contacts between all employees working in a home delivery depot (i.e.

engaged in business-to-consumer delivery or B2C) that has a warehouse and onsite offices.

The workplace is populated by 3 groups: drivers, who deliver packages from the warehouse to

customers; pickers, who transport and load packages within the warehouse; and office/admin

staff, who work in the same building but in shared offices. There exists a pool of ND drivers, NL

pickers and NO office staff available for work each day. Workforce turnover is ignored, as it is

assumed negligible over the time scales considered, however it may play a role over long time

periods.
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Employee work schedules. The model network consists of all within-workplace contacts

between employees, as well as contacts between employees due to house-sharing or carpooling,

in order to simulate workplace outbreaks in detail. Thus we assume, unless they share a house-

hold, employees only make contact with other employees if they are both at work on that day.

We use an idealised model for the work schedule, whereby the number of employees in work

depends on the day of the week, this pattern was calculated from data from two UK logistics

firms (see S1.1 in S1 Text for details). For all pickers and drivers, we randomly assign consign-

ments (i.e. deliveries/packages) for loading and delivery (as detailed in S1.4 in S1 Text). We

Table 1. Model parameters for workplace contacts and transmission. The values given are the values used unless otherwise stated for a given figure or section. The “per-

ceived uncertainty” is simply to indicate the level of confidence we have in the parameter values—Low: based on primary data or peer-reviewed sources; Moderate: based

on literature reviews, surveys, or specific consultation questions; High: assumed or extrapolated from consultation answers.

Parameter Description Value Source Perceived uncertainty

ND, NL, NO Total number of drivers, pickers, and office staff employed in the

workplace respectively.

SPDD: {50, 25, 15}

LIDD: {20, 10, 5}

Company data and

consultation

Low

TD, TL, TO Total number of driver, picker, and office staff cohorts/teams. SPDD: {3, 2, 1} LIDD:

{2, 2, 1}

Consulations and survey Moderate

nD(t), nL(t),
nO(t)

Number of drivers, pickers, and office staff working on day t
respectively.

Variable Company data and

consultation

Low

DP(t) Total number of packages delivered on day t. Variable Company data Low

pc Probability of two individuals at work having a random F2F

contact in a given day.

2/(ND + NO + NL) Consultation and survey High

ρD For contacts including drivers, pc is scaled by this factor. 0.05 Consultation Moderate

fc Cohort flux rate. The probability each day of a worker switching to

a different cohort.

0.01 per day Consultation High

βF2F Infection rate for F2F contact at 1m distance while speaking (with

a person with unit infectiousness)

0.15 h−1 A plausible range of 0.03–

0.24 was inferred from [21–

23]

Moderate

ci Modifier for exposure due to type of contact i 1 (inside, talking) ×0.2

(outside) ×0.2 (not

talking)

[21] Moderate

βSS Infection rate via room-sharing (with a person with unit

infectiousness)

0.002 h−1 See S1.4 in S1 Text High

xss Effective distance for room-sharing interaction 4.3m (shared spaces),

3.6m (office)

see S1.4 in S1 Text Moderate

βFOM Package-mediated fomite infection rate (from a person with unit

infectiousness) if time between handling is 0.

0.001 per contact Assumed Very high

λ Half-life of virus deposited on packages. 3 h−1 [24] Low

τoffice Time office staff spend in shared office each day. 6 h Consultation Low

τbreak Time office and picker staff spend in shared break rooms 1 h Consultation Moderate

H Average number of employees per employee household minus 1

(H = 0 means no employees live together, H = 1 means the average

household has two employees)

0.05, 0.5 Assumed High

C Number of cars/shared commutes per households minus 1. 0.05, 0.5 Assumed High

Jk[Vk(t − tk]) Relative infectiousness of person k with viral load Vk infected at

time tk.
See S1.3 in S1 Text, S3

Fig, and [25]

[26] Moderate

Sk(t − tk) Relative susceptibility of person k infected at time tk. Sk(t − tk < 0) = 1 Sk(t −
tk � 0) = 0

Basic SIR model assumption Low

psymp Probability that an individual develops symptoms relevant for self-

isolation guidance.

0.5 [3] Moderate (is age, variant,

and guidance dependent).

pisol Probability that an individual adheres to self-isolation guidance. 0.5, 0.9 [19] and Survey Moderate.

pmiss Probability that an ‘adherent’ person misses a test. 0.4 Based on adherence rates in

the UK public sector.

Moderate.

https://doi.org/10.1371/journal.pone.0284805.t001

PLOS ONE Modelling SARS-CoV-2 transmission in a home-delivery workplace

PLOS ONE | https://doi.org/10.1371/journal.pone.0284805 May 5, 2023 5 / 25

https://doi.org/10.1371/journal.pone.0284805.t001
https://doi.org/10.1371/journal.pone.0284805


assume that each consignment is first handled by pickers, then subsequently by drivers, and

finally by the customer. Drivers are the only group of employees that have direct contact with

members of the public while on shift. For simulation efficiency, repeat interactions with cus-

tomers are not considered (as contacts via this route have a very low probability of infection,

so double counting of infections is very unlikely), but these contacts are simulated and infec-

tion ingress/egress through this route is included in the model.

