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Abstract 

The COVID‑19 pandemic caused lifestyle changes and has led to the new electricity demand patterns in the presence 
of non‑pharmaceutical interventions such as work‑from‑home policy and lockdown. Quantifying the effect on elec‑
tricity demand is critical for future electricity market planning yet challenging in the context of limited smart metered 
buildings, which leads to limited understanding of the temporal and spatial variations in building energy use. This 
study uses a large scale private smart meter electricity demand data from the City of Austin, combined with publicly 
available environmental data, and develops an ensemble regression model for long term daily electricity demand 
prediction. Using 15‑min resolution data from over 400,000 smart meters from 2018 to 2020 aggregated by build‑
ing type and zip code, our proposed model precisely formalizes the counterfactual universe in the without COVID-19 
scenario. The model is used to understand building electricity demand changes during the pandemic and to identify 
relationships between such changes and socioeconomic patterns. Results indicate the increase in residential usage , 
demonstrating the spatial redistribution of energy consumption during the work‑from‑home period. Our experiments 
demonstrate the effectiveness of our proposed framework by assessing multiple socioeconomic impacts with the 
comparison between the counterfactual universe and observations.

Keywords COVID‑19, Machine learning, Data synthesizer, Socioeconomic factors, Building energy performance 
simulation, Ensemble model

1 Introduction
In March 2020, the World Health Organization declared 
COVID-19 to be a global pandemic. To suppress the 
infection, governments enacted a number of social dis-
tancing policies (SDPs), such as lockdown, social dis-
tancing recommendations, and work-from-home orders. 
Such measures have led to a socioeconomic shock to the 
global systems. The environmental and climate  changes 

were notable  healthcare facilities also experienced chal-
lenge (Kaye et al., 2021), international supply chain were 
disrupteds (Inoue & Todo, 2020), affecting global econ-
omy (Shan et al., 2021), and tourism (Bureau, 2020).

Interlinked to these various socioeconomic changes, 
industrial energy and electricity systems experienced a 
considerable shift in demand, largely due to the partial 
or full closure of industrial activities. A global decline of 
5-6% is expected in both energy and electricity demand 
in developed countries, such as the US (9%), with larg-
est reduction expected in the European countries (11%) 
(International Energy Agency (IEA), 2020). On the other 
hand, residential energy demand is expected to  rise 
due to increase in home stay, remote  working, online 
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shopping, powering home appliances, and heating or 
cooling homes (Birol, 2020). The increase in the energy 
bills for residential consumers, could  further lead to 
some social vulnerabilities. 

To better decompose the pattern changes in energy 
consumption, we roughly define our analysis duration 
into four periods to manifest the different situation in 
Austin which shown in Table 1. Each period represents a 
unique stage while epidemic evolves by time. First period 
points to the moment when the COVID-19 just officially 
outbroke in the state, and second period states the imple-
mentation of opening policies from the Texas govern-
ment to abate the restriction of business and industrial 
behaviors. Third period marks the intensifying COVID 
cases after the open phases from July to August while the 
final period indicates the steady growth of COVID cases 
after the recovery from the previous wave.

The aim of this study is twofold. First, to develop a com-
putational model to estimate the energy demand in Aus-
tin, TX as if there was no COVID, i.e., a counterfactual 
synthesizer for electricity demand. We are in particular 
interested in residential electricity demand, aggregated 
by zip code. Second, using the developed model, we esti-
mate the impact of COVID by comparing our model’s 
output at different spatio-temporal scales with smart 
meter data. We inspect the relationship between energy 
consumption differences and social variables such as 
poverty, income level, and race data through different 
periods.

2  Related work
2.1  COVID‑19 and building energy demand
Since the pandemic began, lots of researchers have 
started to explore the effect of COVID-19 on electric-
ity demand in different places such as universities, resi-
dential buildings, and even at neighborhood level (Berg 
et  al., 2022; Abu-Rayash & Dincer, 2020; Gaspar et  al., 
2021; Abdeen et al., 2021; Abulibdeh, 2021; Bielecki et al., 
2021; Chihib et  al., 2021; García et  al., 2021; Bahman-
yar et  al., 2020). Berg et  al. (2022) aim to find the elec-
tricity consumption changes due to COVID-19 on 
single-family houses on rural Iowa. They find that 54 
percent of buildings had a significant change in their 
non-weather-related consumption in 2020 compared to 

