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Abstract
Aims/hypothesis Beta cells control glucose homeostasis via regulated production and secretion of insulin. This function arises
from a highly specialised gene expression programme that is established during development and then sustained, with limited
flexibility, in terminally differentiated cells. Dysregulation of this programme is seen in type 2 diabetes but mechanisms that
preserve gene expression or underlie its dysregulation in mature cells are not well resolved. This study investigated whether
methylation of histone H3 lysine 4 (H3K4), a marker of gene promoters with unresolved functional importance, is necessary for
the maintenance of mature beta cell function.
Methods Beta cell function, gene expression and chromatin modifications were analysed in conditionalDpy30 knockout mice, in
which H3K4 methyltransferase activity is impaired, and in a mouse model of diabetes.
Results H3K4methylation maintains expression of genes that are important for insulin biosynthesis and glucose responsiveness.
Deficient methylation of H3K4 leads to a less active and more repressed epigenome profile that locally correlates with gene
expression deficits but does not globally reduce gene expression. Instead, developmentally regulated genes and genes in weakly
active or suppressed states particularly rely on H3K4 methylation. We further show that H3K4 trimethylation (H3K4me3) is
reorganised in islets from the Leprdb/db mouse model of diabetes in favour of weakly active and disallowed genes at the expense
of terminal beta cell markers with broad H3K4me3 peaks.
Conclusions/interpretation Sustained methylation of H3K4 is critical for the maintenance of beta cell function. Redistribution of
H3K4me3 is linked to gene expression changes that are implicated in diabetes pathology.
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Introduction

Tissue-specific transcription programmes rely on precise acti-
vation andmaintenance of specific genes and stable repression
of other genes. Chromatin modifications are central to this
system of cellular memory. Beta cells exposed to metabolic
stress show widespread changes in gene expression, including
activation of developmentally silenced genes and decreased
expression of genes that are important for insulin biosynthesis
or glucose responsiveness or that enforce cell identity [1, 2].
There is mounting evidence that epigenetic mechanismsmain-
tain mature beta cell function and identity and that the chro-
matin landscape is reshaped in beta cells exposed to chronic
metabolic stress [3–9]. Chromatin-modifying enzymes are
therefore promising therapeutic targets. For example, inhibi-
tion of histone H3 lysine 4 (H3K4) methyltransferases has
been suggested to prevent ectopic gene activation [4] or
increase replication [10] in beta cells during type 2 diabetes;
however, the consequences of such a strategy are unknown.

Methylation of H3K4 is a highly conserved post-
translational modification linked to RNA polymerase II-
dependent transcription. H3K4 trimethylation (H3K4me3) is
reliably enriched at active promoters, where the level of
enrichment correlates with transcriptional output [11]. H3K4
monomethylation (H3K4me1) is enriched at active and
primed enhancers, promoters and gene bodies [12]. The extent
to which H3K4 methylation regulates transcription is less
clear. On the one hand, H3K4 methylation can regulate gene

activity by recruitment of transcriptional machinery [13] and
chromatin remodellers [14], facilitating enhancer–promoter
interactions [15], and by blocking repression [16, 17]. On
the other hand, global (i.e. genome-wide) ablation of H3K4
methylation is remarkably well tolerated [18–20]. Evidence in
animal models suggests that H3K4 methyltransferases impact
the expression of only a fraction of genes and are necessary
only for specific roles in development or in response to envi-
ronmental stress [20–23]. Further, loss of H3K4 methylation
is associated with gene upregulation in some circumstances
[24, 25]. Rather than being a strict requirement for gene acti-
vation, the emerging view is that H3K4methylation fine-tunes
gene expression by providing a context-specific but generally
activating signal [26], reducing variability of transcription
[27], providing a persistent memory of transcriptional activity
[28] and maintaining the potential for future expression [29].
H3K4 methylation also has a non-transcriptional role in DNA
damage repair [30]. Thus, while H3K4me3 is predictive of
transcription [31], the consequences of its removal are diffi-
cult to predict.

Mono-, di- and trimethylation of H3K4 are catalysed by six
partially redundant multiprotein complexes distinguished by
the central methyltransferase: mixed lineage leukaemia
protein-1 to -4 (MLL1, MLL2, MLL3, MLL4) and SET
domain containing 1A and 1B (SETD1A and SETD1B).
These complexes, called the COMPASS (complex of proteins
associated with Set1) family, influence gene activity via distinct
catalytic and non-catalytic functions. Recruitment of
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COMPASS by a variety of factors directs methylation of
H3K4 at particular genomic loci [32]. The COMPASS family
can also recruit a variety of factors themselves, including cell
cycle regulators, tumour suppressors and other chromatin-
modifying enzymes [33]. The biological relevance of these
interactions is exemplified by reports that cells expressing cata-
lytically inactive mutants of methyltransferase subunits display
milder defects to gene expression and cell functions than cells
completely lacking the same subunit [18, 34–36]. Non-catalytic
subunits of COMPASS vary but always include a core
subcomplex of WD repeat-containing protein 5 (WDR5),
retinoblastoma-binding protein 5 (RBBP5), absent, small or
homeotic 2-like protein (ASH2L) and Dumpy-30 (DPY30)
[37]. WDR5, RBBP5 and ASH2L are required for complex
stability and enzymatic activity [38]. DPY30 is not required
for complex stability or methyltransferase activity but improves
coordination of the COMPASS catalytic domain with H3K4 in
the context of a complete nucleosome [39]. For this reason,
DPY30 is required for methylation of H3K4 genome-wide
in vivo [39]. DPY30 and the other core subunits are essential
genes [40] but, among 27 tissues tested in the Human Protein
Atlas tissue-specific transcriptome project, the median expres-
sion of eachwas lowest in the pancreas [41]. DPY30 is enriched
in islets compared with pancreatic exocrine cells in mice [42],
indicating the potential relevance of COMPASS activity to
pancreatic endocrine functions. Accordingly, we previously
demonstrated that Dpy30 fine-tunes cell fate decisions during
mouse pancreas development in favour of endocrine lineages
[23] and contributes to endocrine cell maturation [43]. By
contrast, it is not known whether the continuous activity of
H3K4 methyltransferases is necessary in terminally differenti-
ated cells, where lineage-specific transcription programmes
have already been established. We therefore sought to define
the role of H3K4 methylation in the regulation of gene expres-
sion in terminally differentiated beta cells.

