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	 Abstract
	 Aim. To evaluate the diagnostic performance 
of radiomics features of two-dimensional (2D) and three-
dimensional (3D) ultrasound (US) in predicting extrathyroidal 
extension (ETE) status in papillary thyroid carcinoma (PTC). 
	 Patients and Methods. 2D and 3D thyroid 
ultrasound images of 72 PTC patients confirmed by pathology 
were retrospectively analyzed. The patients were assigned 
to ETE and non-ETE. The regions of interest (ROIs) were 
obtained manually. From these images, a larger number of 
radiomic features were automatically extracted. Lastly, the 
diagnostic abilities of the radiomics models and a radiologist 
were evaluated using receiver operating characteristic (ROC) 
analysis. We extracted 1693 texture features firstly. 
	 Results. The area under the ROC curve (AUC) of 
the radiologist was 0.65. For 2D US, the mean AUC of the 
three classifiers separately were: 0.744 for logistic regression 
(LR), 0.694 for multilayer perceptron (MLP), 0.733 for 
support vector machines (SVM). For 3D US they were 0.876 
for LR, 0.825 for MLP, 0.867 for SVM. The diagnostic 
efficiency of the radiomics was better than radiologist. The 
LR model had favorable discriminate performance with 
higher area under the curve. 
	 Conclusion. Radiomics based on US image had the 
potential to preoperatively predict ETE. Radiomics based on 
3D US images presented more advantages over radiomics 
based on 2D US images and radiologist.

	 Keywords: two-dimensional ultrasound, three-
dimensional ultrasound, radiomics, papillary thyroid 
carcinoma, extrathyroidal extension.

INTRODUCTION

	 The prevalence of thyroid carcinoma, the 
most common malignant endocrine tumor, has 

rapidly increased worldwide over the past few years. 
Papillary thyroid carcinoma (PTC) is the most common 
pathological type, constituting around 80% ~ 90% of 
thyroid cancer cases (1, 2). Patients with PTC have a 
good prognosis, and more than 90% survive for more 
than 10 years after treatment (3). Although most PTC 
patients have low malignancy and better prognosis, 
nearly 10% experience recurrence and metastasis, 
highlighting their strong invasiveness (4).
	 Extrathyroidal extension (ETE) is an important 
factor associated with disease recurrence and metastasis 
in patients with PTC and impacts staging and the 
choice of operation (5). Growing evidence suggests 
that PTC patients with extrathyroidal extension have 
a significantly inferior 15-year survival rate than those 
without ETE (6, 7). Total/subtotal thyroidectomy is 
often indicated for patients with ETE, while patients 
without ETE only need resection of the affected thyroid 
lobe and isthmus, which preserves the function of the 
thyroid and parathyroid glands to a certain extent and 
reduce the contralateral recurrent laryngeal nerve 
injury (8). Therefore, predicting ETE preoperatively 
is critical for clinicians to choose the optimal surgical 
approaches.
	 Although many methods are currently used for 
ETE diagnosis, including magnetic resonance imaging 
(MRI), computed tomography (CT), and ultrasonic 
imaging examination, pathological biopsy remains the 
gold standards. Though fine needle aspiration (FNA) is 
widely acknowledged as the most accurate method to 
diagnose thyroid nodules before the operation, it provides 
less information on ETE (9, 10). MRI has the advantages 
of unlimited penetration depth and high spatial resolution, 
but it has limitations, including the presence of respiratory 
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P<0.05 is considered as significant

