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Abstract

Photoacoustic tomography (PAT) is a non-invasive imaging modality that requires recovering the 

initial data of the wave equation from certain measurements of the solution outside the object. In 

the standard PAT measurement setup, the used data consist of time-dependent signals measured 

on an observation surface. In contrast, the measured data from the recently invented full-field 

detection technique provide the solution of the wave equation on a spatial domain at a single 

instant in time. While reconstruction using classical PAT data has been extensively studied, not 

much is known for the full field PAT problem. In this paper, we build mathematical foundations 

of the latter problem for variable sound speed and settle its uniqueness and stability. Moreover, 

we introduce an exact inversion method using time-reversal and study its convergence. Our results 

demonstrate the suitability of both the full field approach and the proposed time-reversal technique 

for high resolution photoacoustic imaging.
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1. Introduction.

Consider the following initial value problem for wave equation for an inhomogeneous 

isotropic medium
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∂t
2p(x, t) − c2(x)Δp(x, t) = 0 for  (x, t) ∈ ℝn × (0, ∞)

p(x, 0) = f(x) for x ∈ ℝn

∂tp(x, 0) = 0 for x ∈ ℝn .

(1.1)

Here c ∈ C∞ ℝn  denotes the sound speed and f ∈ H0
1 ℝn  the initial data that is supported 

inside a bounded domain Ω ⊆ ℝn with Lipschitz boundary. We assume that the sound speed 

is positive everywhere and constant on the complement Ωc ≔ ℝn ∖ Ω of Ω. After rescaling we 

assume c Ωc = 1. We refer to the solution p:ℝn × [0, ∞) ℝ of (1.1) as acoustic pressure field 

and f as the initial pressure.

Recall that f:Ω ℝ is an element of the Sobolev space H1(Ω) if it is Lebesgue measurable 

and ∥ f ∥H1(Ω)
2 ≔ ∫Ω ∇f(x) |2  dx + ∫Ω|f(x) |2  dx is finite. Also, H0

1(Ω) consists of all elements 

in H1(Ω) that vanish on the boundary ∂Ω. The space H0
1(Ω) is equipped with the norm 

∥ f ∥H0
1(Ω) ≔ ∫Ω | ∇f(x) |2  dx, which is equivalent to ∥ ⋅ ∥H1(Ω) when restricted to H0

1(Ω). We 

note that each f ∈ H0
1(Ω) can be extended to a function of H1 ℝn  using the value zero on Ωc, 

which is tacitly done in this paper.

Full field photoacoustic tomography.

The aim of photoacoustic tomography (PAT) is to recover the initial pressure from certain 

observations of the acoustic pressure field made outside of Ω. In standard PAT, the data 

is given by the restricted pressure p|S×[0, T], where S ⊆ ℝn is an (n − 1)-dimensional 

observation surface [28, 38, 9, 20, 4, 19, 11, 30]. Opposed to that, in full field PAT 

introduced in [26, 27], the data provide the acoustic pressure only for a single and fixed 

time T but on an n-dimensional measurement domain.

To be more specific, for given T > 0, we define the following two operators

WT :H0
1(Ω) H1 ℝn :f p( ⋅ , T ), (1.2)

WT, Ω:H0
1(Ω) H1 Ωc :f p( ⋅ , T )|Ωc, (1.3)

where p is the solution of (1.1). We refer to WT as the complete single time wave 

transform and to WT,Ω as the exterior single time wave transform. Full field PAT provides 

approximations of WT,Ωf, from which one aims to recover approximations to the initial 

pressure f. In [40] it is outlined how actual full field PAT data can be reduced to WT,Ωf.

In this paper we prove uniqueness and stability of inverting WT,Ω. We also propose a 

time-reversal technique to derive a Neumann series solution for the inversion.

Related work.

For the standard PAT problem there is a vast literature on various practical and theoretical 

aspects (see, for example, [38, 20, 4, 19, 11, 30]). In that context, the time-reversal method 
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has been studied intensively [9, 15, 32, 33]. However, to the best of our knowledge, the 

time-reversal method has not developed for PAT with full field data.

Only few works exist [27, 26, 40, 13] on the full field inversion problem. The work [27] 

considers constant speed of sound and the problem is reduced to the inversion of the Radon 

transform. The work [40] deals with non-constant speed and uses the standard Landweber 

iterative method. However, the article uses the data in the whole space, not the exterior data 

as we consider here. In the proceeding [13], variational regularization is used with exterior 

data. Neither uniqueness nor stability has been proven there. In the present article, for the 

first time, we prove uniqueness and stability for inverting WT,Ω. Moreover, we propose and 

analyze an iterative time-reversal procedure for its inversion.

2. Uniqueness and stability.

Let ℝn be equipped with the metric g = c−2(x)dx2. We denote by diam(Ω) the diameter of Ω, 

defined as the longest distance between any two points inside Ω with respect to the metric 

g. We recall that T > 0 is a fixed observation time and Ω ⊆ ℝn a bounded domain with 

Lipschitz boundary.