their previous years. Abu-Rayash & Dincer (2020) have 
done the analysis for Ontario, Canada for the month of 
April and found that overall, the electric demand for the 
province of Ontario is reduced notably and daily demand 
reductions were observed on weekends. The results from 
Gaspar et  al. (2021) show that for university buildings 
energy consumption fell by 19 percent during the post-
pandemic year. They revealed that energy consumption 
variation was higher in libraries followed by teaching 
buildings. The analysis by Abdeen et  al. (2021) indicate 
that the imposed lockdown resulted in increasing resi-
dential demand by 11-20 percentage for 500 homes in 
city of Ottawa Canada. Abulibdeh (2021) investigates 
the impact of the pandemic on the spatial patterns of 
electricity consumption in six socioeconomic sectors 
(residential (villa and flat), industrial, commercial, gov-
ernment, and productive farms) in the State of Qatar 
and concluded that industrial and commercial sectors 
were the most affected by the pandemic. Bielecki et  al. 
(2021) too observe increase in daily electricity demand is 
observed with practically unchanged peak loads in region 
of Poland. Chihib et al. (2021) aims to measure the impact 
of closing the campus on the energy use of its different 
facilities and find that the situation of closing the campus 
facilities during the COVID-19 outbreak influenced the 
overall energy consumption of the campus. However, the 
impact magnitude varies from one category to another. 
The research category is the least influenced by the out-
break situation and library building is the most influ-
enced. García et  al. (2021) results show that residential 
customers have increased their consumption by  around 
15 percent during full lockdown and 7.5 percent during 
the reopening period. In contrast, globally, non-residen-
tial customers have decreased their consumption by  38 
percent during full lockdown and 14.5 percent during the 
reopening period. Bahmanyar et al. (2020) compares the 
impact of different containment measures taken by Euro-
pean countries in response to COVID-19 on their elec-
tricity consumption profiles and concludes that Spain, 
Italy, Belgium, and the UK with severe restrictions, the 
weekday consumption iss considerably reduced and 
energy consumption profiles are similar to pre-Pandemic 
weekend profiles for the same period in 2019. However, 
for countries with less restrictive measures, the decrease 
in power consumption was lower.

2.2  Socioeconomic status with energy consumption
Socioeconomic status is also a critical factor in energy 
consumption. Various areas will affect the business and 
residential behaviors which lead to the diverse patterns 
for different zip code areas (Harputlugil & de  Wilde, 
2021; Fu & Zhai, 2021). The review indicates that most 
of the relevant researches focus on the  technical side 

Table 1 Four stages definition in Austin of year 2020

Definition Period

Pandemic outbreak Mar. 29 ‑ Apr. 30

Texas Open Phase May 1 ‑ Jun. 30

Upsurge in COVID cases in Austin Jul. 1 ‑ Aug. 31

The steady increasing cases  phase Sep. 1 ‑ Dec. 31
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instead of social issues. Moreover, most of the study 
fields are at individual building scales due to the lack of a 
comprehensive dataset. Robinson et al. (2019) argue that 
spatial variety of social vulnerability in households that 
the assessment of energy poverty should be determined 
by a geographically weighted index. Elnakat et al. (2016) 
have done the zip code level research for the correlation 
between the socioeconomic distribution and energy con-
sumption in San Antonio, Texas. Gender, age, and income 
level have been linked to the dynamic influence of energy 
utilization. High energy consumption communities 
are able to link with higher levels of education, income, 
owner-occupied percentage while the population density 
is on the contrast side. Prol & Sungmin (2020) demon-
strate the overall decreasing energy consumption during 
COVID-19 in country scale. They also state the nonlinear 
relationship between policy stringency and daily reces-
sion in electricity usage. Developing a nonlinear model 
to address the interrelation between energy consumption 
and social factors is urgent. However, few studies tackle 
the social issues in the energy domain with a nonlinear 
relationship driven by machine learning models. Those 
are being said by Harputlugil & de  Wilde (2021), either 
too focused on the technical parts or lack of the data on 
evaluating stage.

2.3  Statistical methods in energy consumption
Methods for predicting energy consumption can be cat-
egorized into two types: physical models and statistical 
models. This study applies statistical methods due to its 
light demand for computational resources and its re-
productivity over each smart meter data. There are sev-
eral papers using linear methods like Berg et  al. (2022); 
Abdeen et  al. (2021). However, those methods require 
equations that are defined by researchers. The manu-
ally defined relation are not necessarily suitable for all 
types of energy data. In addition, it is a time-consuming 
process. Finer resolution smart meter data also leads to 
the inadequacy of explaining energy consumption data 
with merely linear models. In recent years, due to the 
enhancement of machine learning techniques, there 
are also some studies that applied machine learning 

techniques to analyze energy consumption (Abu-Rayash 
& Dincer, 2020; Olu-Ajayi et  al., 2022; Robinson et  al., 
2017). Abu-Rayash & Dincer (2020) apply k-means clus-
tering to identify consumption behaviors while Olu-Ajayi 
et al. (2022) investigate multiple machine learning meth-
ods to predict the building energy data. In the compari-
son by Olu-Ajayi et  al. (2022), they state the superior 
performances from machine learning methods. Moreo-
ver, the same suggestion is shown up in Robinson et  al. 
(2017)’s study states that XGBoost surpassed the linear 
regression in their study. Still, there are few applications 
that apply a large dataset with more than thousands of 
instances with a sub-hourly scale to understand energy 
consumption.