We also consider the case where drivers and pickers work in pairs (i.e. large goods delivery),

we round the number of staff required in these roles to the nearest even number, and then

assign pairings randomly each day. One intervention simulated is fixed pairings; in this case,

these are assigned a priori and we pick the pairs working on a given day at random from those

available. A pair is unavailable if either worker in that pair is isolating, therefore this interven-

tion is always used alongside “pair isolation”, where one member of the fixed pair isolates for

the same period as their partner (whether or not they develop symptoms).

Workplace contacts and infections. Infections are modelled to occur via three routes;

face-to-face (F2F) contact with infectious individuals, indirect contact via sharing a space with

infectious individuals, and fomite transmission via goods handling.

The model generates direct F2F contacts between employees through three different mech-

anisms, summarised in Table 2. Table 2 also lists the parameters for the different contact routes

simulated. Contacts made via these routes are assumed to be dominated by face-to-face

transmission.

Indirect aerosol-mediated transmission is taken to occur on a one-to-all basis. Given the

well-ventilated nature of warehouses, we assume that this kind of transmission only occurs in

offices, or in lunch/break rooms. Finally, fomite transmission via package handling is

Table 2. Summary of the direct contact routes simulated and the associated transmission rate modifier, duration of contact, and contact distance. These are the val-

ues used in all simulations in the main text unless explicitly stated otherwise. Note that this table does not include fomite transmission routes, which are simulated and are

described in detail S1.4 in S1 Text.

Contact-

type

Description Transmission modifier (ci) Duration (τi) Distance

Cohort F2F contacts that occur within a team or cohort (see S1.5 in S1

Text for more information).

0.4 (either indoor or “loud-talking”

outdoors, 25% of time)

Drivers: τcoh = 15min

Pickers/Office: τcoh =

1h

1m

Random F2F contacts that occur randomly in the workplace with

weighted probability towards contacts between same job roles

(see S1.5 in S1 Text for more information).

0.4 (25% of time talking) τrand = 15 min 1m

Large-item

handling

Time spent lifting and moving packages in pairs (see section

S1.5 in S1 Text for more information).

0.08 (outdoor, 25% of time talking) τhan = 5 min per

delivery

1m

Pair delivery Contact via sharing a cabin while delivering large-items (see

S1.5 in S1 Text for more information).

0.4 (window closed) 0.08 (window

open)

τcab = 10 min per

delivery

1m

Pair dropoff Contact between driver pairs during dropping large-item off

at customer’s property (see S1.5 in S1 Text for more

information).

0.4 (25% of time talking) τdrop = 5 min per

delivery

1m

Customer Contact between driver(s) and customer during item delivery SPDD: 0.08 (outside, talking 25% of

time) LIDD: 0.24 (Inside 50% of time,

talking 25% of time)

SPDD: 30s per

delivery LIDD: 5min

per delivery

1m

Room-share Aerosol-mediated contact in poorly ventilated rooms 0.2 (no talking) τoff = 6h τlun = 1h * 6m (see S1.4 in

S1 Text based on

[27–29])

Car-share Contact via carpooling to and from work. 0.4 (25% of time talking) 0.5h 1m

House-share Contact via shared accommodation. 1 0.5h 1m (see S1.4 in S1

Text based on [21,

30–32]))

https://doi.org/10.1371/journal.pone.0284805.t002
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simulated as a decaying random process, such that the probability of onward transmission

depends on the time between package handling events by infectious and susceptible individu-

als. See S1.4 in S1 Text for the justification of the various transmission parameters used.

The transmission routes between different groups are illustrated in Fig 1.

Fig 1. Sketch of workplace staff groups and the potential transmission routes between them. Blue lines indicate face-to-face contacts, with dashed

lines indicating transmission routes with either a lower contact rate or less contact time. Orange arrows are fomite transmission routes (via packages)

and green indicates aerosol transmission in shared rooms. Arrows indicate direction of transmission.

https://doi.org/10.1371/journal.pone.0284805.g001
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Individual characteristics: Viral load, infectiousness, and test positivity

Viral load trajectories are generated from the individual level data in [26]. The algorithm to

generate individual viral load and infectiousness profiles is described in further detail in S2

Text and in [33] is available at [34]. The method is detailed in [25] and summarised in S1.3 in

S1 Text.

Simulation algorithm

The simulations employ an individual-based network model approach with daily contact net-

works randomly generated using the parameterisations in Table 2. The algorithm updates con-

tacts and infection events at discrete intervals of one day. This was chosen as the most natural

option because the contact network changes from day-to-day. Additionally, the data collected

to parameterise the model (including viral load data) is all defined at the scale of 1 measure-

ment per day. However, this “synchronous” updating does introduce some error into the

dynamics of the simulated epidemiology. It is known that in generic individual-based models

synchronous updating can cause spurious oscillations in the dynamics compared to asynchro-

nous methods such as a Gillespie algorithm or Markov Chain model [35]. Here a synchronous

method was employed to make the model more transparent and generalisable (e.g. to non-

Markovian processes), and to avoid the complexity of specifying the timings of shift and con-

tact patterns over the course of a single day. This is similar to other recent network or IB epi-

demic models [5, 7, 9]. We justify this by reasoning that the error introduced is likely to be

insignificant for transmission of SARS-CoV-2 as a newly infected individual is effectively non-

infectious for the first day. Therefore, events where one worker is infected and then infects a

co-worker within the same shift, which are missed by the synchronous update model, are van-

ishingly rare. Thus, there is no mechanism to trigger oscillations in this system at the timescale

of the discretisation. Also, any potential effects of the artificial periodicity introduced by the

simultaneous updates are obscured by the population-scale heterogeneity in infectiousness as

a function of time since infections. The algorithm is outlined in detail in S2 Text.