2.1. Uniqueness of reconstruction.

Our first aim is to prove the injectivity of WT,Ω, which implies that the full field PAT 

problem is uniquely solvable. For that purpose we start by recalling a uniqueness result for 

the wave equation, obtained by Stefanov and Uhlmann [32].

Lemma 2.1. Let f ∈ H0
1 ℝn  and suppose T > 1

2  diam(Ω). If the solution p of (1.1) satisfies 

p( ⋅ , T )|Ωc = 0 and ∂tp ( ⋅ , T )|Ωc = 0, then f = 0.

Denote by BR ⊆ ℝn the ball of radius R > 0 in the Euclidean metric of ℝn. We have the 

following result:

Lemma 2.2. For ϵ > 0 and ℎ ∈ H0
1 ℝn , let u ∈ C([0, T], H1(BT+ϵ)) satisfy

∂t
2u(x, t) − Δu(x, t) = 0 for (x, t) ∈ BT + ϵ × [0, T ]

u(x, 0) = ℎ(x) for x ∈ BT + ϵ

∂tu(x, 0) = 0 for x ∈ BT + ϵ .
(2.1)

If h(x) = 0 for x ∈ BT and u(x, T) = 0 for x ∈ Bϵ, then h(x) = 0 for x ∈ BT+ϵ.

Proof. For u satisfying the Euler-Poisson-Darboux equation with initial data (f, 0) instead of 

the wave equation (2.1), the result was proven in [2, 24]. The proof of the current situation is 

similar to [24, Theorem 2.1] and is therefore omitted. ■

In the following, for any a > 0, we write

Ωa
(1) ≔ x ∈ ℝn ∣ dist(x, Ω) ≤ a
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Ωa
(2) ≔ x ∈ ℝn ∣ dist(x, Ω) ≥ a .

Clearly, for f ∈ H0
1(Ω) we have WTf ∈ H0

1 ΩT
(1) , due to finite speed of propagation.

Lemma 2.3. Let Ω be convex, ℎ ∈ H0
1 ℝn  and suppose u satisfies

∂t
2u(x, t) − Δu(x, t) = 0 for (x, t) ∈ Ωc × [0, T ]

u(x, 0) = ℎ(x) for x ∈ Ωc

∂tu(x, 0) = 0 for x ∈ Ωc .

Then u(x, T) = 0 for all x ∈ ΩT
(2) implies h(x) = 0 for all x ∈ Ωc.

Proof. Using Lemma 2.2, the proof follows the lines of [2, Proof of Theorem 3] and for the 

sake of brevity is omitted. ■

Here is our main uniqueness result.

Theorem 2.4 (Main injectivity result). If T > diam(Ω)/2, then the exterior single time wave 

transform WT, Ω:H0
1(Ω) H1 Ωc  is injective. In particular, the equation WT,Ωf = g has at 

most one solution in H0
1(Ω) for g ∈ H1 Ωc .

Proof. Suppose f ∈ H0
1(Ω) satisfies WT,Ωf = 0 and denote by p the solution of (1.1). By 

definition we have WT, Ωf = p( ⋅ , T )|Ωc and thus p(x, T) = 0 and Δp(x, T) = 0 for all x ∈ 
Ωc. Define u(x, t) ≔ ∂tp(x, T − t). Then ∂tu(x, t) = − ∂t

2p(x, T − t) = − Δp(x, T − t) in Ωc. 

Consequently,

∂t
2u(x, t) − Δu(x, t) = 0 for (x, t) ∈ Ωc × [0, T ]

u(x, 0) = ∂tp(x, T ) for x ∈ Ωc

∂tu(x, 0) = 0 for x ∈ Ωc .

Because u(x, T) = ∂tp(x, 0) = 0 in Ωc, Lemma 2.3 shows ∂tp(x, T) = 0 for all x ∈ Ωc. Now 

application of Lemma 2.1 gives f = 0. ■

2.2. Stability of inversion.

Let us first recall some microlocal analysis for the solution of the wave equation; see for 

example [32, 37] for more details. Let f(ξ) = ∫ℝnf(x)e−ix ⋅ ξ dx denote the Fourier transform 

of f. Let us for the moment assume that there are no two conjugate points within the distance 

T in (ℝn, g). Then, up to infinitely smooth error, the solution p of (1.1) can be written as
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p(x, t) = p+(x, t) + p−(x, t) ≔ 1
(2π)n ∑

σ = ±
∫

ℝn
eiϕσ(x, ξ, t)aσ(x, ξ, t)f(ξ)dξ,     (x, t)

∈ ℝn × [0, T ] .
(2.2)

Here, the phase functions ϕ±(x, ξ, t) are positively homogenous of order 1 in ξ and solve the 

eikonal equations

∓ ∂tϕ±(x, ξ, t) = c(x)|∇xϕ±(x, ξ, t)|
ϕ±(x, ξ, 0) = x ⋅ ξ .