2.4  Research aims
This research plans to quantify the impact of COVID-19 
on a fine scale. Particularly, this study targets to iden-
tify the non-linearity of energy consumption based on 
400,000 smart meters using an ML-based data synthe-
sizer in Austin. Therefore, the aims of our work are: 

1) Utilizing a large dataset with more than 400,000 
smart meters to quantify the impact of COVID-19.

2) Developing multiple machine learning models to 
synthesize the energy demand data in a “without 
COVID-19” scenario.

3) Establishing an ensemble method to combine the 
output from multiple models and a detailed compari-
son between different weighting schemes.

4) Conducting an in-depth city-scale analysis for energy 
demand variation due to the impact of COVID-19.

3  Methodology
The overall flowchart of the methodology to analyze 
disaster-based impact on energy consumption is shown 
in Fig.  1. The procedure starts with the data collection 
including environmental data and smart meter data. 
Then, the smart meter data is regrouped to reduce the 
initially large number of customer types. The follow-
ing preprocessing procedures include the quality check 

Fig. 1 Overall flowchart for the methodology
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that examines the integrity of the smart meter data and 
the normalization based on the meter used at each tar-
get time step. Then, the ensemble model is developed 
to investigate the difference between the energy con-
sumption in pre-COVID and during-COVID period. 
Finally, the impact of COVID-19 on the energy demand 
is analyzed.

3.1  Preprocessing
3.1.1  Building type aggregation
Due to the large number of customer data types, 
we reorganize the smart meter data into residential, 
commercial, and other types based on their build-
ing types. We use correlation to validate the uni-
tarity of the used building types as the criterion of 
the regrouping. For each smart meter data, the Pear-
son correlation coefficient with other data are cal-
culated and aggregated by their metadata like zip 
code and building type. After investigation, the cor-
relation matrix of building type level is generally 
higher than the others (individual and aggregated at 
zip code level). The result of the correlation analysis 
indicates that the building type is highly related to 
energy consumption patterns. For instance, among 
all the commercial building types, restaurants have 
similar patterns with the fast food restaurants, and 
convenience stores are also alike in their electric-
ity usage patterns. Also, the residential buildings are 
often associated such as the type “GARAGE APART-
MENT” related to the type “MULTI FAMILY”, indi-
cating the similarity between the energy usage data of 
close building types. Based on the result of this pre-
analysis, this aggregation is included in the proposed 
framework to accelerate the analysis.

3.1.2  Quality check
To match the temporal resolution of the environmental 
data and improve the efficiency of the whole process, the 
raw 15-minute resolution energy consumption data are 
resampled to coarser time scales such as hourly, daily, 
and weekly. Based on the target time frequency, a prelim-
inary quality scrutinization is applied to check the data. 
The checking method is that the data would be approved 
if the number of data within the desired frequency is 
more than half of the total number. After that, we trim 
the extreme values from the data which are 5% data from 
top and bottom respectively.

3.1.3  Normalization
The normalized energy consumption data EijX is com-
puted as

where i, j, and X are the start, end time step, and the tar-
get category, respectively, and C is the number of data in 
the category. Nij is the number of data from i to j, and ET 
is the energy consumption at the target moment T which 
starts from i to j. M denotes the area of the building.

3.1.4  Feature design
Three features are used to model energy consumption, 
time components, and outdoor temperature. Time fea-
tures are generated as the sine and cosine waves of a day, 
sine and cosine waves of a year, day of year, and month. 
The outdoor temperature is extracted from the weather 
station including in Integrated Surface Database (ISD) of 
National Centers For Environmental Information, NOAA 
at Camp Marby, Texas.

3.2  Ensemble model prediction
In practice, several regression models are available to esti-
mate energy consumption, but none of them is perfectly 
accurate and each method may be making mistakes in dif-
ferent facets. Thus, stacking multiple different regression 
methods may lead to performance improvement over indi-
vidual models. Multi-model ensemble is a method in which 
the predictions of a collection of models are weighted 
averaged. In our study, Random Forest(RF) (Ho, 1995), 
XGBoost (Chen & Guestrin, 2016), AdaBoost (Adaptive 
Boosting) (Freund & Schapire, 1997), Histogram-Based 
Gradient Boosting Regressor(HGBR), and LightGBM (Ke 
et al., 2017) are deployed as the predictor in this case. Five 
voting regressors are selected through comparative tests. 
The neural network was originally considered in the experi-
mental phase, but since this approach created a  much 
smoother result than the others, we excluded this method 
in this study to avoid overfitted prediction.

In this work, the ensemble learning model mainly 
includes two stages. The first stage is to use 10-fold cross-
validation with training data. The algorithm with better 
accuracy and operation performance is selected to be 
voted. According to the training accuracy of each algo-
rithm, the dynamic weight of it are set. For the weighting 
scheme, the formula is presented as,

where n is the number of validation data, and xi and 
x are the prediction and observation of the energy 
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consumption. The weight defines the preliminary confi-
dential index of each method. The second stage is to out-
put the preliminary prediction result from each regressor, 
and then calculate the final result using the voting algo-
rithm. The generated result will be compared with the 
observation to see the impact of the disaster.