Methods

Animals The following mice strains were used: Dpy30flox/flox

[23], Rosa26mTmG (The Jackson Laboratory, USA; #007576
[44]), Pdx1CreERTg (The Jackson Laboratory; #024968
[45]), Ins1Cre (The Jackson Laboratory; #026801 [46]),
BKS Leprdb/db and Lepr+/+ (The Jackson Laboratory;
#000642). Genotypes used for Pdx1CreER studies were as
follows—knockout: Pdx1CreERTg/0;Dpy30flox / f lox ;
Rosa26mTmG/+, wild-type: Pdx1CreER0/0;Dpy30flox/flox;
Rosa26mTmG/+, or, if sorting recombined cells was required:
Pdx1CreERTg/0;Dpy30+/+;Rosa26mTmG/+. Regardless of
genotype, all mice used in Pdx1CreER studies were adminis-
tered 8 mg tamoxifen (Sigma-Aldrich, USA) by oral gavage
three times over 5 days at 8 weeks of age and analysed 45 days
later unless otherwise specified. Genotypes used for Ins1Cre

studies were as follows—knockout: Ins1Cre/+;Dpy30flox/flox,
wild-type: Ins1+/+;Dpy30flox/flox, heterozygous: Ins1Cre/+;
Dpy30flox/+. Mice in Ins1Cre studies were analysed at 5 weeks
unless otherwise specified. Leprdb/db and Lepr+/+ mice were
analysed at 12 weeks. Mice were kept under conventional
conditions on a 12 h light/dark cycle with free access to water
and food (Teklad 2918, Envigo, UK). Experiments were
restricted to male mice of the indicated ages and genotypes;
no other exclusion criteria were considered. Mice were not
randomised and experimenters were not blinded to genotypes.
Experiments were approved by the University of British
Columbia Animal Care Committee (certificates A17-0045
and A18-0111).

Unfasted blood glucose was measured from the tail tip
between 10:00 and 12:00 using a OneTouch Ultra Mini
Glucometer (Johnson & Johnson, USA). For glucose toler-
ance tests, 2 g/kg body weight of glucose was injected intra-
peritoneally following a 6 h fast. Blood was sampled from a
lateral saphenous vein. Serum was prepared by centrifuging
blood samples at 9000 g for 9 min at 4°C. Serum insulin was
measured using an ELISA (Alpco, USA).

Islets were isolated using collagenase digestion [43] and
dispersed to single cells [47] as described previously. EGFP-
positive tdTomato-negative cells were enriched from
Pdx1CreERTg/0;Rosa26mTmG mice using a FACSAria II Cell
Sorter (BD Biosciences, USA).

Drosophila S2 cells (Life Technologies, USA) were
cultured at 25°C in Schneider’s Drosophila medium (Life
Technologies) supplemented with 10% (vol/vol) heat-
inactivated FBS (Life Technologies).

Co-immunoprecipitation, immunoblotting and immunohisto-
chemistry Immunoprecipitation from islet cell nuclear lysates,
immunoblotting of islet lysates and immunofluorescence anal-
yses of paraffin-embedded pancreas sections were carried out
using standard protocols as outlined in the electronic supple-
mentary material (ESM) Methods using the antibodies listed
in ESM Table 1.

Chromatin immunoprecipitation–sequencing (ChIP-seq) For
Pdx1CreERTg/0;Dpy30+/+; Rosa26mTmG/+ and Pdx1CreERTg/0;
Dpy30flox/flox;Rosa26mTmG/+ mice, 100,000 beta cells were
pooled with 50,000 Drosophila S2 cells by FACS. For
Leprdb/db and Lepr+/+mice, 100,000 dispersed islet cells were
counted using a hemacytometer and spiked with 50,000
Drosophila S2 cells without sorting. The ULI-NChIP proce-
dure [48] was used to generate ChIP-seq libraries using the
antibodies listed in ESM Table 1 in biological duplicate.
Immunoprecipitated DNA was prepared for sequencing using
the NEBNext Ultra II DNA Library Prep Kit (New England
Biolabs, USA). See ESM Methods for further details.
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RNA-seq Beta cells (70,000–226,000 per mouse, n=3) from
Pdx1CreERTg/0;Dpy30+/+;Rosa26mTmG/+ and Pdx1CreERTg/0;
Dpy30flox/flox;Rosa26mTmG/+ mice were purified by FACS and
spiked with 10% Drosophila S2 cells. mRNA isolation and
library preparation were performed as described previously
[43]. See ESM Methods for further details.