The functions a± are classical amplitudes of order 0 satisfying a±(x, ξ, 0) = 1/2. The 

principal terms a±
(0)(x, ξ, t) satisfy a±

(0)(x, ξ, t) = 1/2 and the homogenous equations

∂tϕ± ∂t − c2∇ϕ± ⋅ ∇x + C± a±
(0) = 0, (2.3)

where C± ≔ ∂t
2 − c2Δ ϕ±/2. Geometrically, each singularity (x, ξ) ∈ WF(f) is propagated by 

p+ in the phase space along the positive bi-characteristic (γx,ξ(t), ζx,ξ(t)), while propagated 

by p− along the negative bicharacteristic given by (γx,−ξ(t), ζx,−ξ(t)) = (γx,ξ(−t), −ζx,ξ(−t)). 

Here, the bicharacteristic γx, ξ(t), ζx, ξ(t) = (x(t), ξ(t)) ∈ T*ℝn is defined as the solution of

ẋ(t) = ξ(t)
ξ(t) g

,   x(0) = x,

ξ̇(t) = − 1
2 ∇ c2(x(t)) ξ(t)

g
,   η(0) = ξ,

where |ξ|g is the length of ξ in the metric g. Let us note that the projection γx,ξ(t) of the 

bicharacteristic is a unit speed geodesic in (ℝn, g). Its initial unit tangent vector is ξ/|ξ|g.

We consider the following so-called non-trapping condition.

Condition 2.5 (Non-trapping condition). We assume that there exists T0 > 0 such that there is 
no geodesic curve that intersects Ω with the length, in metric g, bigger than T0.

It is worth noting that if Condition 2.5 holds then diam(Ω) ≤ T0.

For ℎ ∈ H1 ℝn  consider the following time-reversed wave equation

∂t
2q(x, t) − c2(x)Δq(x, t) = 0 for (x, t) ∈ ℝn × (0, T )

q(x, T ) = ℎ(x) for x ∈ ℝn

∂tq(x, T ) = 0 for x ∈ ℝn .

(2.4)

We define the time-reversal operator

WT
♯ :H1 ℝn H1(Ω):ℎ q( ⋅ , 0)|Ω, (2.5)
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where q is the solution of (2.4). For a function Ψ ∈ C0
∞ ℝn  denote by Ψ the pointwise 

multiplication operator f ↦ Ψf.

Proposition 2.6. Let T > T0/2, suppose Ψ ∈ C0
∞ ℝn  and set x±(x, ξ) ≔ γx,ξ(±T). Then 

WT
♯ ΨWT :H0

1(Ω) H1(Ω) is a pseudo-differential operator of order zero with principal 

symbol

σ(x, ξ) = 1
4 Ψ x+(x, ξ) + Ψ x−(x, ξ) .

Proof. Our key idea is the construction of the parametrix of time-reversed wave equation 

(2.4), in the same spirit as [32, Proof of Theorem 3] but adapted to our context. From (2.2), 

up to smooth terms, we have WT
♯ ΨWT = WT

♯ ΨWT
( + ) + WT

♯ ΨWT
( − ) with

WT
( ± )f(x) = p±(x, T ) = 1

(2π)n
∫

ℝn
eiϕ±(x, ξ, T )a±(x, ξ, T )f(ξ)dξ .

It suffices to prove that WT
♯ ΨWT

( + ) is a pseudo-differential operator with principal symbol 

σ+(x0, ξ0) = Ψ(x+(x0, ξ0))/4, for all (x0, ξ0) ∈ T*Ω.

Consider the parametrix of the time-reversed wave equation (2.4) with initial data 

ℎ = ΨWT
( + )f, which can be written in the form

q+(x, t) = 1
2(2π)n

∫
ℝn

eiϕ+(x, ξ, t)b(x, ξ, t)f(ξ)dξ + 1
2(2π)n

∫
ℝn

eiϕ+(x, ξ, 2T − t)b(x, ξ, 2T − t)f(ξ)dξ,

with b(x, ξ, T) = Ψ(x)a+(x, ξ, T). Let us note that the first summand in q+ is a modification 

of the (positive) forward solution p+ which in the case that Ψ = 1 exactly equals p+/2. 

The second summand is the time-reflection of the first part through the value t = T. This 

construction imposes zero velocity at t = T. Indeed, it is easy to check that q+ satisfies the 

initial conditions q+(x, T ) = ΨWT
( + )f and (q+)t(x, T) = 0. Therefore, from the definition of WT

♯ ,

WT
♯ ΨWT

( + )f = q+(x, 0) = 1
2(2π)n∫

ℝn
eiϕ+(x, ξ, 0)b(x, ξ, 0)f(ξ)dξ

+ 1
2(2π)n∫

ℝn
eiϕ+(x, ξ, 2T)b(x, ξ, 2T)f(ξ)dξ,

(2.6)

up to infinitely smoothing terms.

Note that both the principal term a+
(0)(x, ξ, t) and b(0)(x, ξ, t) of a+(x, ξ, t) and b(x, ξ, t), 

respectively, satisfy the homogeneous transport equation (2.3). Hence, their ratio on each 

bi-characteristic is constant. In particular,

b(0) x0, ξ0, 0
a+

(0) x0, ξ0, 0 = b(0) x+ x0, ξ0 , ξ+ x0, ξ0 , T
a+

(0) x+ x0, ξ0 , ξ+ x0, ξ0 , T = Ψ x+ x0, ξ0 .
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Let us consider (2.6). Since ϕ+(0, x, ξ) = x · ξ, the first part on the right hand side is a 

pseudo-differential operator with principal symbol at (x0, ξ0) equals

1
2b(0) x0, ξ0, 0 = 1

2a+
(0) x0, ξ0, 0 Ψ x+ x0, ξ0 = 1

4Ψ x+ x0, ξ0 .