We use the model to simulate two types of scenario:

• Point-source outbreak: A single index case is chosen and we assume that there are no other

introductions during the simulation. All other employees are susceptible at the simulation

start (i.e. zero prevalence). The simulation terminates when there are no infectious cases

remaining. This type of scenario is modelled in Impact of mass testing on point-source out-

breaks and in S3 Text.

• Continuous-source outbreak: No index cases are chosen initially and introductions occur

randomly (Poisson process) based on the community incidence and prevalence in March-

June 2020 (see S2 Fig). The simulation runs for a fixed time window, and the number of cus-

tomer contacts and packages delivered follow the pattern of demand experienced during

that period of time (see S1 Fig). This scenario is modelled in Impact of testing in the presence

of household transmission.

In the point-source outbreak scenarios, in order to define a ‘successful’ outbreak we arbi-

trarily set a threshold of a final attack rate of 5%. Note that we choose this as it is a low-thresh-

old, like the epidemiological definition of an outbreak as a single linked secondary case.

However, by defining it as a percentage of workplace size this makes the results from the two

different settings more comparable. Therefore, if R − 1> 0.05(ND + NL + NO), where R is the

number of recovered individuals at the end of the simulation, then we record this simulation
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as a successful outbreak. The fraction of simulations where a successful outbreak occurs is then

used as an estimate of the probability of an index case resulting in an outbreak.

For continuous-source outbreaks, there is random ingress of new cases, so instead we com-

pare the number of workplace infections (ignoring introductions) as well as the number of iso-

lation days to measure impacts on productivity. Introductions can occur in these simulations

through two routes:

• Community ingress: Each susceptible individual in the workplace has probability I(t) of

being infected outside of work, where I(t) is the community incidence at time t.

• Customer ingress: For each delivery a driver makes, there is probability P(t) that the cus-

tomer is currently infectious, where P(t) is the community prevalence at time t. When a sus-

ceptible driver interacts with an infectious customer, there is probability pcust = 1 − exp

(−ciβF2Fτdoorstep) of an infection.

This is a very simple model of case ingress and does not account for household structure,

the geographical/individual variability in the wider population, or repeat deliveries to

customers.

The testing strategy we model here is non-directed mass testing, i.e. all employees are tested

regularly every τp days. A random day in the period [1,τp] is drawn as the first test day, and all

subsequent test days follow sequentially τp days after the previous. Following a positive test, an

individual cannot be tested again for τpause days after their positive test. Other testing strategies

may be beneficial, particularly if looking to reduce the burden on employees or because of

affordability, and we address some of these in the discussion.

The simulation follows an SIR-type structure, such that individuals who have previously

been infected cannot be re-infected. This is a reasonable assumption over the timescales of up

to 3 months that we consider here. An example visualisation of a single realisation of the simu-

lation is shown in Fig 2. The source code for the simulations can be found at [36].

Fig 2. Example outbreak in a SPDD workplace, where the simulation terminates when no infectious cases remain. (a) The evolution of the number

of recovered, infectious and quarantined (isolated) people in the model on each day (dashed and dotted lines indicate the same quantities for each

subgroup as labelled). (b) Example network of the “cohort” contacts, each cohort has edges between all member nodes, additionally each driver cohort

(blue D nodes) is supervised by a member of staff from the warehouse (red P nodes). Office staff are disconnected (green O nodes), but make contact

through random interactions, break rooms, and house/car sharing arrangements.

https://doi.org/10.1371/journal.pone.0284805.g002
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Results

The baseline transmission rates are summarised in S4 and S5 Figs, which show a breakdown of

the mean number of staff infected by the various infection routes of the SPDD and LIDD

model respectively.

S6 Fig shows the effect of the choice of work cohort size in the SPDD setting, where we pre-

dict that office size and occupancy is a more important potential factor in workplace outbreaks

than transmission between drivers at the workplace, even though office workers are in the

minority.

In the LIDD setting, close-contact working pairs (primarily delivery pairs, who share a vehi-

cle for much of the day) were predicted to be very important, and keeping these pairs fixed

had a significant impact on reducing workplace spread (S7(a) Fig). S7(b) Fig shows that this is

also predicted to have a knock-on effect for customer infections, making them approximately

as rare as in the SPDD setting.

Finally, we also present the effect of presenteeism, which in this model we define as workers

with symptomatic COVID-19 attending work, which we find can have a notable effect on

transmission, particularly when coupled with other measures to isolate close-contacts of symp-

tomatic individuals (S8 and S9 Figs). S10 Fig compares the effect of presenteeism on different

transmission routes and how this interacts with the fixed pairings policy.