Single-cell RNA-seq Islet cells from one Pdx1CreERTg/0;
Dpy30+/+;Rosa26mTmG/+ mouse and one Pdx1CreERTg/0;
Dpy30flox/flox;Rosa26mTmG/+ mouse were processed through the
Chromium Single Cell 3′ protocol using the Chromium
Controller with Reagent Kit v3.1 and Dual Index Kit TT Set A
(10x Genomics, USA). See ESM Methods for further details.

PyrosequencingDNA from 100 islets was bisulphite converted
using the EZ DNA Methylation-Direct Kit (Zymo Research,
USA). Genomic regions were amplified using the PyroMark
PCR Kit with CpG Assay primers Mm_Igf2_04_PM,
Mm_Cd81_01_PM or Mm_Cdkn1c_01_PM (Qiagen,
Germany). Per cent methylation at amplified CpGs was
measured using the PyroMark Q96 MD (Qiagen).

Electron microscopy Islets were fixed in 2% (wt/vol) glutaral-
dehyde (Sigma-Aldrich) and then submitted to the Electron
Microscopy Facility at McMaster University (Canada). Islets
were post-fixed with 1% (wt/vol) osmium tetroxide, dehydrated
in ethanol, embedded in Spurr’s resin and sectioned with a
Leica UCT ultramicrotome. Sections were stained with uranyl
acetate and lead citrate and imaged with a JEM 1200 EX
TEMSCAN transmission electron microscope (JEOL, USA).
Insulin granules were quantified using ImageJ v1.52a [49].

Islet functional assays Insulin secretion assays [43] and calci-
um imaging [50] were performed as described previously.
Respiration was measured in dispersed islets using the
Seahorse XF24 Extracellular Flux Analyzer (Agilent, USA).

Analysis of publicly available data Fastq files fromGSE50244
[51], GSE50386 [52], GSE107489 [53] and GSE124742 [54]
were downloaded from the Sequence Read Archive and
analysed as described above. A table of per cent methylation
of each cytosine in beta cells from 16- to 20-month-old
C57BL6 mice was downloaded from GSE68618 [55] and
converted to the GRCm38/mm10 reference genome using
the University of California Santa Cruz liftover utility [56].

Statistics Bar plots show means ± SD with individual data
points. In box and whisker plots, the central horizontal line

indicates the median, the upper and lower limits of the box
indicate the first and third quartiles, and the whiskers span
1.5× the IQR. Correlation was estimated using Spearman’s
coefficient. P values were calculated using unpaired Welch’s t
tests, Wilcoxon tests, Wald tests, mixed-effect models,
ANOVA, Fisher’s exact tests or permutation tests as indicated.
The Benjamini–Hochberg correction was applied where indi-
cated. Calculations were performed in R v4.2.1 (http://www.r-
project.org/) or Prism v9.5.0 (GraphPad Software, USA).

Results

Reduction of H3K4 methylation in beta cells of adult mice
leads to glucose intolerance and hyperglycaemia To induce
synchronised deletion of Dpy30 in mature beta cells,
Pdx1CreERTg/0;Dpy30flox/flox;Rosa26mTmG/+ mice were
administered tamoxifen at 8 weeks of age (hereafter called
Dpy30-KO mice) (Fig. 1a,b). As expected, Dpy30-KO did

�Fig. 1 Reduction of H3K4methylation in beta cells of adult mice leads to
glucose intolerance and hyperglycaemia. (a) Schematic showing the core
COMPASS subunits and a nucleosome methylated on H3K4. (b)
Genome-aligned RNA-seq reads at the Dpy30 gene locus in Dpy30-WT
and Dpy30-KO beta cells 15 days post tamoxifen. Note that the floxed
exon 4 is efficiently deleted in the KO cells. (c) Immunoblots showing the
COMPASS subunits RBBP5, ASH2L and WDR5 and the nucleosome
protein histone H3, co-immunoprecipitated withWDR5 or an IgG control
from Dpy30-WT and Dpy30-KO islet cell nuclei 45 days post tamoxifen
administration. Representative immunoblots of three independent co-
immunoprecipitations are shown. IP, immunoprecipitation. (d)
Immunoblots showing H3K4me3, H3K4me1, histone H3 lysine 27
acetylation (H3K27ac), histone H3 lysine 27 trimethylation
(H3K27me3) and total histone H3 in islets from Dpy30-WT and
Dpy30-KO mice 45 days post tamoxifen administration. Numbers
beneath each band indicate the band intensity normalised to the left-
most sample. (e) Mean immunofluorescent intensity of DPY30,
H3K4me3 and H3K4me1 in Dpy30-WT and Dpy30-KO beta cell
nuclei at the indicated days after tamoxifen administration. Data are
normalised to the fluorescence intensity of alpha cell nuclei (n=3). (f)
Example immunohistochemical images of Dpy30-KO islets used for
measurements in (e) showing H3K4me3 (cyan), insulin (magenta) and
glucagon (yellow). Scale bars: 100 μm. (g, h) Scatterplots showing
log2(fold change) and –log10(p) of gene expression in Dpy30-KO vs
Dpy30-WT beta cells 15 days (g) and 45 days (h) post tamoxifen
administration. Genes showing a twofold or greater increase or decrease
in expression at p≤0.01 (calculated using Wald tests with Benjamini–
Hochberg correction) are coloured red and green, respectively, and
enumerated above. The full-length transcript of Dpy30 is blue. (i, j)
Blood glucose (i) and serum insulin (j) levels during an IPGTT in
Dpy30-WT and Dpy30-KO mice 15, 30 and 45 days after tamoxifen
administration. Data are means ± SD (n=8–15). P values were
calculated from AUCs using multiple two-tailed t tests with Welch’s
and Benjamini–Hochberg corrections. (k, l) Unfasted blood glucose
levels (k) and body mass (l) of Dpy30-WT and Dpy30-KO mice up to
60 days after tamoxifen administration. Data are individual measurements
with means (n=8; however, tracking was stopped after a blood glucose
reading ≥20 mmol/l). *p<0.05, ***p<0.001
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not impact assembly of the other core subunits of the
COMPASS complex or their association with chromatin
(Fig. 1c) but did reduce H3K4 methylation (Fig. 1d).