The second summand of (2.6) is a Fourier integral operator that translates the singularity 

of f at (γx0,ξ0(−2T), ζx0,ξ0(−2T)) to (x0, ξ0). From the condition T > T0/2, we have γx0, 

ξ0(−2T) ∈ Ωc. Therefore, f = 0 near γx0,ξ0(−2T), which implies the second part on the right 

hand side of (2.6) is infinitely smoothing. This concludes our proof. ■

Remark 2.7. Proposition 2.6 has been proven under the assumption that there are no two 

conjugate points within the distance T in (ℝn, g). However, the proposition still holds when 

this condition fails. In that case, we split the time interval [0, T] into subintervals such that 

on each subinterval the geodesic γx,ξ(t) does not contain conjugate points. Applying above 

presented proof iteratively on each subinterval we derive Proposition 2.6 in the general case.

The following theorem provides the stability of solving the final time wave inversion 

problem.

Theorem 2.8 (Main stability result). Assume that T > T0/2, with T0 as in Condition 2.5. 

Then, there exists a constant C = C(Ω, T, c) > 0 such that

∀f ∈ H0
1(Ω):      ∥ f ∥H0

1(Ω) ≤ C WT, Ωf H1 Ωc . (2.7)

Proof. Since T > T0/2, there exists a > 0 such that for all (x, ξ) ∈ T*Ω either x+(x, ξ) ∈ Ωa
(2) or 

x−(x, ξ) ∈ Ωa
(2). Let 0 ≤ Ψ ∈ C0

∞ ℝn  be such that Ψ ≡ 0 on Ω and Ψ ≡ 1 on Ωa
(2). Then ΨWT,Ω 

= ΨWT and thus Proposition 2.6 implies that WT
♯ ΨWT, Ω is a pseudo-differential operator with 

principal symbol (Ψ(x+(x, ξ)) + Ψ(x−(x, ξ)))/4 ≥ 1/4. Therefore,

∀f ∈ H0
1(Ω):      ∥ f ∥H1(Ω) ≤ C1 WT

♯ ΨWT, Ωf H1(Ω) + ∥ f ∥L2(Ω) .

Because WT
♯ ΨWT, Ωf is supported inside Ω2T

(1), we have

WT
♯ ΨWT, Ωf H1(Ω) ≤ WT

♯ ΨWT, Ωf H1 Ω2T
(1)

≤ C2 WT
♯ ΨWT, Ωf H0

1 Ω2T
(1)

≤ C3 ΨWT, Ωf H0
1 ΩT

(1) .

Above, the last inequality comes from the conservation of the energy 

∫ℝn c−2| ∂tq( ⋅ , t)|2 + | ∇q( ⋅ , t)|2  dx for (2.4) and ∂tq(·,T) ≡ 0. From the last two displayed 

equations we conclude

∀f ∈ H0
1(Ω):      ∥ f ∥H0

1(Ω) ≤ C4 WT, Ωf H1 Ωc + ∥ f ∥L2(Ω) . (2.8)
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Since WT,Ω is injective, and the embedding H0
1(Ω) L2(Ω):f f is compact, applying [35, 

Proposition 5.3.1] to (2.8) concludes the proof. ■

Let us briefly discuss the condition that T > T0/2 posed in Theorem 2.8. It implies for any 

(x, ξ) ∈ T*Ω, at least either x+(x, ξ) ≔ γx,ξ(T) or x−(x,ξ) ≔ γx,ξ(−T) belongs to Ωc. That is, 

if (x, ξ) ∈ WF(f) then either (x+(x, ξ), ξ+(x, ξ) ≔ ζx,ξ(t)) ∈ WF(WT,Ωf) or (x−(x, ξ), ξ−(x, 

ξ) ≔ ζx,−ξ(t)) ∈ WF(WT,Ωf). We, hence, say that all the singularities of f are observed by 

WT,Ωf. Therefore, T > T0/2 is called the visibility condition. We will always assume it in 

our subsequent presentation.

3. Iterative time-reversal.

Consider the extension operator EΩ:H1 Ωc H1 ℝn  defined as follows. For any 

g ∈ H1 Ωc , we take EΩ(g)|Ωc = g on Ωc and define EΩ(g) on Ω as the harmonic extension 

of g to Ω. That is, h ≔ EΩ(g)|Ω satisfies the Dirichlet problem:

Δℎ = 0 in Ω
ℎ = g|∂Ω on ∂Ω . (3.1)

Here, g|∂Ω ∈ H1/2(∂Ω) denotes the trace of g ∈ H1 Ωc  on ∂Ω. Note that the Dirichlet 

interior problem (3.1) has a unique solution h ∈ H1(Ω) (see, for example, [22]); therefore, 

noting that EΩ(g) = g on Ωc, EΩ(g) ∈ H1 ℝn . For notational conveniences, we sometimes 

use the short-hand notation g for EΩ(g). We further define the orthogonal projection 

PΩ:H1(Ω) H0
1(Ω):g g − ℎ, where h ∈ H1(Ω) is the solution of (3.1).