motion artifacts, high costs, is time-consuming, and is 
not suitable for patients with claustrophobia. CT enables 
a good evaluation of the tumor extension to surrounding 
tissue. Research by Seo et al. (11) showed that contrast-
enhanced CT exhibited good accuracy (83.2–98.8%) 
and specificity (89.8–99.4%) in detecting whether the 
tumor had invaded neighboring structures. However, 
its sensitivity is reportedly low, ranging from 28.6% 
to 78.2%. It should also be borne in mind that a CT 
examination requires ionizing radiation. US is the most 
common imaging modality for the clinical examination 
of thyroid nodules since it is cheap, convenient, 
repeatable and radiation-less. Moreover, ultrasound 
examination can comprehensively evaluate the interface 
between the thyroid tumor and the surrounding capsule 
(12). Shudong et al. indicated that the accuracy of MRI 
in predicting the minimum ETE was lower than 2D US 
(73.4% vs. 79.7%) (13). In a study of 181 patients with 
PTC, Kwak et al. found that the sensitivity of ultrasound 
examination was 65.2%, and the specificity was 81.8% 
when more than 25% of thyroid nodules were in contact 
with the adjacent capsule (14). 
	 Indeed, the diagnostic process is based on the 
subjective interpretation of radiological images. Due to 
the limitations of human visions, important information 
cannot be recognized. Over the past decades, quantitative 
imaging has emerged following the establishment of 
large databases and computer science, medical imaging 
and innovations in its post-processing methods (15). 
Radiomics is a new field based on machine learning 
in medical research, especially in oncology (16), such 
as cervical cancer, breast cancer, prostate cancer, lung 
cancer, rectum cancer, and musculoskeletal tumors 
(16-21). A radiomics workflow comprises several 
components, image acquisition and reconstruction, 
tumour segmentation, feature delineation, and model 
development (22). By extracting and analyzing many 
quantitative features from medical images, radiomics 
can improve disease diagnosis and prediction ability (23, 
24). In recent years, radiomics analysis has been applied 
to differentiate benign and malignant thyroid nodules and 
predict lymph node metastasis before surgery (25, 26).
Wang X et al. considered that 2D US radiomics could 
effectively evaluate whether ETE occurs in papillary 
thyroid carcinoma, yielding an AUC value of 0.824 
(8). With the development of ultrasound technology, 
the emergence of 3D US provides more possibilities in 
choosing the imaging method for thyroid disease. Kim 
et al. reported that compared to 2D thyroid ultrasound, 
3D had higher sensitivity for predicting ETE (66.7% 
vs. 46.4 %, P=0.03) (27). But at present, no reports 

on the application of 2D and 3D ultrasound radiomics 
to compare the diagnostic performance to evaluate 
extrathyroidal extension in PTC have been reported.
	 Therefore, this study aimed to compare the 
diagnostic performance of evaluation between 2D and 
3D ultrasound radiomics in predicting ETE in PTC 
patients to help clinicians select the optimal treatment 
strategy. 

MATERIALS AND METHODS

	 Patient data
	 This retrospective study has been approved 
by the Institutional Review Board of our institution. 
According to national laws and institutional requirements, 
the patients were informed of the study details and 
provided informed consent before the examination. 
72 patients who underwent thyroid ultrasonography in 
our institution between November 2020 and May 2021 
were included in this study. All patients underwent 
subtotal or total thyroidectomy within one week after 
the US examination. PTC was confirmed by pathology 
postoperatively. Exclusion criteria were as follows: (1) 
Thyroid nodule was too large to be completely displayed 
on ultrasonography (2) The maximum diameter of the 
largest section of the lesion in the 3D image or the 
largest diameter in the 2D image was < 5 mm (to avoid 
inaccurate segmentation) (3) Poor quality image (4) The 
patients had incomplete clinical information. The study 
workflow is displayed in Figure 1.

	 Ultrasound examination
	 The ultrasound device used in this study was 
the Phillips IU elite ultrasound system with a 12.5 
MHz linear array transducer for 2D US examination 
and a 13.5 MHz dedicated volume transducer for 3D 
US examination. All participants underwent 2D and 
3D US examinations performed by an experienced 
radiologist. The patients were placed in a supine 
position with a pillow underneath the neck to expose 
the neck fully. The radiologist assessed the US images 
and established a final diagnosis. The 3D images were 
obtained after collecting 2D US images. All images 
were acquired at identical instrument settings for 
depths, focus positions, and gain settings. During the 
inspection, the patient’s age, sex, the largest diameter 
of the lesion, nodule location (upper pole, middle pole, 
or lower pole), nodule position (left lobe, right lobe, or 
isthmus), nodule border (clear or fuzzy), internal echo 
pattern (nonuniform or uniform), tumor vascularization 
(rare or abundant) were recorded (Fig. 2). Based on the 
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AJCC guidelines, ETE was diagnosed when one of the 
following criteria was present: (1)>25% of the primary 
tumor perimeter is in contact with the thyroid capsule; 
(2) the glands between the lesions and thyroid are not 
visible; (3) the primary tumor invades beyond the 
thyroid capsule and invades the surrounding structures, 
such as larynx, oesophagus, recurrent laryngeal nerve, 
trachea, vasculature, the strap muscles or esophagus.