H3K4me3 and H3K4me1 were stable for at least 15 days
after tamoxifen administration and were then gradually lost
during the subsequent 45 days, whereas DPY30 was
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undetectable by 15 days (Fig. 1e,f). We reasoned that defects
arising inDpy30-KO beta cells by 15 days highlight functions
of DPY30 itself. Defects arising later, by 45 days, highlight
functions of H3K4 methylation. Remarkably, loss of DPY30
had little effect on gene expression in beta cells, with RNA-
seq analysis identifying only three differentially expressed
genes (Dpy30, Edn3, C3) 15 days post tamoxifen administra-
tion (Fig. 1g, ESM Tables 2 and 3). In contrast, 828 genes
were dysregulated at 45 days, the majority of which (634)
showed lower expression in Dpy30-KO cells (Fig. 1h, ESM
Tables 4 and 5). We conclude that transcriptome remodelling
in Dpy30-KO beta cells results from reduction of H3K4
methylation.

Dpy30-KOmice developed impaired glucose tolerance and
had reduced serum insulin levels by 45 days post tamoxifen
administration (Fig. 1i,j) and then rapidly developed diabetes
(Fig. 1k,l), prompting euthanasia by 60 days. As the
Pdx1CreER transgene may also drive recombination in delta
cells [57] and the hypothalamus [58], we additionally used
Ins1Cre mice [46] to verify that Dpy30 deletion specifically
in beta cells is sufficient to drive the in vivo phenotype.
Deletion of Dpy30 from maturing beta cells using Ins1Cre

caused reduction of H3K4 methylation in islets by 5 weeks
of age, leading to hyperglycaemia, impaired glucose tolerance
and reduced serum insulin levels (ESM Fig. 1).

H3K4 methylation maintains expression of genes involved in
insulin production and glucose-stimulated activity The insu-
lin deficit in Dpy30-KO mice prompted us to examine insulin
production and secretion. We first confirmed that H3K4me3
was lost from the Ins1 and Ins2 promoters in Dpy30-KO beta
cells (Fig. 2a) 45 days after tamoxifen administration using
ChIP-seq. H3K4me1 was also dramatically reduced (Fig. 2a).
Despite this, RNA-seq data showed a surprisingly modest
reduction in levels of Ins1 and Ins2 transcripts (Fig. 2b,c),
indicating that robust expression of Ins1 and Ins2 can occur
in the absence of local H3K4me3. However, insulin (but not
glucagon) immunofluorescence intensity decreased inDpy30-
KO mice (Fig. 1e and ESM Fig. 2a, b) and expression of
several genes involved in insulin maturation and packaging
was reduced (Fig. 2d, ESM Fig. 2c–g). This included Nnat
(ESM Fig. 2d), encoding neuronatin, part of the signal pepti-
dase complex and knockdown of which redirects
preproinsulin for proteasomal degradation [59]. Slc30a8,
encoding the zinc transporter ZNT8 required to package insu-
lin into dense core granules, knockout of which impairs
proinsulin-to-insulin processing [60], was also downregulated
(ESM Fig. 2e). Consistent with impairment of insulin synthe-
sis and/or increased degradation in Dpy30-KO mice, we
observed a significant loss of islet insulin content (Fig. 2e).
Reduction in insulin granule size and density in individual
beta cells fromDpy30-KO mice was confirmed using electron

microscopy (Fig. 2f–h). Therefore, Dpy30-KO in beta cells
results in a reduction in insulin content.