Recall that our aim is the inversion of the restricted single time wave inversion operator 

WT, Ω:H0
1(Ω) H1 Ωc  defined by (1.2). Our proposed inversion approach is based on the 

modified time-reversal operator defined by

WT, Ω
♯ ≔ PΩWT

♯ EΩ:H1 Ωc H0
1(Ω) .

The modified time-reversal operator is itself the composition of harmonic extension EΩ to 

ℝn, time-reversal WT
♯  defined by (2.5) and projection PΩ onto H0

1(Ω).

3.1. Contraction property.

Consider the case n = 1, the sound speed is constant, and T > T0. Then, from the 

D’Alembert formula, 2WT, Ω
♯  is the exact inverse of WT,Ω. In the general case this is not true. 

Nevertheless, as the basis our approach, we will show that the error operator Id−λWT, Ω
♯ WT, Ω

is non-expansive for λ = 2 and a contraction for λ < 2. This will serve as the basis of the 

proposed iterative time-reversal procedure.

Throughout the following we denote by Eu(t) ≔ ∫ℝn c−2(x)|∂tu(x, t)|2 + | ∇u(x, t)|2  dx the 

energy associated to a function u satisfying the wave equation ∂t
2u = c2Δu.
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Theorem 3.1 (Contraction property of the error operator). Suppose T > T0/2 and consider for 
any λ ∈ (0, 2] the error operator

KT, Ω, λ ≔ Id − λWT, Ω
♯ WT, Ω:H0

1(Ω) H0
1(Ω) .

Then the following hold:

a. KT,Ω,2 satisfies ∀f ∈ H0
1(Ω) ∖ {0}: KT, Ω, 2f H0

1(Ω) < ∥ f ∥H0
1(Ω).

b. If λ ∈ (0, 2), then ∥KT,Ω,λ∥ < 1.

Proof. (a): For f ∈ H0
1(Ω), set g ≔ WT,Ωf and g ≔ WTf. That is, g = p( ⋅ , T ) and g = g|Ωc, 

where p solves the forward problem (1.1). Let g ≔ EΩ(g) and q solve the time-reversal 

problem (2.4) with ℎ = 2g. Then w ≔ p − q satisfies the wave equation ∂t
2w = c2Δw and the 

corresponding energies at times 0 and T respectively satisfy

Ew(0) = ∫
ℝn

c−2(x)|∂tq(x, 0)|2 + ∇[q(x, 0) − f(x)] 2 dx,

Ew(T ) = ∫
ℝn

c−2(x)|∂tp(x, T )|2 + ∇[2g(x) − g(x)] 2 dx .
(3.2)

Since g|∂Ω = g|∂Ω and (Δg)|Ω = 0,

∫
Ω

|∇[2g(x) − g(x)] 2 − |∇g(x)
2

 dx = 4∫
Ω

∇g(x) ⋅ ∇[g(x) − g(x)]dx

= 4∫
Ω

Δg(x)[g(x) − g(x)]dx = 0.

That is, ∫Ω|∇[2g(x) − g(x)] |2dx = ∫Ω|∇g(x) |2  dx. Noting that g = g on Ωc, we obtain 

∫ℝn|∇[2g(x) − g(x)] |2  dx = ∫ℝn|∇g(x) |2  dx. From (3.2) we deduce Ew(T) = Ep(T). With the 

conservation of energy we have Ep(0) = Ew(0) and therefore

∫
ℝn

∇f(x)
2

 dx = ∫
ℝn

c−2(x)|∂tq(x, 0)|2 + ∇[q(x, 0) − f(x)] 2  dx, (3.3)

where we have used the explicit expressions for Ep(0) and Ew(0) respectively.

With f* ≔ 2WT, Ω
♯ WT, Ωf the error operator satisfies KT,Ω,2f = f − f*. Moreover, writing 

q0 ≔ q(·,0)|Ω we have f* = PΩ(q0) and thus Δ[q0 − f*] = 0 in Ω. From this we 

infer ∫Ω ∇ q0(x) − f*(x) ⋅ ∇ f*(x) − f(x)  dx = − ∫ΩΔ q0(x) − f*(x) f*(x) − f(x)  dx = 0 and 

therefore

∫
Ω

|∇ q0(x) − f(x) |2 dx = ∫
Ω

|∇ q0(x) − f*(x) |2 dx + ∫
Ω

|∇ f*(x) − f(x) |2 dx

≥ ∫
Ω

|∇ f*(x) − f(x) |2 dx
.

(3.4)
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Together with (3.3) this implies ∥ f ∥H0
1(Ω)

2 ≥ f − f* H0
1(Ω)

2 . That is, KT, Ω, 2f H0
1(Ω) ≤ ∥ f ∥H0

1(Ω).