	 Histopathological analysis
	 Two experienced pathologists with 9 and 
12 years of experience,  respectively,  evaluated the 
histopathology of tumor specimens. PTC specimens 
of paraffin-embedded slices were conducted by 
hematoxylin and eosin (H&E) staining. According 
to the guidelines published by the American Thyroid 
Association (ATA), the pathologists evaluated the 
extrathyroidal extension features and patients were 
divided into two groups: ETE and non-ETE groups. 

	 Drawing the region of interest (ROI)
	 The ROIs of 2D and 3D images were drawn 
manually by two experienced radiologists (8 and 10 
years of relevant experience, respectively) using ITK-
SNAP 3.8 software (Cognitica, Philadelphia, PA, 
USA) (https://www.itksnap.org). The 3D images were 
drawn layer by layer to represent the volume of the 
whole tumor. All tumor regions were defined by the 
overlapping region of two ROIs independently drawn 
by two radiologists. In case of disagreement, additional 
reading sessions were conducted until a consensus was 
reached.

	 Radiomics feature extraction
	 Texture analysis was performed on the acquired 
ultrasound images of 72 patients. Radiomic features 
were extracted by the PyRadiomics package, which 
was imported from the Python programming language. 
Subsequently, a total of 1693 features were extracted 

Figure 1. The patients workflow in this study. PTC papillary thyroid carcinoma.
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Figure 1. The workflow in this study. PTC papillary thyroid carcinoma.

for each patient, including First Order Statistics (19 
features), Shape-based (3D) (16 features), Shape-based 
(2D) (10 features), Gray Level Cooccurrence Matrix 
(24 features), Gray Level Run Length Matrix (16 
features), Gray Level Size Zone Matrix (16 features), 
Neighboring Gray Tone Difference Matrix (5 features), 
and Gray Level Features Matrix (14 features).

	 Feature selection and model construction
	 First, Levene tests were performed to verify 
variance homogeneity. For two groups with continuous 
variables, the Student’s t-test was used when each data 

set satisfied the homogeneity of variance; otherwise, the 
Mann-Whitney U test was performed. Then, the LASSO 
regression analysis was adopted to remove inappropriate 
features and further select the most significant radiomic 
features. Given the small sample size in this study, the 
performance of each classifier was evaluated using 3*3 
nested cross-validation, without retaining a single set as 
the independent test sets. During nested cross-validation, 
the inner cross-validation loop was used to tune the 
parameters, and the outer loop was used to optimize 
the parameters (28). The external loop contains a 3-fold 
CV, and the internal loop contains a 3-fold CV using 
the training samples of the outer loop. All the obtained 
texture feature datasets were divided into three non-
overlapping subsets, one of which was used as the testing 
fold and the other two subsets were used as the training 
fold to train the model that adopted another 3-fold CV 
to adjust parameters (internal loop). The performance of 
the constructed model was evaluated by using the testing 
set. For the external loop, this process was repeated three 
times, and each time a different subset was selected to 
train the model, another different testing set was selected 
to test the obtained model. As shown in Figure 3, three 
different models were generated to develop a prediction 
model (LR, MLP, SVM). Finally, the AUC value was 
used to assess their performance. For each 3-fold CV, 
the AUC could assess the performances of different 
radiomics methods according to all texture feature 
datasets and be an important performance indicator to 

Figure 2. Radiomics workflow in this study, including tumor delineation from two-dimensional thyroid ultrasound, radiomics feature 
extraction from delineated tumor regions, feature selection for building an optimal signature, radiomics model construction, and statistical 
analysis for radiomics model assessment.