In line with their lower insulin content, Dpy30-KO islets
secreted less insulin during high glucose or KCl stimulation
than Dpy30 wild-type (WT) islets (ESM Fig. 2h). Gene
Ontology analysis of downregulated genes suggested the
additional impairment of biological processes required for
stimulated insulin secretion, namely vesicle fusion, calcium-
dependent exocytosis and glucose homeostasis (Fig. 2i, ESM
Table 6). We tested whether this gene signature was associat-
ed with functional changes. When accounting for their low
insulin content, Dpy30-KO islets responded normally to
KCl, but glucose-stimulated insulin secretion remained low
compared with Dpy30-WT islets (Fig. 2j). Cytosolic calcium
influx was also impaired during high glucose but not KCl

�Fig. 2 Genes involved in insulin production and glucose-induced activity
are regulated by H3K4 methylation. (a) H3K4me3 and H3K4me1
enrichment at the Ins1 and Ins2 gene loci in Dpy30-WT and Dpy30-KO
beta cells 45 days after tamoxifen administration. (b, c) Ins1 (b) and Ins2
(c) RNA levels in Dpy30-WT and Dpy30-KO beta cells 45 days after
tamoxifen administration. Expression and p values were calculated from
RNA-seq data using DESeq2 (Wald tests with Benjamini–Hochberg
correction). (d) Heatmap showing expression Z scores in Dpy30-WT
and Dpy30-KO beta cells 45 days post tamoxifen administration for
selected genes. P values were calculated from RNA-seq data using
Wald tests with Benjamini–Hochberg correction (n=3). Significantly
downregulated and upregulated genes are shown in green and pink,
respectively. (e) Insulin content in Dpy30-WT and Dpy30-KO islets. P
values were calculated using two-tailed t tests with Welch’s correction
(n=8WT, n=6 KO). (f) Representative transmission electronmicrographs
of beta cells from a Dpy30-WT mouse and a Dpy30-KO mouse.
Examples of insulin granules and mitochondria are indicated with cyan
and yellow arrows, respectively. Scale bars: 2μm. (g, h) Quantification of
median insulin core granule density (g) and size (h). P values were
calculated using two-tailed t tests with Welch’s correction (n=3). (i)
Enrichment analysis of Gene Ontology: biological process terms in
differentially expressed genes 45 days after tamoxifen administration. P
values represent EASE scores, modified Fisher’s exact p values,
calculated using the Database for Annotation, Visualization and
Integrated Discovery (DAVID) v.6.8 [82]. (j) Insulin secretion from
Dpy30-WT and Dpy30-KO islets during static in vitro stimulation with
glucose and KCl solutions, normalised to islet insulin content. P values
were calculated using multiple two-tailed t tests with Welch’s and
Benjamini–Hochberg corrections (n=7 WT, n=5 KO). (k) Cytosolic
Ca2+ concentration in islets from Dpy30-WT and Dpy30-KO mice
during in vitro perifusion of glucose and KCl solutions. P values were
calculated for the AUC in each time block by one-way ANOVA between
genotypes (n=4 WT, n=3 KO). (l) Oxygen consumption rate in Dpy30-
WT and Dpy30-KO dispersed islet cells during treatment with the
indicated compounds (n=3 WT, n=4 KO). (m, n) Mitochondrial respiration
in Dpy30-WT and Dpy30-KO islet cells in 16.7 mM glucose (m) and their
maximal respiration capacity (n), inferred from the data shown in (l).P values
were calculated using two-tailed t tests with Welch’s correction (n=3 WT,
n=4 KO). (o) Fraction of cytoplasm area occupied by mitochondria in
transmission electron micrographs of Dpy30-WT and Dpy30-KO beta cells.
P values were calculated using two-tailed t tests with Welch’s correction
(n=3). *p<0.05, **p<0.01, ***p<0.001. FCCP, carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone; Glc, glucose; OCR, oxygen
consumption rate; RAA, rotenone and antimycin A
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stimulation (Fig. 2k). Gene Ontology of upregulated genes
prioritised energy production processes including oxidation/
reduction and the electron transport chain (Fig. 2i, ESM
Table 7); accordingly, mitochondrial respiratory capacity
(Fig. 2l,n) and area (Fig. 2f,o) were elevated in Dpy30-KO
cells. This was not associated with an elevated rate of
glucose-stimulated respiration (Fig. 2m), perhaps because
expression of the rate-limiting enzyme of glycolysis, Gck,
was not altered (Fig. 2d, ESM Fig. 2f). These data suggest
thatDpy30-KO impairs insulin secretion owing to a reduction
of beta cell insulin content combined with a glucose-specific

signalling defect downstream of mitochondrial glucose oxida-
tion, although more work will be required to identify the
precise mechanism. Together, these data show that genes with
altered expression were enriched for roles in stimulation,
secretion and energy production.

Loss of H3K4 methylation is associated with limited gene
downregulation in mature beta cells While H3K4 methyla-
tion is predictive of transcription [31], our RNA-seq analysis
indicates that only 634 of the 14,677 (4.3%) expressed genes
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were downregulated by depletion of H3K4 methylation (Fig.
1g, ESMTable 4). This suggests that H3K4methylation is not
required for the expression of most genes in mature beta cells.
We therefore explored whether dysregulated genes were
distinguished by specific epigenetic features. We first
confirmed that H3K4 methylation was depleted at active
promoters (Fig. 3a,b) and genome-wide (Fig. 3c,d) by
Dpy30-KO. Despite this, the transcriptomes of Dpy30-KO
and Dpy30-WT cells were well correlated and the total RNA
expression of Dpy30-KO cells was not decreased (Fig. 3e).
Therefore, global depletion of H3K4 methylation does not
cause a global decrease in gene expression in mature beta
cells.