To evaluate the effectiveness of the proposed method, 
mean absolute error (MAE), root mean squared error 
(RMSE), and mean absolute percentage error (MAPE) are 
calculated. Using MAE as one of the evaluation metrics 
is to see the overall differences between the observations 
and the predictions, and using MAPE is to investigate 
the percentage difference, which reflects the differences 
in a comparable way, since the number is divided by the 
observation. RMSE is to inspect the outliers of the predic-
tion so that we could see the degree of generating unrea-
sonable prediction by that index. To further confirm that 
the ensemble model could properly reproduce the energy 
consumption through the training data, we first compare 
the performance between each method including in the 
ensemble model using 10-fold cross-validation. Then, 
three different weighting schemes are presented to see 
the accuracy of stacking the prediction from single esti-
mators. Finally, the ablation test is implemented to dem-
onstrate the stability of the ensemble mode.

3.3  Analysis on the impact of COVID‑19
To investigate the impact of COVID-19, the ensem-
ble model described in the previous section is applied 
to generate the synthesized energy consumption using 
input data like time features i.e. day of year, hour of day, 
and seasonality and the air temperature in this study. 
The experiment setup uses the period before COVID-19, 
Years 2018 and 2019, as the training data, so that the pre-
diction from the model is treated as the counterfactual 
output in the “without COVID-19” scenario in the future. 
Therefore, to quantify the difference between the periods 
of COVID and pre-COVID, the observation in 2020 and 
the counterfactual prediction in 2020 using the ensemble 
model are compared in Section 4.

In this study, total 402785 smart meters data in Austin 
area are collected by the City of Austin with 43 build-
ing types, covering 46 zip code areas, under 5 different 
counting measurements. The period in the dataset mostly 
covers from 1, Jan. 2017 to 1, Oct. 2021 while the raw 
temporal resolution is 15 minutes. However, due to the 
aim of analyzing the long-term impact of COVID-19, we 
examine the data on different temporal resolution which 
are hourly, daily, and weekly. The date of Texas govern-
ment policies response are referred from Intelligent Envi-
ronments  Laboratory and Environmental  Engineering 
(2021) while the demographic and economic data of Aus-
tin are referred from Austin (2021).

To further analyze the social impact of COVID-19, 
the  Social Vulnerability Index (SVI) provided by Cent-
ers for Disease Control and Prevention (CDC) is utilized 
to investigate the relationship between socioeconomic 
status and building energy consumption. The CDC SVI 
dataset is collected in 2018 and indicates the vulnerabil-
ity status of every U.S. Census Tract. To ensure the SVI 
data is on the same geometric scale, we applied Cross-
walk Files released by Policy Development and Research 
(PD &R) from The U.S. Department of Housing and 
Urban Development’s (HUD’s) Office. Crosswalk Files are 
derived from data in the quarterly USPS Vacancy Data 
and are  highly responsive since the data updates quar-
terly. By using the residential ratio projected to each zip 
code level, we transferred the SVI index and race data 
from the scale of the census tract into the zip code level. 
Moreover, the race data by U.S. Census Bureau is also 
implemented in this study to demonstrate the correlation 
with energy consumption. We compare two kinds of race 
data: One is to separate the single race including White 
alone, Black or African American alone, American Indian 
and Alaska Native alone, Asian alone, and Native Hawai-
ian and Other Pacific Islander alone, and the other one is 
Hispanic or Latino.

On the other hand, the percentage of energy consump-
tion differences based on each zip code is determined 
based on the difference between the output of the pro-
posed model and real observations during the  COVID 
period. We also consider the  raw difference in energy 
consumption, but since it will make the difference too 
huge to observe the insight of different social variables, 
this study use percentage form to conduct the analysis. 
We then establish the linear relationship between social 
variables and the percentage of energy consumption to 
see if solid dependencies are aligned. However,

4  Results
4.1  Model validation
Table 2 summarizes the performance between Ridge lin-
ear regression, XGBoost, and our ensemble methods. The 
table demonstrates the improvement compared to the 
linear methods, and also for single nonlinear ML meth-
ods like XGBoost.

4.1.1  Weighting scheme test
There are multiple weighting methods to merge the 
result for the estimators, and inspired by Merrifield et al. 
(2020), this study applies the variant of RMSE distance 
weighting, that support the scaling based on the MAE, 
RMSE, and MAPE metrics. They conclude the advantage 
of the RMSE-based independence scaling, which include 
allowing for degrees of dependence. Therefore, in this 
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section, a simple comparison that uses different metrics 
as the weighting schemes are summarized.