Figure 3. Scheme of 3*3 nested cross-validation method used to 
evaluate the performance of each classifier. The inner loop was 
used to adjust parameters, and the outer loop was used to train 
with optimal parameters.
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find the optimal hyperparameter of each classifier in the 
internal loop. The schematic presentation of the steps for 
2D US radiomics analysis is shown in Figure 2.

	 Statistical analysis
	 We used the Python programming language 
(version 3.8, Python Software Foundation) ( https://
www.python.org/) to extract and select the radiomic 
features and build the prediction models. The software 
packages “Scikitlearn” (https://scikit-learn.org/) and 
“Matplotlib” (https://matplotlib.org/) were used in 
this research. In this study, tests of normality were 
conducted using the Shapiro-Wilk test. Measurement 
data that satisfied a normal distribution were expressed 
using mean ± standard deviation (SD). Other values 
were reported as the median and interquartile range 
(IQR). The independent Sample t-test was adopted for 
normally distributed measurement data, otherwise,the 
Mann-Whitney U test was used for non-normally 
distributed measurement data. Count data were 
expressed as frequency (percentage), and compared by 
the Chi-square test or Fisher exact test. A P-value < 0.05 
was statistically significant.

RESULTS

	 Patient characteristics
	 Seventy-two PTC patients with a mean age of 
41.50±11.27 (range, 20-71years) were enrolled in this 

research and classified into the ETE (n=38, 42.87 ± 9.26 
(23-62 years)) and non-ETE (n=34, 39.97±13.13, (20-
71 years)) groups according to the pathological results. 
The basic clinical characteristics of the included patients 
are represented in Table 1. No significant difference was 
found between the ETE and non-ETE groups(P>0.05).

	 Radiomic feature extraction/selection
	 Based on the 2D or 3D thyroid ultrasound 
images, 8 categories and 1693 radiomic features were 
extracted. After the t-test, the results indicated that 217 
radiomic features closely related to ETE were acquired 
from 2D images (p<0.05) and 125 radiomic features 
were obtained from 3D US images. In this study, LASSO 
regression with L1 regularization was further used to 
select the optimal radiomics features. The complexity 
depends on the lambda (λ). According to 10-old cross-
validation, the results indicated that when extracting 2D 
image features, the models had the lowest mean squared 
error (MSE) when λ was 0.038. When the λ was 0.017, 
the MSE of the models used to extract 3D image features 
was the lowest. After performing the LASSO regression, 
11 and 16 best radiomic features were screened for 2D 
and 3D US. It is widely acknowledged that LASSO is 
a machine learning regression analysis technique that 
can reduce model over-fitting and improved prediction 
performance. It is also regarded as a promising method 
for selecting significant features through regularization 
selection (29). 

Figure 4. The average ROC curves and AUC values of three classifiers and the radiologist. (A) The average ROC curves of 2D ultrasound. 
(B) The average ROC curves of 3D ultrasound. LR, logistic regression; SVM, support vector machines; MLP, multilayer perceptron; ROC, 
receiver operating characteristic; AUC, area under the receiver operating characteristic curve; 2D, two-dimensional ultrasound; 3D, three-
dimensional ultrasound.
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	 The 11 best radiomic features in 2D US image 
were gradient_glszm_zone percentage, logarithm_glcm_
Idn, logarithm_glrlm_long run emphasis, logarithm_
glrlm_long run high gray level emphasis, squareroot_
glcm_cluster prominence, squareroot_gldm_large 
dependence high gray level emphasis, squareroot_glszm_
small area emphasis, wavelet-LHH_glszm_gray level 
non uniformity normalized, wavelet-LHH_glszm_high 
gray level zone emphasis, wavelet-LHH_glszm_low gray 
level zone emphasis, wavelet-LLL_glszm_size zone non 
uniformity normalized. 
	 The 16 best radiomic features in 3D 
US image were original_glszm_size zone non 
uniformity normalized, exponential_glcm_Idmn, lbp-
3D-m2_firstorder_maximum,lbp-3D-k_glcm_Imc1, 