To explore further, we segregated genes into three groups
based on residual enrichment for H3K4 methylation, deter-
mined using model-based analysis of ChIP-seq (MACS2)
[61]. Group (i) retained at least some H3K4me3 enrichment
at the transcription start site (TSS) (10,045 genes); group (ii)
lost H3K4me3 but retained at least some H3K4me1 enrich-
ment (2302 genes); and group (iii) lost H3K4me3 and
H3K4me1 (111 genes) (Fig. 3f, ESM Table 8). As a group,
genes that retained at least some enrichment for H3K4me3 at
the TSS were not downregulated inDpy30-KO cells (Fig. 3g).
Loss of both H3K4me3 and H3K4me1 from the TSS was
associated with significant impairment of gene expression,
and genes that lost H3K4me3 but retained H3K4me1 showed

an intermediate effect (Fig. 3g). To visualise this relationship
in a threshold-free manner, we plotted the change in
H3K4me3, H3K4me1 and RNA expression for all active
TSSs (Fig. 3h). Most genes clustered in the bottom left quad-
rant, indicating some reduction of both H3K4me3 and
H3K4me1 from the TSS. Strikingly, genes that were highly
downregulated clustered at the extreme edge, indicating that
genes experiencing the greatest relative loss of both
H3K4me3 and H3K4me1 were strongly downregulated (Fig.
3h). Thus, while transcriptome remodelling in this model is
likely to reflect both direct and indirect effects of reduced
methylation, these data show that loss of H3K4me3 from a
gene promoter was associated with reduced expression of that
gene.

H3K4 methylation enforces expression of weakly active and
repressed genes in mature beta cells We compared the chro-
matin profile of downregulated and stably expressed genes by
measuring histone H3 lysine 27 trimethylation (H3K27me3),
a marker of developmentally repressed chromatin, and histone
H3 lysine 27 acetylation (H3K27ac), a marker of active chro-
matin, using ChIP-seq. We also retrieved data for DNA cyto-
sine methylation (DNAme), a modification linked to gene
silencing, in C57BL6 mouse beta cells [55], and examined
nucleotide content. The downregulated gene set had a weakly
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active profile even in Dpy30-WT cells: enrichment for
H3K4me3 and H3K27ac was low whereas H3K4me1,
H3K27me3, G/C content, and DNAme were high in compar-
ison to stably expressed genes (Fig. 4a–l). Accordingly, the
downregulated gene set showed lower expression in
Dpy30-WT cells than stably expressed genes (Fig. 4m).
Interestingly, genes upregulated in Dpy30-KO cells had a
similar epigenetic profile to downregulated genes (Fig. 4a–m).

H3K4 methylation deficiency leads to a less active and more
repressed epigenome in mature beta cells During develop-
ment, active (H3K27ac-positive) and repressed (H3K27me3-
or DNAme-positive) chromatin is dynamically regulated;
resolution of the genome into active and repressed domains
is fundamental to establishment of terminal cell type-specific

transcriptomes [29, 62]. We noted that expression of genes
that are dynamically regulated during, and important for, beta
cell maturation [63] tended to be lower in Dpy30-KO cells
(Fig. 4n), suggesting that maintenance of genes in an active
state requires continual reinforcement in mature beta cells.
Because G/C content tended to be high at downregulated gene
loci (Fig. 4k,l) and imprinted genes tended to be downregu-
lated inDpy30-KO cells (Fig. 4n), we measured DNAme near
the TSS of three downregulated genes (Cdkn1c, Igf2 and
Cd81) but did not observe a change (ESM Fig. 3), suggesting
that reduction of H3K4me3 did not immediately lead to accu-
mulation of DNAme. We explored whether H3K27me3-
positive regions expand in H3K4me3-deficient cells. As
shown in Fig. 5a, the megabase-scale distribution of
H3K27me3-positive compartments was largely unchanged
in H3K4me3-deficient beta cells. However, H3K27me3
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increased specifically at promoters of downregulated genes
(Fig. 5g,h). These data suggest that maintenance of H3K4
trimethylation is necessary to prevent Polycomb-mediated
gene repression in mature beta cells.

In contrast to the locus-specific accumulation of H3K27me3,
H3K27ac was diminished throughout the genome in Dpy30-
KO cells (Fig. 5b). Like H3K4me, H3K27ac was reduced
even at promoters of genes that were stably expressed or
upregulated in Dpy30-KO cells (Fig. 5d,f), indicating that
the generalised decrease in H3K27ac was not a consequence
of gene downregulation. Despite the global reduction, how-
ever, H3K27ac was still positively associated with gene
expression in Dpy30-KO chromatin: H3K27ac peaks gaining

intensity were near upregulated genes, and H3K27ac peaks
losing intensity were near downregulated genes, more
frequently than expected by chance (ESM Fig. 4). These
observations are consistent with a model wherein acetylation
of H3K27 is partially a consequence of H3K4 methylation
[18] and of transcription [64].