Table  3 shows the result using different strategies to 
generate the weight for the ensemble model. Overall, we 
could observe that both commercial and residential types 
of energy consumption are better estimated by RMSE 
and MAPE schemes. They achieve the best performances 
compared to using MAE or just averaging the result 
equally. Although using MAE as weighting can achieve 
the nearly lowest MAE values, the performances of other 
two metrics are not as precise as the RMSE and MAPE 
ones. Besides different strategies, we could also conclude 
the stability of the ensemble model. The metrics of all 
four schemes are close and comparable with each other, 
which indicates the relatively high stability to those single 
models in Table 4. MAPE scaling scheme is deployed to 
the commercial data while the  RMSE scaling scheme is 
deployed to the residential data in the later sessions.

4.1.2  Ablation study on each algorithm
To further validate the stability of the ensemble model, 
the ablation test is also implemented. In the experiment, 
we trim one method out at a time to compare the perfor-
mance without that predictor, and the result is shown in 
Table 5. We could find consistency in the result of Table 4 
and 5 that commercial data is more depend on the pre-
diction of AdaBoost with the proof of largest values on 
all the metrics. However, the logic is not the same as the 

Table 2 MAE, RMSE, and MAPE differences of different ML 
methods

Evaluation Metrics Ridge XGBoost Ensemble (ours)

Commercial Type

    MAE 124.61 118.28 115.22
    RMSE 151.01 136.94 132.97
    MAPE 19.26 18.27 18.11

Residential Type

    MAE 251.46 70.94 63.53
    RMSE 300.60 97.85 83.99
    MAPE 16.20 4.50 4.08

Table 3 Weighting Scheme comparison for MAE, RMSE & MAPE

Weighting Strategy 1 / MAE 1 / RMSE 1 / MAPE Average

Commercial Type

    MAE 117.85 119.48 117.47 118.59

    RMSE 139.62 135.11 142.21 142.65

    MAPE 19.28 18.42 18.01 0.18.91

Residential Type

    MAE 65.83 63.86 66.85 65.76

    RMSE 90.06 85.66 84.25 92.39

    MAPE 4.21 4.11 4.31 4.47

Table 4 Cross Validation comparison for single Method using MAE, RMSE & MAPE

Evaluation Metrics AdaBoost Random Forest HGBR XGBoost LightGBM

Commercial Type

    MAE 112.67 117.82 126.06 132.48 125.34

    RMSE 129.27 139.73 147.59 158.54 149.46

    MAPE 17.47 18.47 19.84 20.72 19.72

Residential Type

    MAE 102.47 64.19 68.37 68.60 68.95

    RMSE 126.08 89.80 95.76 92.24 92.17

    MAPE 7.22 4.10 4.39 4.42 4.42

Table 5 Ablation Comparison for each method

Methods Without AdaBoost Random Forest HGBR XGBoost LightGBM

Commercial Type

    MAE 122.09 121.26 116.72 116.98 117.26

    RMSE 147.41 141.87 139.29 136.76 142.72

    MAPE 19.99 19.13 18.01 18.54 18.82

Residential Type

    MAE 66.08 67.60 63.04 68.27 63.57

    RMSE 91.07 88.39 89.78 88.64 83.71

    MAPE 4.21 4.31 4.31 4.51 4.17
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result of residential energy consumption. The perfor-
mances without each method are close, and for RMSE, 
it is surprising that the one without AdaBoost has larg-
est value since there is a gap with the poor result of Ada-
Boost in Table 4 with other methods. That also confirms 
the stability of the ensemble method and the predictabil-
ity of residential energy usage.

4.2  Counterfactual model prediction
4.2.1  Changes during social distancing period
A preliminary visualization between the period prior to 
and during COVID-19 is shown in Fig. 2. We can see that 
the energy demand in different periods has unique pat-
terns during the same day. In commercial buildings, the 
demands in the prior period are always higher than the 
data during the pandemic, and the variation between 
daytime and night time is also higher. That is consist-
ent with the fact that after the implementation of SDPs, 
most of the commercial activities are forced to stop. For 
the residential building, the overall difference is not that 
large, but the patterns are slightly different during the 
working hours (8:00 - 17:00), there is more energy con-
sumption during the COVID-19 period, which matches 
the working from home policies.

In order to further investigate the impact that has been 
brought by the pandemic, the monthly comparisons 
between the counterfactual predictions and the obser-
vations are shown in Fig.  3. The way of visualization is 
using the observations to subtract the predictions from 
the ensemble model, and each distribution plot repre-
sents the aggregation of differences. This figure demon-
strates the impact of COVID-19 since March 2020. The 
peaks of commercial distributions start to shift since the 
breakpoint of COVID-19 (stage (1) in Fig.  3), which is 
moving from more usage than before to less usage until 
June. Also, the residential distributions are affected to 
move from the middle of the range of over usage dur-
ing the same period. The reason is the implementation of 

SDPs. Due to the work-from-home, lockdowns, or even 
the social distancing recommendation, people change 
their patterns of life to avoid the pandemic. Those poli-
cies such as staying home for work directly enlarge the 
energy consumption of condos, townhouses, and single 
family building types, and the restaurant or offices are 
decreased during the daytime by the same basis.