logarithm_first order_Kurtosis, logarithm_first order_
Skewness,square_first order_minimum, squareroot_
glrlm_long run high gray level emphasis, wavelet-LLH_
first order_Kurtosis,wavelet-LHL_glcm_correlation, 
wavelet-LHH_first order_maximum, wavelet-HLL_first 
order_median, wavelet-HLH_glszm_small area low 
gray level emphasis, wavelet-HHL_glcm_sum entropy, 
wavelet-HHH_first order_median and wavelet-HHH_
glszm_small area high gray level emphasis (Table 2, 3).
	
	 Diagnostic performance of radiomics and 
radiologists 
	 In this study, the predictive performance of 
the radiologist was satisfactory, with an AUC value of 
0.65. In contrast, the average AUC values of the three 

Characteristic Non-ETE group (n=34) ETE group (n=38) P
Age(years) 39.97 ± 13.13 42.87 ± 9.26 0.279
Largest diameter(mm) 10.85 ± 5.6 10.10 ± 3.12 0.142
Sex

Female 20(58.82%) 28(73.68%)
0.182

Male 14(41.17%) 10(26.32%)
Tumor position

Upper pole 5(14.70%) 8(21.05%)
0.705Middle pole 20(58.82%) 19(50.00%)

Inferior pole 9(26.47%) 11(28.95%)
Tumor location

Left lobe 14(41.18%) 15(39.47%)
0.882Right lobe 19(55.88%) 21(55.26%)

Isthmus 1(2.94%) 2(5.26%)
Tumor border

Clear 14(41.18%) 16(42.16%)
0.936

Fuzzy 20(58.82%) 22(57.89%)
Internal echo pattern

Uniform 13(38.24%) 15(39.47%)
0.914

nonuniform 21(61.76%) 23(60.53%)
Tumor vascularization

rare 17(50%) 12(31.58) 0.921
abundant 17(50%) 26(68.42)

Table 1. Basic clinical data for our research group 

ETE, extrathyroidal extension; Non-ETE,without extrathyroidal extension.

Table 2. The 11 radiomic features from 2D images

Feature variable Coefficient
gradient_glszm_ZonePercentage -0.061170906
logarithm_glcm_Idn -0.017170469
logarithm_glrlm_LongRunEmphasis -0.068052136
logarithm_glrlm_LongRunHighGrayLevelEmphasis -0.055757102
squareroot_glcm_ClusterProminence -0.0182738
squareroot_gldm_LargeDependenceHighGrayLevelEmphasis -0.018482692
squareroot_glszm_SmallAreaEmphasis 0.026298401
wavelet-LHH_glszm_GrayLevelNonUniformityNormalized -0.08461716
wavelet-LHH_glszm_HighGrayLevelZoneEmphasis 0.034212287
wavelet-LHH_glszm_LowGrayLevelZoneEmphasis -1.66686E-15
wavelet-LLL_glszm_SizeZoneNonUniformityNormalized -0.045541489

2D, two-dimensional ultrasound.
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models LR, MLP, and SVM for 2D US were 0.744, 
0.694 and 0.733, respectively. Corresponding values 
for 3D US were 0.876, 0.825 and 0.867. These findings 
suggested that the radiomics models yielded better 
performance than the radiologist. The AUC values of 
each loop in the three models are shown in Table 4. 
Among them, LR yielded the best diagnostic efficiency. 
However, irrespective of the prediction model adopted, 
the average AUC value of 3D US was higher than 
2D US and traditional ultrasound examination, which 
indicated that the diagnostic performance of radiomics 
based on 3D thyroid images was better. Accordingly, 
radiomics based on 3D thyroid images has huge 
prospects for predicting ETE, especially when using 
the LR model. Figure 4 shows the average ROC curves 
of different models.