In remains to show the strict inequality. To that end assume f − f* H0
1(Ω) = ∥ f ∥H0

1(Ω). From 

(3.3) and (3.4) we obtain

∫
Ω

|∇ q0(x) − f(x) |2dx ≥ ∫
ℝn

c−2(x)|∂tq(x, 0)|2 + ∇[q(x, 0) − f(x)] 2  dx,

and therefore

∫
ℝn

c−2(x)|∂tq(x, 0)|2 dx + ∫
Ωc

∇q(x, 0)
2

 dx = 0.

In particular, ∂tq(·,0) vanishes on ℝn and ∇q(·,0) vanishes on Ωc. Because q(x, 0) vanishes 

for x ∈ Ω2T
(2), it follows that q(·,0) vanishes on Ωc. Applying Lemma 2.1 for u(·,t) ≔ q(·,T −t) 

yields 2g = q( ⋅ , T ) = u( ⋅ , 0) = 0 on ℝn. In particular, WT,Ωf = 0 on Ωc. From Theorem 2.4, 

we infer f = 0 on ℝn, which concludes the proof.

(b): Let us first consider the case λ = 1. We have to show that there exists a constant L < 1 

such that ∥ Id − WT, Ω
♯ WT, Ω ∥ ≤ L. To that end, let f ∈ H0

1(Ω), p solve the forward model (1.1) 

with initial data f, q solve the time-reversal problem (2.4) with initial data h = EΩWT,Ωf and 

define the error term w ≔ q − p. The error term satisfies the wave equation ∂t
2w − c2(x)Δw = 0

in ℝn × (0, T ) and its energy at time T is given by

Ew(T ) = ∫
ℝn

c−2(x)|∂tw(x, T)|2 + ∇w(x, T) 2  dx

= ∫
ℝn

c−2(x)|∂tp(x, T )|2 dx + ∫
ℝn

∇[g(x) − g(x)]
2

 dx,

where for the second equality we used the conditions q( ⋅ , T ) = g and ∂tg(·,T) = 0. The 

functions g and g are defined as above, in the proof of (a).

The second term in the above equation displayed satisfies

∫
ℝn

∇[g(x) − g(x)]
2

 dx =

= ∫
ℝn

∇[g(x) − g(x)] ⋅ ∇[g(x) − g(x)] dx

= ∫
ℝn

∇[g(x) − g(x)] ⋅ ∇[g(x) + g(x)] dx − 2∫
ℝn

∇[g(x) − g(x)] ⋅ ∇g(x) dx

= ∫
Ω

∇g(x)
2

 dx − ∫
Ω

∇g(x)
2

 dx − 2∫
ℝn

(g(x) − g(x))Δg(x) dx

= ∫
Ω

∇g(x)
2

 dx − ∫
Ω

∇g(x)
2

 dx

≤ ∫
Ω

∇g(x)
2

 dx .

As a consequence, recalling g = g|Ωc = WT, Ωf, we obtain
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Ew(T ) ≤ ∫
ℝn

c−2(x)|∂tp(x, T )|2 + ∇g(x) 2  dx − ∫
Ωc

∇g(x)
2

 dx

= ∫
ℝn

c−2(x)|∂tp(x, T )|2 + ∇p(x, T ) 2  dx − ∇WT, Ωf L2 Ωc2

= Ep(T ) − ∇WT, Ωf L2 Ωc2 .

The conservation of energy for E and p then gives

Ew(0) + ∇WT, Ωf L2 Ωc2 = Ew(T ) + ∇WT, Ωf L2 Ωc2

≤ Ep(T ) = Ep(0) .

Using the initial conditions p(x, 0) = f(x) and ∂tp(x, 0) = 0 this shows

Ew(0) + ∇WT, Ωf L2 Ωc2 ≤ ∥ f ∥H0
1(Ω)

2 .

Noting that WT,Ωf vanishes outside of ΩT
(2), we have ∇WT, Ωf L2 Ωc2 ≥ μ WT, Ωf H1 Ωc2 , for some 

μ > 0. Applying Theorem 2.8 we obtain

Ew(0) ≤ L2 ∥ f ∥H0
1(Ω)

2 ,

for some 0 < L < 1. Noting that Ew(0) = ∫ℝn c−2(x)|∂tq(x, 0)|2 + | ∇[q(x, 0) − f(x)]|2  dx, we 

obtain

∫
Ω

∇[q(x, 0) − f(x)]
2

 dx ≤ L2 ∥ f ∥H0
1(Ω)

2 . (3.5)

Let f* ≔ WT, Ω
♯ WT, Ωf and q0 = q(·,0)|Ω, then f* = PΩ(q0). The left hand side in the above 

equation can be estimated as

∫
Ω

|∇ q0(x) − f(x) |2 dx = ∫
Ω

|∇ q0(x) − f*(x) + ∇ f*(x) − f(x) |2 dx

= ∫
Ω

|∇ q0(x) − f*(x) |2 + |∇ f*(x) − f(x) |2 dx

≥ f* − fH0
1(Ω)

2 ,

where we have used the fact that 

∫Ω ∇ q0(x) − f*(x) ⋅ ∇ f*(x) − f(x)  dx = ∫ΩΔ q0(x) − f*(x) f*(x) − f(x) dx = 0. From 3.5, we 

arrive at

K1f H0
1(Ω)

2 = f − f* H0
1(Ω)

2 ≤ L2 ∥ f ∥H0
1(Ω)

2 .