Starting from May 1, 2020, Texas Governor Greg 
Abbott announces the state may begin the first phase of 
the three-phase reopening plan in Texas from SDPs as 
the stage (3) in Fig. 3. Retailers, restaurants, movie theat-
ers, museums and libraries, contact-free outdoor sports, 
places of worship, and single-person offices, nearly all 
of which are subject to a 25% occupancy restriction are 
reopened since the first phase. Face coverings are only 
recommended in Texas and no state or local official can 
impose a civil or criminal penalty for failure to wear a 
face covering. In the regard proposed by The Governor’s 
Report to Open Texas, the state’s chief medical officer’s 
portion of the report requests, among other things, con-
tinued social distancing, limited physical contact, and use 
of face coverings and, in support of continued telecom-
muting, advises individuals to “stay home if you can.” 
Those three phases gradually fix the deviation of the dis-
tribution brought from the impact from COVID-19 in 
Fig. 3. During May and June, the residential distributions 
progressively shift back to the middle, and the commer-
cial distributions are moving to the right like the esti-
mations in February, hinting back to the patterns prior 
to  the pandemic. Those findings illustrate the fact that 
citizens in Austin are following the policies to re-operate 
their lives back to the pattern before COVID-19.

However, COVID-19 had not been ended there. 
Another peak that we could identify from the COVID 
cases plot along the time in Fig. 3 is July. Austin was hit 
by another wave in July while recovering, and this made 
the patterns of energy consumption fluctuate again. The 
distribution is moving back to what it was prior to the 

Fig. 2 Time series comparison during the period prior COVID‑19 and during COVID‑19 in residential buildings
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pandemic, and related to the peak cases number, the dis-
tribution starts to change again. The commercial energy 
consumption data is mostly predicted in the range of val-
idation, but starting from August, the impact of COVID 
makes that shift to less energy usage again, which forms 
a new usage pattern gradually. Relatively, the residential 
data suddenly deviates from the trend of moving less 
than pre-COVID period. Those observations conclude 
the high correlation with the COVID-19 cases.

During the latter months of 2020, the daily positive 
cases of COVID-19 just stayed at a certain level con-
stantly compared to the first half of 2020. A permanent 
change in the data is formed. Citizens in Austin seem to 
be more accustomed to the adaptive lifestyle for COVID. 
The motion starting from July in the commercial distri-
bution finally ended at a stage that used less electricity 
in most of the time. On the other side, the result com-
paring the counterfactual universe and observations 
demonstrates that demanding more energy from residen-
tial buildings during December. The dynamics in both 
building types all conclude the fact that COVID-19 has 
changed how people live in Austin in a permanent way.

4.2.2  Linked to the social: income and race
Decomposing the socioeconomic impact of COVID-19 
in Austin is illustrated in this section. Figure 4 depicts the 
difference between the counterfactual universe, which is 
assumed to be the energy usage without the pandemic, 
and the observation which is the actual energy usage 
during the pandemic. The red area means that more 
usage is detected while the blue area is less. The socio-
economic references are presented in Fig. 4(e, f ) based on 
the data from Austin (2021), including the race distribu-
tion and the median income level for the whole Austin 
area in zip code level. The residential consumption is 
uniform in  that almost the same color covers the whole 
Austin in Fig.  4. The result indicates a huge over usage 
of the residential type since the implementation of SDPs 
by comparing Fig.  4(a) and (b). The statistics especially 
depict the focus on the west side and north side of Aus-
tin, and that can be related to Fig.  4(e, f ) where people 
with higher income live. That relation between income 
and residential building basically implies that people with 
higher incomes increased their electricity demand to 
adapt the pandemic.

Fig. 3 Comparison of energy consumption patterns ‑ prior and during the SDPs



Page 9 of 16Dai et al. Computational Urban Science            (2023) 3:20  

Fig. 4 Spatial comparison of residential energy consumption patterns for (a) before implementations of SDPs, (b) after implementations of SDPs, 
(c) before Texas Reopening Phases, and (d) after Texas Reopening Phases in 2020, (e) Demographic distribution of Black or African American, and (f) 
Economic distribution for median household income
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To go a step further, the heatmap of the energy demand 
difference for residential buildings at the zip code level 
which is aggregated on a weekly scale is presented in 

Fig. 5. We can see the two pinnacles in April and July that 
former one is caused by the SDPs, but for the latter, the 
energy usage is enlarged since the increased time of using 

Fig. 5 Weekly energy demand difference (kWh) for residential buildings by zip code
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air-conditioning because people spend more time work-
ing remotely during the summer time. Moreover, Fig.  6 
illustrates the energy consumption patterns of the pinna-
cles in prior COVID and during COVID periods, which 
demonstrate the fluctuation of residents’ living habits. In 
Fig. 6 (a), people tend to awake later probably due to the 
absence of commuting time, and following larger energy 
consumption clearly indicates the change of demand by 
the SDPs. In the latter period after Texas Open Phases, 
Fig. 6 (b) shows the shift back in the morning while the 
overconsumption in the afternoon and night because of 
the extending policy of the SDPs which from company 
level instead of government level.