These results (S4 Fig through to S10 Fig) are summarised in greater detail in Supplementary

S3 Text.

Furthermore, S11 Fig through to S14 Fig show the sensitivity of the outbreak size to various

model parameters that have significant uncertainty (namely aerosol and F2F transmission

rates, fomite transmission rates, workplace size, and mixing rates between job roles). These

results are summarised in Supplementary.

In this following section, we focus on the impacts of testing and the combination of differ-

ent workplace interventions to analyse their potential effectiveness.

Impact of mass testing on point-source outbreaks

Given the long incubation period of COVID-19 (compared to flu) and the significant propor-

tion of asymptomatic cases, regular mass testing has been proposed and deployed in various

settings to screen asymptomatic and pre-symptomatic cases. Figs 3 and 4 show the reduction

in outbreak probability resulting from testing at different frequencies with different test types

in the SPDD and LIDD work settings respectively. Overall, the results show that LFD antigen

tests have a similar effect to PCR with a 2-day turnaround (given that lab turnaround targets

were 24h in the UK, a 2-day turnaround was typical for much of the pandemic). Therefore,

considering the relative low cost of LFDs, this suggests that they are a better option for mass

testing [37]. Note this estimate for the sensitivity of LFD antigen tests is based on estimates

sensitivity in phase 3b testing in [18] adjusted for the relative error induced by self vs. trained

swabbing (see [25] for further details).

In each figure, two cases, representing idealised behaviours, are shown. In the first case test-

ing is voluntary meaning 90% of people do 60% of the required tests on average (missing tests

at random), while the other 10% do no tests (Figs 3(a) and 4(a)). This therefore reduces the

potential benefits of testing. In the second case testing is enforced (Figs 3(b) and 4(b)) meaning

that all workers test and report their results. This is the theoretical maximum effect that we

could expect testing to have.

Comparing Figs 3 and 4(a), 4(b) shows that testing has a similar proportional impact in the

LIDD setting. However, in the LIDD case testing has a more noticeable effect even when per-

formed as infrequently as 14 days. With total compliance to testing, the probability of
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outbreaks in both workplaces is reduced by approximately 80%, by LFD antigen tests every 4

days (which have been deployed in other sectors), see Fig 4(c). Note that this intervention is

not as effective in the LIDD setting when fixed-pairing and pair isolation policies are not in

place (approximately 75% reduction from a higher baseline without the fixed pairings policy,

Fig 4(c)). Therefore, targeted isolation policies can improve the efficacy of testing, as well as

reducing transmission rates.

To conclude, we have found that regular testing, particularly in combination with close-

contact isolation, can have a very significant effect on workplace transmission. Any testing

intervention needs to be weighed against potential costs, at low community prevalence the vast

majority of tests are likely to be negative, and those that are positive are more likely to be false

positives and so the intervention may not represent good value for money. Alternatively, at

high community prevalence, testing and close-contact isolation could result in many isola-

tions, some of which are only precautionary, which can have a huge impact on business. The

latter case is not well described by the point-source outbreak considered in this section, as

introductions into the workplace are more likely to occur in quick succession. Therefore in the

following section we look at the impacts of a range of interventions in the case of a continu-

ous-source outbreak.

Impact of testing in the presence of household transmission

There are a number of confounding factors in reality that mean testing interventions may not

be as effective as outlined in the previous section. One of these is the potential for household

transmission between co-workers who share accommodation. In the previous sections we

have considered 5% of worker households in the model to be shared, which is a significant

fraction but not enough to have a large effect on transmission dynamics. It was suggested in

Fig 3. Probability of an outbreak in the model SPDD setting from a single introduction (selected at random), where the black line is the mean

baseline case (no testing, estimated from 10,000 simulations). Each coloured marker shows the mean result of 10,000 simulations with the labelled

testing intervention. In (a) testing is not enforced so pmiss = 0.0 and and in (b) it is so pmiss = 0.0 and all people isolate with a positive test. In both cases

we use pisol = 0.9 for symptomatic isolation.

https://doi.org/10.1371/journal.pone.0284805.g003
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consultations that it is likely that this will vary widely by workplace location and recruitment.

Therefore, in this section we test what effects changing this fraction has on these predictions.

Fig 5 shows that increasing the household sharing factor H from 0.05 to 2.0 increases trans-

mission but the relative effect of testing (regular LFD antigen testing every 3 days) remains

approximately unchanged. Interestingly, a household isolation policy (i.e. the whole household

isolates if one member isolates due to symptoms or a positive test) only has a minor effect for

H< 0.5 and this is because we assume that a household transmission event between two

cohabiting employees can still occur even if both are isolating (and this still contributes to the

Fig 4. (a) and (b) show the probability of an outbreak in the model LIDD setting from a single introduction (selected at random), where the black line

is the mean baseline case (no testing, estimated from 10,000 simulations). Each coloured marker shows the mean result of 10,000 simulations with the

labelled testing intervention assuming that the fixed pairings and pair isolation interventions are in place for drivers and loaders. In (a) testing is not

enforced so pmiss = 0.4 and and in (b) it is so pmiss = 0.0 and all people isolate with a positive test. In both cases we use pisol = 0.9 for symptomatic

isolation. (c) Bar graph comparing the outbreak of LFD antigen testing every 4 days in this setting showing both voluntary and enforced cases and both

when the fixed pairings and pair isolation policies are and are not in place.

https://doi.org/10.1371/journal.pone.0284805.g004
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total number of infections). In reality it is likely that this risk of household transmission may

reduce during the shared isolation period if the cohabiting employees are able to remain physi-

cally separate, however it is also possible the risk will increase as they would spend more time

in the shared accommodation during isolation. At very high rates of house sharing (H> 1 i.e.