This finishes the proof for the case λ = 1.

For the general case note the identities
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KT, Ω, λ =
(1 − λ) Id + λKT, Ω, 1 for λ ∈ (0, 1)
(λ − 1)KT, Ω, 2 + (2 − λ)KT, Ω, 1 for λ ∈ (1, 2) .

Using the already verified estimates ∥KT,Ω,1∥ < 1 and ∥KT,Ω,2∥ ≤ 1, these equalities together 

with the triangle inequality for the operator norm show ∥KT,Ω,λ∥ < 1 for all λ ∈ (0, 2). ■

3.2. Neumann series solution.

According to Theorem 3.1 the error operator satisfies Id−λWT, Ω
♯ WT, Ω < 1 for any λ ∈ (0, 

2). The Neumann series ∑j = 0
∞ Id−λWT, Ω

♯ WT, Ω
j, therefore, converges to λWT, Ω

♯ WT, Ω
−1 with 

respect to the operator norm ∥·∥ in H0
1(Ω). This results in the inversion formula

f = ∑
j = 0

∞
Id−λWT, Ω

♯ WT, Ω
j λWT, Ω

♯ g     with g = WT, Ωf (3.6)

valid for every initial data f ∈ H0
1(Ω). Here WT, Ω

♯ = PΩWT
♯ EΩ is the modified time-reversal 

operator formed by harmonic extension EΩ of the missing data, time-reversal WT
♯  defined by 

(2.4) and projection PΩ onto H0
1. Inversion formula (3.6) is the Neumann series solution for 

the inverse problem of full-field PAT.

Remark 3.2 (Iterative time-reversal algorithm). The Neumann series in (3.6) is the limit of 

its partial sums fk ≔ ∑k = 0
j Id−λWT, Ω

♯ WT, Ω
k λWT, Ω

♯ g . These partial sums satisfy the recursion

f0 = λWT, Ω
♯ g

fj = fj − 1 − λWT, Ω
♯ WT, Ωfj − 1 − g ,

(3.7)

with WT, Ω
♯ = PΩWT

♯ EΩ. This is an iterative algorithm producing a sequence fj j ∈ ℕ converging 

to f = WT, Ω
−1 g in H0

1(Ω). We call (3.7) iterative reversal algorithm for full field PAT. The 

form (3.7) will be used in the numerical solution. Because of the contraction property of 

the iteration Id−λWT, Ω
♯ WT, Ω < 1 the iterative time-reversal reversal algorithm is linearly 

convergent.

We note that for standard PAT, the idea of using time-reversal was proposed in [9, 7] for the 

case of constant sound speed, and in [10, 15] for non-constant sound speed. The Neumann 

series solution was first proposed in [32] and further developed in [32, 33, 36, 14, 34, 25, 29, 

18, 1]. Iterative reconstruction methods for variable sound speed based on an adjoint wave 

equation have been studied in [16, 5, 3, 11, 17]. Uniqueness and stability for standard PAT 

was studied in [39, 15, 32, 33, 23], just to name a few.

4. Numerical Simulations.

In this section, we present some of our numerical studies for the exterior single time wave 

transform. We consider the case of two spatial dimensions, and take Ω ⊆ ℝ2 as the unit 

disc. According to (3.6) any function f ∈ H0
1(Ω) can be recovered from data g = WT,Ωf 

via the iterative time-reversal algorithm (3.7). The numerical realization is described in the 
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following subsection. The numerical simulations were performed for each of the three sound 

speed profiles shown in the top row of Figure 1 and additionally for the constant sound 

speed cI = 1. The sound speed profiles cIII and cIV are adopted from [31] where cIII is 

shown to be trapping and cIV to be non-trapping. For the used radially symmetric sound 

speed profile cIII = c(∥x∥) the Herglotz condition d
dr (r/(c(r))) > 0 is satisfied which implies 

that cIII is non-trapping. As phantom we used numerical approximations of one smooth and 

two piecewise constant functions which are visualized in the bottom row of Figure 1.

4.1 Numerical implementation.

In the numerical realization, any function ℎ:ℝ2 ℝ is represented by a discrete vector 

ℎ xi i1, i2 = 0
N − 1 ∈ ℝN × N, where

xi = ( − a, − a) + 2ia/N    for    i = i1, i2 ∈ 0, …, N − 1 2

are equidistant grid points in the square [−a, a]2. The discrete domain I ⊆ {0, …, N − 1}2 

(where the discrete initial pressure is contained in) is defined as the set of all indices i with xi 

∈ Ω and we set J ≔ {0, …, N − 1}2 \ I. Following [12], we define the discrete boundary of I 
as the set of all elements (i1, i2) ∈ J for which at least one of the discrete neighbors (i1 + 1, 

i2),(i1 − 1, i2),(i1, i2 + 1), (i1, i2 − 1) is contained in I. The discrete version of the initial data 

f ∈ H0
1(Ω) is then an image f ∈ ℝI and the discrete version of the data g ∈ L2 Ωc  an image 

g ∈ ℝJ.