Besides looking for the spatial comparison, we also 
inspect the trend of how the SVI index and race distribu-
tion would interact with energy consumption differences 
through different phases during COVID. We applied the 
variables from the socioeconomic status domain in SVI, 
and five variables are selected as representatives while the 
code and detail descriptions are shown in Table 6. First, 

we conduct a linear regression model for each social vari-
able with the calculated percentage of energy consump-
tion difference through each period that we predefined 
in Table 1. Figure 7 demonstrates the distribution while 
the y-axis is the percentage energy consumption differ-
ences and the x-axis is the normalized value of SVI or 
race index. Every point represents one specific zip code 
area, and the regressed line illustrates whether the energy 

Fig. 6 Raw energy consumption comparison for period (a) after SDPs (b) after Texas Open Phases

Table 6 Selected SVI variables for analysis COVID‑19 impact

Variable Name Description

E_DAYPOP Estimated daytime population

MP_PCI Per capita income estimate

EPL_UNEMP Percentage of civilian (age 16+) unem‑
ployed estimate

F_THEME1 Sum of Socioeconomic Status variables

F_TOTAL Sum of all the SVI variables
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consumption tends to increase or decrease compared to 
synthesized data during that period. For instance, Fig. 7 
shows that the estimated income level is consistently 
positively correlated with energy consumption differ-
ence, which implies the assumption that higher income 
contributes to higher usage of residential electricity. 
Moreover, the increased slopes in phases 3 and 4 suggest 
a dominant sensitivity of COVID cases to the energy con-
sumption growth based on the state of affairs in phase 3 
and 4.

After concatenating the slope values of each period, 
Fig. 8 visualize the relationship between energy consump-
tion differences and social factors. For the SVI indexes, 
Fig. 8 (a) first shows the dynamic of different SVI indexes 
to reflect the impact of COVID-19 in different stages. The 
overall SVI indexes (F_TOTAL and F_THEME1) hint the 
lower energy usage in all four phases while the daytime 
population and the income level suggest a tendency for 
lower energy consumption during the pandemic. Figure 8 
(b) indicates the high variability among the single race in 
Austin. Compared to the inscrutable relationship among 
all races in phase 1 and 2, White alone and Asian have 
strong preferences for greater energy usage in phase 3 
and 4. What can be clearly seen in Fig.  8 (c) is the dis-
tinction between Hispanic and non-Hispanic in phase 3 
and 4. Those three figures not only indicate the general 
social causality in Austin due to the COVID impact but 
also illustrate the variety of energy poverty between dif-
ferent social factors.

5  Discussion
Compared to most of the previous works that predict 
energy demand by Neural Networks, using tree-based 
methods are more preferred in this study. During the 
implementation of the ensemble model, most of the 
machine learning methods are fundamentally evaluated 
such as multivariate linear regression, support vector 

machine, and neural network. However, the results from 
those boosting-based models are either generating too 
smooth data or being practically inefficient that costs too 
much time to tune. Especially for those periodic data like 
energy consumption, air quality concentrations (Zim-
merman et  al., 2018), and temperature (Qasem et  al., 
2019), some researchers state the importance of tree-
based ML methods. Although there are several studies 
that support using deep learning to build powerful neu-
ral networks with multiple layers, the attached overfit-
ting phenomenon, and the time-consuming preparation 
and preprocessing of the data are inevitable. On the other 
hand, those traditional ML models formed by decision 
trees are more robust with enough numbers of estima-
tors. Among all the methods in this research, XGBoost 
and LightGBM are more stable than AdaBoost and RF in 
the result from Section 4 because they involve both bag-
ging and boosting concepts in the fitting process. Despite 
the fact that both methods do not achieve the best per-
formance in the evaluation, they are more reliable due to 
the lower variation between different datasets. To con-
clude, picking samples from the ensemble tree is gener-
ally more efficient than calculating linear results from 
kernel fitting methods.

For the impact of COVID-19, most of the analysis 
results are associated with our expectations and preced-
ing researches. The rising demands in residential build-
ings are clear. In the temporal dimension, the trend is 
highly related to the implementation of SDPs as well as 
the peak of COVID-19 cases. Commercial buildings 
in general are more adapted to the policies, so the cor-
responding changes to the residential ones do not occur 
to the commercial distribution of July shown in Fig.  3. 
However, due to the complexity of the commercial type, 
the impact is difficult to be quantified. Commercial elec-
tricity demands, in some way, are varied from industry to 
scale. For instance, the usage patterns of office buildings 