2 or more employees in the average household), household isolation has a larger impact as this

mode of transmission is prominent enough to dominate the workplace chains of transmission

and household isolation can break a significant fraction of those transmission chains.

To conclude, we see that in cases where there is high rates of household-sharing (or, more

generally, any contacts between employees outside of work during isolation) then this can con-

tinue to drive transmission between employees and is difficult to distinguish from workplace

transmission. Nonetheless, for all values simulated, regular mass asymptomatic testing has a

sizeable effect on transmission rates.

Impact of interventions in a real-world context. In this section we model each work-

place in the context of realistic community SARS-CoV-2 incidence rates. We used incidence

rates inferred from deaths and hospitalisations in the UK during the period 1st March 2020

until 31st May 2020 (see S1.2 in S1 Text). We then applied ran simulations with different inter-

ventions in place, for each scenario we added an extra intervention to the ones applied before,

the interventions are:

1. Symptom isolation only: People who develop symptoms self-isolate with probability pisol =

0.5.

2. Improved isolation: To mimic the impact of pandemic messaging, isolation probability is

increased to pisol = 0.9.

3. Distancing: All F2F interactions, except those involved in pair work, have interaction dis-

tance x = 2m.

4. Cohort Size Reduction: In the SPDD setting, the number of cohorts for all job types is

doubled.

Fig 5. Mean number of secondary cases resulting from a single random introduction plotted against the house share factor H. Different colour

lines show the different intervention scenarios as labelled where “Testing” means LFD antigen testing every 3 days (with default adherence rates) and

“HS isol.” means that the household isolation policy was implemented. (a) and (b) show the results for the two workplace types, as labelled. Each point

plotted shows the mean of 10,000 simulations, with shaded error region estimated using a bootstrapping process [38].

https://doi.org/10.1371/journal.pone.0284805.g005
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5. House share isolation: All employees who share a household isolate when one self-isolates.

6. Fixed-pairings: In the LIDD setting, driver and picker pairs are fixed and both self-isolate if

one self-isolates.

7. Office WFH: Office staff do not enter work, they only make contact other employees if they

share a household.

8. Testing: Twice weekly lateral flow testing is introduced for all employees.

9. Enforced testing: Testing becomes mandatory so no tests are missed.

10. Car share isolation: If a person travels to work with someone who self-isolates, they self-

isolate.

11. Cohort isolation: If one member of the cohort isolates, all people in the cohort isolate.

In the model, introductions due to customer interactions only had a small but noticeable

effect meaning that drivers were slightly more exposed than other employees (mean 0.11 intro-

ductions per driver for both work settings, averaged over all scenarios vs. 0.09 for other staff

respectively). Nonetheless, over the period, around 10% of the workforce is infected purely

due to the imposed prevalence and incidence.

Fig 6 shows the cumulative impact of interventions on secondary cases and isolations in the

SPDD setting. The interventions are applied in approximately the sequence that was reported

by companies we consulted. The intervention “Distancing” increases all “cohort” and “ran-

dom” contacts to 2m interactions and has a large effect. Reducing cohort size and office staff

working from home (“Office WFH”) have a big impact on reducing transmission since this

model predicts that outbreaks are most likely to start in this group. Interventions beyond

“enforced testing” are predicted to increase isolation levels without much greater impact on

transmission, particularly “cohort isolation” which likely causes a great deal of disruption

despite these groups being unlikely to be infected. Note this becomes a much more viable

option though if cohorts are much smaller, which is one major benefit of reducing cohort size

if possible. Comparing the two graphs in Fig 6 we see that is a slightly more efficient to have

contact reduction measures in place before adding isolation-based measures, as these reduce

the number of workers who will need to isolate. When isolation measures are implemented

alone, we see an increase in the predicted number of isolations even though the relative reduc-

tion in transmission is similar.

As shown in Impact of mass testing on point-source outbreaks, moving from voluntary to

mandatory testing has a sizeable impact on transmission risk and this is reproduced here

(compare “testing” to “enforced testing” in Figs 6 and 7). Interestingly, we also see it has only a

small impact on the number of isolations. This is because the reduction in transmission means

fewer cases, which acts to counteract the increased rate of people entering isolation. This effect

is even more stark if testing is enforced in the absence of other measures (see Fig 8). In that

case, the imapct of testing is significant enough to mean that the number of isolations actually

reduces by switching from voluntary to mandatory testing.