To summarise, Dpy30-KO beta cells showed a global
reduction in active histone marks but not of gene expression.
Genes that lost an especially large fraction of H3K4 methyla-
tion tended to be downregulated; they tended to be develop-
mentally regulated or in a weakly active state in Dpy30-WT
beta cells and to accumulate the repressive mark H3K27me3,
which was otherwise globally stable.
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Reduction in transcriptional consistency in Dpy30-KO beta
cells Transcriptional entropy describes the ‘specialisation’ of
a cell’s transcriptome whereby cells with low entropy have a
narrow distribution of highly expressed genes and gene
expression in cells with high entropy becomes less predict-
able. In islets, transcriptional entropy decreases during matu-
ration [65] and increases in type 2 diabetes [4]. We explored
whether reduction of H3K4 methylation increases the vari-
ability or entropy of gene expression. To this end, we proc-
essed islets from aDpy30-WTmouse and aDpy30-KOmouse
for single-cell RNA-seq (ESM Fig. 5a). We obtained tran-
scriptome profiles of 4877 beta cells, which formed two
distinct clusters: cluster 1 contained cells from the Dpy30-
WT mouse and a small population of beta cells from the
Dpy30-KO mouse expressing tdTomato (indicating that they
were not Cre-recombined) and cluster 2 contained EGFP-
expressing Dpy30-KO beta cells (Fig. 6a,b). To model the
divergence of Dpy30-KO beta cells from Dpy30-WT and
unrecombined beta cells, we performed pseudotime trajectory
analysis using Slingshot [66] (Fig. 6c). Expression of Ins1 and
Ins2 showed a narrow distribution in Dpy30-WT and
unrecombined beta cells but became more variable as
pseudotime progressed in Dpy30-KO cells (Fig. 6d). More
generally, overall transcriptional entropy increased in
Dpy30-KO cells over pseudotime (Fig. 6e) and tended to be
higher than in Dpy30-WT and unrecombined beta cells (Fig.
6f). As lower entropy is associated with greater cell maturity
[65], we examined the expression of genes associated with
immaturity and dedifferentiation but did not observe induction
of these genes in Dpy30-KO cells (see ESM Fig. 5b, c and
compare with Fig. 4n). Therefore, Dpy30-KO led to higher
transcriptional entropy in mature beta cells but did not cause
reversion to a developmentally immature transcriptional state.

A rise in entropy implies a loss of transcriptional control.
To identify transcription factors whose activity is altered
following loss ofDpy30 andH3K4methylation inmature beta
cells we used single-cell regulatory network inference and
clustering (SCENIC [67, 68]). Unsupervised clustering of beta
cells on the basis of their regulon activities (i.e. expression of
transcription factors and their putative targets) effectively
separated Dpy30-KO beta cells from Dpy30-WT and
unrecombined beta cells (ESM Fig. 6a, b), recreating clusters
based on gene expression profiles (ESM Fig. 6c) and indicat-
ing a shift in the gene regulatory landscape after Dpy30-KO.
Of 438 active regulons identified in beta cells, 319 (73%)
showed lower activity in Dpy30-KO cells (cluster 2) (Fig.
6g, ESM Table 9). In line with the general downregulation
of mature beta cell transcription factor genes (Fig. 4n), Foxa2,
Isl1, Mafa, Mnx1, Neurod1, Pax6 and Pdx1 showed lower
activity in Dpy30-KO cells cluster 2) (Fig. 6g, ESM Fig.
6d). Activity-regulated factors such as Fos and Junb, and
Creb3 factors, which regulate secretory pathways [69], also
showed lower activity (Fig. 6g, ESM Fig. 6d). Regulons

showing greater activity in the Dpy30-KO cluster 2 included
Ctcf and Rad21, which independently regulate chromatin
organisation [70], and Mbd2, which binds to a methylated
DNA motif [71] (Fig. 6g, ESM Fig. 6d, ESM Table 9). This
analysis suggests that coordination between chromatin struc-
ture and transcription factor activity is altered in Dpy30-KO
cells.

We examined whether transcriptional consistency, that is,
the variability of gene expression between cells, was linked to
the breadth of the H3K4me3 peak at gene promoters, as broad
H3K4me3 peaks may increase transcriptional consistency
[27]. We ranked H3K4me3 peaks inDpy30-WT cells in order
of increasing breadth and grouped them into 20 quantiles,
each representing 5% of the H3K4me3 peaks (ESM
Table 10). We then compared the variance in expression of
genes with H3K4me3 peaks in each quantile between beta cell
clusters. Transcriptional variability between cells was
increased in Dpy30-KO cells (Fig. 6h). Greater H3K4me3
peak breadth was modestly correlated with a greater gain of
variability in Dpy30-KO cells (Fig. 6i; Pearson r=0.149,
p=1.11 × 10−52). Analysis of H3K4me3 ChIP-seq data from
healthy human beta cells [52] and single-cell RNA-seq data
from human donors with or without type 2 diabetes [54]
suggests that variability of gene expression is also higher in
type 2 diabetes (Fig. 6j) and that the gain in variability is
weakly correlated with H3K4me3 peak breadth (Fig. 6k;
Pearson r=0.071, p=6.04 × 10−14). These data support a
minor association between broad H3K4me3 peaks and tran-
scriptional consistency in beta cells, which is nominally linked
to the increased transcriptional variability in type 2 diabetes.