DISCUSSION

	 The PTC is associated with a higher incidence, 
but the mortality rate is considered lower. A study 
showed that the popularization of routine physical 
examinations and the increased resolution of high-

frequency ultrasound could increase the detection rate 
of PTC (30). Though PTC progresses slowly and has a 
good prognosis, its mortality is below 10%. However, 
almost 80% of PTC patients develop lymph node 
metastases (31). In some cases, aggressive phenotypes 
can be observed, such as capsule invasion (32). Patients 
with ETE had poorer outcomes and higher recurrence 
rates. Indeed, it is well-established that if ETE is not 
diagnosed before the operation, resurgery is often 
required, which increases the pain and economic burden 
of patients (33). Therefore, an accurate preoperatively 
diagnosis of ETE can help surgeons choose the optimal 
surgical treatment modality and reduce the risk of 
secondary operation. 
	 Since Woolner et al. first described ETE 
in 1961 (34), many studies have been performed to 
evaluated the ability of different imaging methods to 
predict ETE. Importantly, multiplanar section MRI 
can visualize the stereoscopic thyroid anatomy. MRI 
has been suggested as a complementary means of 
assessing large tumors or extensive ETE, especially 
the invasion of adjacent structures (35). In a study 
involving 132 PTC patients, Ran et al. reported that the 

Feature variable Coefficient
original_glszm_SizeZoneNonUniformityNormalized 0.050189505
exponential_glcm_Idmn 0.00956291
lbp-3D-m2_firstorder_Maximum -0.02454261
lbp-3D-k_glcm_Imc1 0.009770999
logarithm_firstorder_Kurtosis -0.213473329
logarithm_firstorder_Skewness 0.011900934
square_firstorder_Minimum -0.076861664
squareroot_glrlm_LongRunHighGrayLevelEmphasis 0.060849978
wavelet-LLH_firstorder_Kurtosis -0.019104844
wavelet-LHL_glcm_Correlation -0.009440222
wavelet-LHH_firstorder_Maximum 0.195095696
wavelet-HLL_firstorder_Median 0.07726559
wavelet-HLH_glszm_SmallAreaLowGrayLevelEmphasis 0.017818287
wavelet-HHL_glcm_SumEntropy -0.119020429
wavelet-HHH_firstorder_Median 0.072067993
wavelet-HHH_glszm_SmallAreaHighGrayLevelEmphasis -0.097617483

Table 3. The 16 radiomic features from 3D images

3D, three-dimensional ultrasound.

LR SVM MLP LR SVM MLP
2D 3D

Test set
Loop 1 0.695 0.760 0.695 0.972 0.958 0.923
Loop 2 0.776 0.762 0.615 0.727 0.755 0.706
Loop 3 0.762 0.678 0.773 0.930 0.889 0.846

Training 
set

Loop 1 0.867 0.862 1.000 0.969 0.990 1.000
Loop 2 0.854 0.865 0.820 0.991 0.983 1.000
Loop 3 0.838 0.910 0.804 1.000 0.963 0.966

LR, logistic regression; SVM, support vector machines; MLP, multilayer perceptron; 2D, two-dimensional ultrasound; 3D, three-dimensional ultrasound;  
AUC, area under the receiver operating characteristic curve.