The impact of interventions in the LIDD setting is very similar (see Fig 7). We see that the

“fixed pairings” intervention (which includes pair isolation) has a marked effect on transmis-

sion. The extra benefit gained from testing is clearly visible too, but again isolation measures

beyond this appear have little further effect.

To conclude, Figs 6 and 7 demonstrate some of the trade-offs for different intervention

measures in terms of their impact on transmission and their impact on the number of isolating

employees. Certain interventions act to reduce both (social distancing, Office staff WFH) but

PLOS ONE Modelling SARS-CoV-2 transmission in a home-delivery workplace

PLOS ONE | https://doi.org/10.1371/journal.pone.0284805 May 5, 2023 14 / 25

https://doi.org/10.1371/journal.pone.0284805


potentially have other costs for business/feasibility issues that need to be considered. When

there are employees that still need to be in close-contact (e.g. driver and picker pairs in this

model) the combination of fixed pairings, pair isolation, and regular testing is highly effective

for reducing transmission.

Discussion

In this paper we have developed a stochastic model of SARS-CoV-2 spread in small/medium

size workplaces. The contact patterns simulated were designed to represent warehouses/depots

in the home-delivery sector, particularly those focusing on B2C delivery. To our knowledge

this is the first model to consider SARS-CoV-2 transmission in this sector specifically. While

the parameterisation of these models has significant uncertainty, we have been able to test the

relative impact of various interventions that companies in this sector deployed to reduce

SARS-CoV-2 transmission over a range of scenarios and parameter regimes.

The results predict that workplace transmission in this sector is modest, due to the bulk of

the staff, drivers, working alone most of the day. Without any interventions there is predicted

Fig 6. Boxen plots [38] of the number of secondary cases divided by the number of introductions in a SPDD workplace over a 3 month period.

Each distribution shows all the simulations (from 10000) with more than one introduction. The labels on the x-axis indicate the addition of an

intervention (in-tandem with all the interventions to the left). In (a) the measures restricting contacts are introduced first and in (b) the isolation-based

measure.

https://doi.org/10.1371/journal.pone.0284805.g006
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to be a small risk to customers for an individual delivery, but in workplaces undergoing an out-

break, home-installation of items can pose a risk to customers without other interventions.

The companies we consulted discontinued home-installation during in the spring of 2020, but

later re-introduced it with social distancing measures. Parcel delivery companies switched to

“contactless” delivery, meaning that signatures are no longer required, essentially eliminating

the only route of transmission to customers. Overall, this suggests that this sector played a key

role in reducing community transmission of SARS-CoV-2, as it allowed people to stay at home

during periods of high-prevalence. Quantifying this impact is more difficult though as the

counterfactual situation (i.e. how people would have behaved if this sector failed to keep up

with increased demand or shops had remained open) is unknown.

Safeguarding the key workers in this sector was a broader challenge and companies

reported implementing multiple measures based on government guidelines and their own

judgement. A key result of this paper is that identifying high-risk contacts (due to e.g. shared

accommodation or work tasks requiring prolonged close-contact) is very important and forms

the basis of contact-tracing interventions. Workplaces have an extra advantage over contact-

Fig 7. Boxen plots [38] of the rates of onward transmission (number of secondary cases divided by the number of introductions, top) and rates of

isolation (number of isolation day divided by scheduled work days, bottom) in a LIDD workplace over a 3 month period. Each distribution shows all

the simulations (from 10000) with more than one introduction. The labels on the x-axis indicate the addition of an intervention (in-tandem with all the

interventions to the left). In (a) the measures restricting contacts are introduced first and in (b) the isolation-based measures.

https://doi.org/10.1371/journal.pone.0284805.g007
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tracers in that they have control and knowledge over some of the contacts that employees are

required to make in their line of work. In this case, high-risk contacts can be limited by using

fixed pairs for large-item delivery, reducing then number of people sharing an office, and

reducing the occupancy in shared spaces. This then allows efficient isolation policies to be

implemented based on knowledge of the limited number of high-risk contacts people have

made (e.g. workers are given paid isolation leave if they share accommodation or work in a

delivery pair with an employee who has tested positive or reported COVID-like symptoms).

S7 Fig and Fig 4 show that this combination can be very effective in small workplaces.

Rates of presenteeism, which in this case we define as those who do not self-isolate when

they develop symptoms, has been shown to be much less likely if fully-paid sick leave is offered

[39, 40]. Therefore, in order to be effective, such isolation policies could incur considerable

costs to a business as well as reducing productivity. Similarly, company-backed testing and

Fig 8. Boxen plots [38] of the rates of onward transmission (number of secondary cases divided by the number of introductions, top) and rates of

isolation (number of isolation day divided by scheduled work days, bottom) over a 3 month period in (a) the SPDD work setting and (b) the LIDD

work setting. Each distribution shows all the simulations (from 10000) with more than one introduction. Each distribution represents the case with

application of a single intervention, as labelled on the x-axis.

https://doi.org/10.1371/journal.pone.0284805.g008
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isolation interventions will incur further costs and mean that asymptomatic cases are detected,

potentially resulting in even more isolations. Therefore, companies may be apprehensive

about deploying such strategies. Here, we showed that these strategies are more efficient when

close-contacts of index cases can be identified and isolated too, particularly when such contacts

are necessary for the job. This can mean that chains of transmission are quickly shut down,

and outbreaks are much less likely to occur. Furthermore, combining these measures with

social distancing, WFH, and similar interventions that reduce transmission (e.g. masking) can

reduce the number of isolations since workplace outbreaks become less likely. Combining test-

ing measures with these can reduce risk of infection in the workplace and therefore reduce the

costs of employee isolation (as fewer people will need to isolate).