Fig. 7 The scatter plot with linear regression between percentage energy consumption differences and normalized income estimation in each 
period
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Fig. 8 The slope value regressed with the percentage difference of energy consumption and (a.) SVI index, (b.) Single Race data, (c.) Hispanic
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and of restaurants can be divergent, which cause the 
normalized data noisy and hard to estimate. Same cir-
cumstance happens in the spatial dimension. Highly 
concentrated commercial data in the north and central 
Austin create a dilemma of lacking information for other 
areas, and also the spatial counterfactual estimations 
indicate heterogeneous changes in zip code level. Still, a 
few areas in central Austin are following the offset rela-
tionship with the residential data, which are probably 
near the campus. Residential demands, in contrast, have 
homogeneous performances in the comparison between 
counterfactual estimations and observations. Underesti-
mations of the residential energy consumption happen in 
almost all the areas, and the differences are more focusing 
on western Austin. In the context of that, higher income 
people, those who are  mostly located in that area, are 
more adapted to the change by SDPs could be observed 
by comparing Fig. 4(f ). Those who have room to spare are 
probably doing some non-physical job so that they could 
persist in  their living without physical contacts. Further 
inspecting Fig. 4(e), it’s clear that the zip codes with the 
highest earnings and the longest work from home pat-
terns are also the predominantly white neighborhoods, 
demonstrating the racially disparate impact of COVID-
19 on the city.

Nonetheless, income level is not the only social fac-
tor that involved to affect energy consumption in Aus-
tin. The energy injustice could be implied by Figs. 7 and 
8. Figure 7 reveals a consistency of positively correlated 
income level with energy consumption. This connection, 
on the one hand, supports that income level is crucial. 
However, on the other hand, this also suggests spatial 
diversity since there are not all the points are aligned 
with the line. Based on Fig. 8 (a), some SVI variables are 
inconsistent with the tendency of overusing energy. In 
fact, those indices imply a slight decline relationship with 
energy usage. This observation indicates the difficulty 
in determining the injustice community that not only 
lower-income people should be aware of but also other 
variables such as the dense daytime population area in 
this study. Furthermore, the community changes dynami-
cally with time. Race data which in Fig. 8 (b) suggest that 
even the same community could have high fluctuation. 
Asian is a good illustration of the fluctuation that it starts 
on the negative side but ends on the positive side. That 
trend, somehow, supports the fact that the vulnerable 
community in energy consumption during COVID-19 is 
a dynamic process and could be determined by our pro-
posed method.

It is also interesting to see the percentage difference 
generally increase in phase 3 and phase 4. As the state 
of affairs in phase 3 and phase 4 are essentially derived 
based on the sudden increase of COVID cases, it is 

surprising that the impact of the higher COVID case 
is greater than that of government policy. For exam-
ple, E_DAYPOP from Fig.  8 (a) and Asian from Fig 8 
(b) increase at the third stage, which implies that the 
Texas Open Phases strategy does not affect certain com-
munities since their energy usage increased instead of 
returning back to pre-COVID levels. In Fig. 8 (c), we can 
observe that the non-Hinpanic group, after the increase 
in COVID cases in Phase 3, has the ability to stay at home 
while being productive.

That finding also leads to injustice issues in long-term 
disasters in Texas. The lockdown could protect people in 
short term, but how should the local government act to 
balance between social injustice and domestic econom-
ics? This study preliminary demonstrates a way to find it 
using energy consumption and social factors on a varied 
spatial and temporal scale. We also observe that certain 
people still use more energy even though the government 
had announced the opening policy. Having the awareness 
of the pandemic and the ability to adjust themselves to 
the social changes is critical, and this study demonstrates 
a way to examine the group without these kinds of abili-
ties by the view of residential electricity.

6  Conclusion
The study presents a novel framework for counterfac-
tual modeling, and a thorough analysis of the long-term 
impact brought by COVID-19 on both commercial and 
residential energy demand. Most of the prior work that 
studied the impact was more focused on the discussion 
of the influence of COVID-19 using linear methods, 
which is insufficient to model the energy demand while 
the change by the pandemic. The counterfactual mod-
eling method uses multiple powerful Machine Learning 
methods and stacking the predictions from them with 
a weighting scheme that has been dedicated compared. 
With precise and stable counterfactual explanations, our 
analysis quantifies the effect of COVID-19 in the Austin 
area using 13 million sub-hourly data from over 400,000 
smart meters.

We confirm that both COVID-19 cases and govern-
ment policies are highly related to the energy consump-
tion data, and a permanent change to the patterns of 
electricity demand. Energy consumption during the 
COVID-19 pandemic is more affected by government 
policies at an early stage and has spatial variation while 
later with a greater impact from the actual COVID-
19 cases. The impact was also investigated through the 
socioeconomic perspectives, hinting that higher income 
areas had bigger energy demand shifts due likely to more 
sustained working-from-home possibilities. We also con-
duct a detailed analysis of evaluating the social dynamic 
by comparing the difference between the observed and 
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predicted energy consumption with multiple socioeco-
nomic variables and race data, which provide a novel 
perspective to observe the impact of COVID-19 on resi-
dential energy consumption.
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