Table 4. The AUC values of each loop in the three models
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radiomics based on a multiparametric MRI prediction 
model achieved AUC values of 0.96 and 0.87 in the 
training and testing sets, respectively (36). Another 
study by Jun Lin et al. showed that in 60 patients with 
PTC diagnosed by preoperative MRI, the radiomics 
model could achieve AUC values of 0.845, 0.928 and 
0.913 for T2WI, T2WI-FS and T2WI-combined after 
feature selection (37). It is widely thought that US is 
the most reliable method for screening thyroid nodules 
for clinical diagnosis. Gweon et al. reported that the 
accuracy of 2D US in predicting ETE was 60.8%, 
while the accuracy of 3D US was 66.2% [13]. Lee et 
al. reported that if more than 50% of the PTC perimeter 
was in contact with the neighboring thyroid envelope, 
the AUC values of ultrasound and CT examinations 
were 0.674 and 0.638, respectively (38). The accuracy 
was the highest when CT imaging and routine thyroid 
ultrasound examination were combined, yielding an 
AUC value of 0.744. However, imaging assessments 
are subjective, and the results may depend on the 
experience of radiologists. Compared with traditional 
imaging, radiomics converts medical images into 
mineable data through high-throughput extraction of 
quantitative features. It also allows the recognition of 
different features that humans cannot see and distinguish 
during conventional medical imaging analysis, thereby 
improving the accuracy of the diagnosis of ETE (39). 
These findings account for the fact that routine thyroid 
ultrasound examination yielded a lower diagnostic 
yield than radiomics for ETE in our study.
	 To our knowledge, 3D US radiomics has rarely 
been applied to research PTC patients with ETE. We 
also sought to compare the diagnostic performance of 
the radiomics features based on 2D and 3D US images 
and found a more favorable method to predict ETE 
before surgery. We found that the average AUC values 
of three models, LR, MLP and SVM, for 2D US were: 
0.744, 0.694, and 0.733, respectively. For the 3D US, 
the corresponding values were 0.876, 0.825 and 0.867, 
respectively. The average AUC values of each model 
were significantly higher for 3D US than 2D US for 
predicting ETE. Indeed, it is widely acknowledged 
that 2D US can only obtain image information of a 
single section, while 3D US can offer a comprehensive 
assessment of the entire tissue. In addition, the 
traditional 2D US image acquisition is not fixed, which 
leads to the low repeatability of the extracted image 
texture feature parameters, which can be solved using 
3D US technology. Indeed, better prediction efficiency 
is obtained with more valid data extracted from 3D 
images compared to 2D imaging. In this study, LR 

yielded optimal results, which showed that this model 
has huge prospects for predicting ETE. 
	 In this research, a 3 × 3-fold nested cross-
validation (nCV) scheme was used for reliable 
evaluation of the classification performance. It is well-
established that nCV is an effective method to obtain 
an optimal prediction model by combining feature 
selection with machine learning parameters (40). A grid 
search was carried out in the internal part loop to acquire 
the optimal hyper-parameters for each training data set 
in the external loop. An outer loop was performed to 
evaluate the classification performance and obtain the 
performance measures within the validation fold (41). 
An increasing body of evidence suggests that nCV can 
avoid over-fitting and data dependency, accounting for 
its extensive use in the machine-learning analysis of 
neuro-imaging (42-44). This method can harness the 
available data and prevent circular analysis. 
	 Nevertheless, the present research has 
certain limitations. First, the sample size was limited. 
However, it should be borne in mind that the nested 
cross-validation method can minimize the impact of 
small sample sizes and over-fitting. Moreover, only 
data from patients from a single center were analyzed, 
which limits the generalizability of our findings to all 
patients with PCT preoperatively.  Multicenter studies 
are warranted to further validate the results. Finally, the 
ROI was obtained manually, which might be affected by 
the radiologist’s subjective bias. Further studies should 
focus on improving ROI delineation by automatic or 
semi-automatic ROI segmentation.
	 In recent years, radiomics has rapidly developed 
to convert medical images into quantitative information 
that can be analyzed (45). Radiomic features capture 
tissue and lesion features, such as heterogeneity and 
shape, and can be used for clinical problem-solving 
alone or in combination with demographic, histological, 
genomic or proteomic data (46). Based on our findings, 
a comprehensive predictive nomogram model was 
established to better guide clinical diagnosis. Wang X 
et al. developed a radiomic nomogram model with high 
accuracy to predict ETE in patients with PTC (8). In 
the future, more useful information could be extracted 
by radiomics by establishing multi-parametric models 
and using multiple imaging (US, CT, MRI) radiomic 
features, which could be useful in guiding clinical 
decision-making.
	 In conclusion, radiomics yielded better 
diagnostic performance than humans, and radiomics 
models based on 3D thyroid US images were superior to 
2D thyroid US images. The 3D US radiomics approach 
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has the potential to predict ETE before surgery, and 
can assist clinicians in choosing the optimal surgical 
approach.
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