The model developed has several limitations which are important for the interpretation of

the results presented. First, the contact model has been developed based on a mix of quantita-

tive (survey data, staff numbers and demand levels) and qualitative data (consultations). Novel

insight was gained by speaking directly to representatives from the sector, but their position

was not objective and so there may have been implicit biases in the descriptions of the nature

of workplace contacts and some potential routes of infection contacts could have been missed.

Furthermore, simplifying assumptions, such as all contact durations being identical for the

same mode of contact, mean that this model is idealised compared to reality. This could be

improved if data were available from e.g. wireless proximity sensors, as have been used in

other studies to reconstruct social contact networks [41, 42], including in workplaces [43].

These provide much more high-fidelity data but when data is collected during an epidemic or

while restrictions are in place, these devices can themselves affect behaviour and encourage

greater distancing/policy adherence with a number of devices deployed during the pandemic

actively designed to have this effect [44, 45]. Therefore, empirical contact networks in the

absence and presence of restrictions are difficult to ascertain. Third, the transmission rate and

the modifiers used for different types of contact are uncertain, and is based on a combination

of peer-reviewed [22, 23, 29] and non-peer-reviewed literature [21]. Improvements to this

transmission model from the adaption of more mechanistic modelling approaches that predict

explicitly the infectious dose associated with different modes of contact [23, 29, 46–52], as well

as updating with data on new variants and vaccines, will mean that this model could be applied

to numerous future workplace scenarios to test the impact of different non-pharmaceutical

interventions.

There are also some complicating factors we choose to ignore in this model, that may be

important to consider when interpreting these results. First, we do not model severe illness,

which can impact results by increasing the time away from work of individuals with COVID-

19. Second, we do not model the complex relationship between interventions and behaviour.

It is possible that as more interventions are introduced, adherence with other interventions

wanes so the expected impact of combined interventions may not be as high as predicted. This

behavioural change is difficult to predict, and so would need to be monitored by companies to

gauge whether interventions are working as expected. Furthermore, even with high adherence

there is no guarantee that people will use the test as intended. For example, people may be

inclined to test more regularly when feeling ‘run down’ or ‘paucisymptomatic’, i.e. exhibiting

very mild COVID-19 symptoms, whereas in the absence of testing they may have simply iso-

lated from work. In this case, much of the benefit of testing can be lost [53] because asymptom-

atic carriers will be less likely to be detected while symptomatic carriers who would have

otherwise isolated may be given a false negative and choose not to. For this reason, in some

sectors, mandatory regular testing (i.e. carried out by trained swabbers at the workplace) may

be the preferred option, because with the adherence rates assumed in this paper, one manda-

tory test per week has a similar impact to two voluntary ones (see Figs 3 and 4). To address this
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shortcoming of the model, surveys of staff or test reporting rates in relevant sectors where reg-

ular testing has been deployed may inform changes. In particular, data around when and how

tests were being used would be useful (as well as rates of symptomatic isolations). Survey infor-

mation regarding contact frequency with other employees while off-work or in isolation

would also inform the model assumptions around the effectiveness of isolation measures in

reducing contacts. Finally, data from workplaces that monitor adherence to other intervention

policies (such as mask-wearing) could inform the adherence rates simulated here. However

with all behavioural and survey data, there is the risk of reporting bias and behavioural changes

in response to observation.

One major benefit of the model presented here is that it incorporates the dynamics and var-

iability in individual viral load, and simulates its impact on test sensitivity and infectiousness.

This, means that the correlation between test-positivity and infectiousness is incorporated,

meaning that impacts of these interventions can be more accurately estimated. Thus we were

able to estimate not only the effect on average transmission rates, but also the frequency of rare

superspreading events. This has highlighted the importance of stacking interventions that

reduce transmission through different mechanisms. The source code is open access [36] and

the underlying network transmission model is malleable enough to be applied to any small

closed populations.

Conclusion

This paper has shown that the multiple interventions put in place by the logistics and home

delivery sector during the early stages of the pandemic are likely to have reduced the risk of

workplace transmission and onward transmission into the community by safeguarding cus-

tomers and staff. The availability of lateral flow tests is another valuable layer of protection that

could have been added, and that this would have been most effective when combined with iso-

lation measures that target the most high-risk contacts.
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S2 Fig. Rates of infection ingress. Community incidence rates assumed for the 3-month

period simulated in the continuous-source outbreak scenario.
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S3 Fig. Model viral load, infectiousness, and test-positive probability trajectories. Each fig-

ure shows 50 randomly generated profiles of (a) RNA viral load (log10 copies/ml) and their

associated (b) infectiousness (normalised units) and (c) test-positive probability. The red lines

show the mean of 10,000 generated individuals at each time point (where a missing value is

taken as 0).