In the iterative time-reversal algorithm the forward transform WT,Ω as well as each factor 

in the modified time-reversal WT, Ω
♯ = PΩWT

♯ EΩ are replaced by discrete approximations. The 

discrete forward operator and the discrete time-reversal operator are defined by

WT, I:ℝI ℝJ :f WTf Ic (4.1)

WT, I
♯ :ℝJ ℝI :g PIWT

♯ EI g . (4.2)

Here WT :ℝN × N ℝN × N and WT
♯ :ℝN × N ℝN × N are discrete analogs of the forward 

wave equation and its time reversed version, EI a discretization of the harmonic extension 

operator and PI a discretization of the projection of the projection onto H0
1(Ω).

The numerical solution of the wave equation WT f and likewise the numerical solution of 

the time reversed version WT
#  are computed with the k-space method [6, 8, 21]. We use the 

k-space method with periodic boundary conditions on the rectangle [−a, a]2 as described 

in [11]. We choose a ≥ T +1 such that WT,I and WT, I
#  are not affected by replacing the free 

space wave equation with its (2a)-periodic counterpart. The discrete harmonic extension 

EI and the discrete projection PI are constructed by numerically solving (3.1) with the 

MATLAB-routine solvepde.
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4.2 Numerical results.

We first present results for data g = WT f without added noise. Figure 2 shows results with 

constant speed with relaxation parameter λ = 2 and 80 iterations. For smaller values of λ 
slightly better reconstructions have been obtained but required a slightly larger number of 

iterations. Figure 3 visualizes the pointwise error map fa − frec
a  for the non-constant sound 

speed profiles using λ = 1/2 and T = 2. We see that accurate results are obtained for all 

sound speed profiles. The best results were obtained for the sound speed profile cII, and 

the error functions do not contain any visible information of the original phantom. Because 

all reconstructions look equally well and very similar to the original phantom fa, we did 

not show them here. Additional simulations with other smooth and non-smooth phantoms 

indicate that smooth phantoms generally result in better reconstructions than non-smooth 

ones.

Next, in Figure 4, we present results for noisy data where WT
♯ f has been contaminated 

with normally distributed noise with a standard deviation δ of two percent of the maximal 

pressure value. In order to avoid inverse crime, data are simulated using a three times finer 

discretization than used for the reconstruction. We observe that in all cases the iteration 

process is stable when λ is chosen sufficiently small, i.e. 0 < λ ≤ 1/2, and the use of a 

stopping rule is not necessary. Moreover, the reconstructions are more accurate for smooth 

phantoms than for piecewise constant phantoms. Finally in Figure 5 we show results for the 

trapping sound speed cIV. Also in this case, the iterative time-reversal works well for all 

phantoms even though the theory developed in the previous Sections does not fully apply in 

this situation.

5. Conclusion.

In this work we studied an inverse source problem appearing in full field PAT. Image 

reconstruction amounts to the inversion of the exterior final time wave transform WT,Ω that 

maps the initial data f supported in Ω to the solution of the wave equation at fixed time 

T restricted to the complement Ωc. For non-constant sound speed, besides the work [13], 

to the best of our knowledge, inversion of WT,Ω is studied for the first time. We, for the 

first time, derived uniqueness and stability results. Moreover we showed convergence of the 

proposed iterative time-reversal reconstruction algorithm. For that purpose we have proven 

that Id−λWT, Ω
♯ WT, Ω is a contraction on H0

1(Ω) for all λ ∈ (0, 2) where WT, Ω
♯  is a modified 

time-reversal operator. We also derived a numerical realization of the iterative time-reversal 

algorithm. Numerical results show accurate reconstruction for all sound speed profiles and 

all initial data.
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Figure 1. Sound speeds profiles and initial pressure distributions.
Top: Three non-trapping (cII and cIII) and one trapping sound speed profile cIV that we 

employed in our simulations besides the constant speed of sound cI = 1. The white and 

black circles visualize the boundary of the imaging region which in our simulations is the 

unit disc. Bottom: A smooth phantom fa (left) and the two piecewise constant phantoms fb 

(middle) and fc (right) are employed in our numerical simulations.
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Figure 2. Results for constant sound speed.
Reconstructions (top) and corresponding point-wise errors (bottom) using constant sound 

speed cI = 1.
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Figure 3. Results for variable sound speed.
Point-wise errors (bottom) using different sound speed profiles and the smooth phantom fa.
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Figure 4. Exact versus noisy data for sound speed cIII.
From left to right: reconstruction, difference images to true phantom fa, and logarithmic 

error plot in dependence of the number of iterations. The top row shows results for exact 

data, the bottom row shows results for noisy data with standard deviation δ = 0.02. Here λ 
= 1/2 and T = 4. In this example, the observation time is twice as large as for the example in 

Fig 3, i.e. we have more data. This leads to a much smaller pointwise error for zero noise.
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Figure 5. Results for noisy data for trapping sound speed cIV.
Top row shows the reconstructions of the phantom fa, fb and fc. Bottom row: Corresponding 

difference images for to the true phantom. Here λ = 1/2 and T = 2
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