(PDF)

S4 Fig. Breakdown of mean secondary cases by infection route in a SPDD work setting.

Stacked bar charts of the mean number of simulated secondary infections resulting from a sin-

gle index case in (a) a driver, (b) a picker, or (c) an office worker in the SPDD work setting.

Each bar shows secondary infections in each group of staff broken down by transmission

route, as recorded in Table 2. Note that the “shared spaces” contacts does not include contacts

from sharing an office, these are counted as “cohort” interactions for office staff.

(PDF)

S5 Fig. Breakdown of mean secondary cases by infection route in a LIDD work setting.

Stacked bar charts of the mean number of simulated secondary infections resulting from a sin-

gle index case in (a) a driver, (b) a picker, or (c) an office worker in the LIDD setting. Each bar

shows secondary infections in each group of staff broken down by transmission route, as

recorded in Table 2. Note that the “shared spaces” contacts does not include contacts from

sharing an office, these are counted as “cohort” interactions for office staff.

(PDF)

S6 Fig. Baseline outbreak probability in a SPDD work setting. Estimated probability of out-

break (defined as more than 3 secondary cases) resulting from a single index case plotted

against the cohort flux fc in days−1. Each marker shows the mean of 10,000 simulations, with

shaded error region estimated using a bootstrapping process [38]. Point-source outbreaks

where the source case was (a) a driver, (b) a picker; (c) an office worker. Each line in each fig-

ure compares simulations with different numbers of teams used for that job role, shown as the

number of workers per team on average. In each figure, the job roles not shown have the

default team size and pisol = 0.9 is assumed.

(PDF)

S7 Fig. Baseline outbreak probability in a LIDD work setting. (a) Simulated probability of

an outbreak (defined as more than 2 secondary cases). Four scenarios are shown: no interven-

tion (staff are randomly paired each day); driver pairs travel with window open (transmission

rate constant reduced to 1/5 of original value in this setting); fixed pairs (people always work

with the same partner); and both of these interventions simultaneously (fixed pairs and win-

dows open). Each bar represents 10,000 simulations, error bars indicate uncertainty in the

mean, estimated via a bootstrapping method [38]. (b) Boxen plots of the number of customers

infected per point-source outbreak simulation in the LIDD setting with either no or both inter-

ventions and the parcel delivery setting with default parameters.

(PDF)

S8 Fig. Effects of presenteeism on transmission in the SPDD work setting model. Depen-

dence of simulated outbreak probability on the self-isolation adherence probability pisol. The

different curves show the effect of increasing the house-sharing factor H as labelled.

(PDF)
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S9 Fig. Effects of presenteeism on transmission in the LIDD work setting model. Depen-

dence of mean number of simulated secondary cases from a single index case on the self-isola-

tion adherence probability pisol. The different curves show the effect of adding a fixed-pairs

isolation intervention.

(PDF)

S10 Fig. Breakdown of transmission routes for varying presenteeism in the LIDD work set-

ting model. Mean number of infected drivers per simulation with a single driver index case

plotted against symptomatic isolation probability pisol. The infections are broken down by

those cased by close contact pair work, and all other contact routes. (a) The case with no fixed

pairing intervention so pairs switch randomly each day. (b) The case with fixed pairings a pair

isolation policy. Dots show the mean number of infections while shading shows 95% confi-

dence in the mean calculated via bootstrapping methods.

(PDF)

S11 Fig. Sensitivity to face-to-face and aerosol mediated transmission rates. Histograms of

secondary cases resulting from a single index case in the two work settings simulated for differ-

ent rates of F2F and aerosol transmission. The top row shows the parcel work setting, while

the bottom row is the large-item setting. For each set of simulations, the transmission rate for

F2F contacts is multiplied by “F2F scale factor”, and the transmission rate for aerosol contacts

is multiplied by “Aerosol scale factor”. Note that for the large-item workplace we assume that

the fixed-pair isolation intervention is applied and in both cases pisol = 0.9. We also assume

that the index case is selected randomly.

(PDF)

S12 Fig. Sensitivity to fomite mediated transmission rates. The mean number of secondary

cases resulting from a single index case in the two workplace types plotted for 3 values of βFOM

at varying levels of demand for deliveries (x-axis). Note that for the large-item workplace we

assume that the fixed-pair isolation intervention is applied and in both cases pisol = 0.9.

(PDF)

S13 Fig. Sensitivity to workplace size. The mean number of secondary cases resulting from a

point-source outbreak in the two workplace types plotted against workplace scale factor. Note

that for the large-item workplace we assume that the fixed-pair isolation intervention is

applied and in both cases pisol = 0.9. We assume the index case is selected at random.

(PDF)

S14 Fig. Sensitivity to mixing rates between workers in different job roles. Histograms of

the number of secondary cases resulting from a single index case in the two workplace types

plotted for different scalings of pc(ND + NL + NO). The top row shows the parcel delivery set-

ting, while the bottom row is large-item setting, and each column is for the index-case labelled.

Note that for the large-item workplace we assume that the fixed-pair isolation intervention is

applied and in both cases pisol = 0.9. Note also the logarithmic scale.

(PDF)
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