H3K4me3 peak breadth stratifies genes dysregulated in type
2 diabetes We explored the relationship between H3K4me3
peak breadth, gene expression and diabetes further. H3K4me3
forms 18,936 distinct peaks in beta cells. Ranking peaks by
breadth revealed a class of exceptionally broad peaks span-
ning up to 21 kb, including those at essential beta cell tran-
scription factor genes (Fig. 7a, ESMTable 10), consistent with
the observation that genes marked by broad peaks are impor-
tant for maintaining cell identity [27]. For example, Fig. 7b
shows the H3K4me3 profiles of a housekeeping gene with a
typical H3K4me3 peak (Rplp0), and an expression-matched
beta cell transcription factor gene with a broad peak (Nkx6-1).
Gene expression was moderately correlated with promoter
H3K4me3 peak breadth; however, genes with exceptionally
broad peaks did not have exceptionally high levels of RNA
expression (ESM Fig. 7a).

To explore the relationship between H3K4me3 peak
breadth and diabetes, we used the Leprdb/db mouse model of
type 2 diabetes. We retrieved published bulk RNA-seq data
from Leprdb/db islets [53] and compared H3K4me3 peak
breadth with gene expression changes. Notably, genes that
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become downregulated in Leprdb/db islets were explicitly
enriched in the group of genes with broad H3K4me3 peaks
(Fig. 7c). Furthermore, housekeeping genes (GSEA:M11197
[72]), genes involved in endocrine pancreas development
(GSEA:M12875) and MODY genes (GSEA:M18312) were
enriched in the broadest H3K4me3 peaks (ESM Fig. 7b). In
contrast, genes upregulated in Leprdb/db islets were uniquely
enriched in the narrowest H3K4me3 peaks (Fig. 7c). As
H3K4me3 peak breadth correlates with gene expression
(ESM Fig. 7a), we tested whether these observations could
be secondary to a relationship wherein highly expressed genes
become downregulated and weakly expressed genes become
upregulated in Leprdb/db. Ranking genes by RNA expression
level instead of H3K4me3 peak breadth proved less effective
at stratifying each gene set except for housekeeping genes
(ESM Fig. 7b), supporting a primary link with H3K4me3.
Therefore, genes that are differentially expressed in diabetic
islets are diametrically stratified according to H3K4me3
breadth, with upregulated genes having narrow peaks and
downregulated genes having broad peaks in non-diabetic
conditions. These observations are replicable in humans using
publicly available H3K4me3 ChIP-seq data from beta cells
from donors without diabetes [52] and RNA-seq data from
islets from donors with or without type 2 diabetes [51] (Fig.
7d–f, ESM Fig. 7c, d, ESM Table 11).

H3K4me3 peak breadth dynamics encode gene expression
changes in a mouse model of type 2 diabetes The positive
association between H3K4me3 peak breadth and differential
gene expression in diabetes prompted us to examine if
H3K4me3 is altered in diabetic islets. Several COMPASS
subunit genes were downregulated in Leprdb/db islets (ESM
Fig. 8a), although none reached statistical significance in islets
from human donors with diabetes (ESM Fig. 8b).
Immunoblots and ChIP-seq showed that average H3K4me3
enrichment was not altered in Leprdb/db islets (Fig. 7g,h).
However, we observed contraction of H3K4me3 at downreg-
ulated genes, for example the transcription factor Pdx1 and
zinc transporter Slc30a8, and expansion of H3K4me3 at
upregulated genes, for example the disallowed Aldh1a3 and
Ldha (Fig. 7i). RNA expression and H3K4me3 peak breadth
decreased for mature beta cell transcription factor genes and
increased for disallowed genes (ESM Fig. 9a, b). More gener-
ally, broad H3K4me3 peaks tended to shrink and narrow
H3K4me3 peaks tended to expand in Leprdb/db islets (Fig.
7j). Similarly, genes that were up- or downregulated in
Leprdb/db islets showed corresponding expansion or contrac-
tion of HK4me3 levels, respectively (Fig. 7k). Therefore, a
pattern emerges in Leprdb/db islets wherein weakly active
genes tend to gain H3K4me3 and become upregulated, while
genes with broad H3K4me3 peaks tend to lose some
H3K4me3 and become downregulated.

We examined whether genes that are dysregulated in Leprdb/
db islets are regulated by H3K4 methylation, that is, are down-
regulated in Dpy30-KO cells 45 days after tamoxifen adminis-
tration. To test the overlap between differential gene expression
in theDpy30-KO and Leprdb/dbmodels, we used a threshold-free
rank–rank hypergeometric overlap test [73]. There was signifi-
cant overlap between genes downregulated in Dpy30-KO mice
with genes that were either up- or downregulated in Leprdb/db

mice (Fig. 7l). Accordingly, genes downregulated in Dpy30-
KO mice were enriched in both the narrow and broad
H3K4me3 peak groups (Fig. 7m), thus mirroring the pattern
for genes up- or downregulated in Leprdb/db mice (Fig. 7c).
Gene Ontology terms for insulin secretion, response to glucose
and regulation of transcription were over-represented in genes
downregulated in both models (ESM Fig. 9c, ESM Tables 12
and 13). Terms over-represented in genes downregulated in
Dpy30-KO but upregulated in Leprdb/db included regulation of
cell growth, transport and response to unfolded protein and endo-
plasmic reticulum stress (ESM Fig. 9d, ESM Table 14, 15),
which could indicate that Dpy30-KO mice are not subject to
these stresses and/or that methylation of H3K4 is required for
induction of stress-responsive genes, as previously suggested in
Drosophila [20]. Combined, these results suggest that genes that
are dysregulated in Leprdb/db islets show concordant changes in
H3K4me3 peak breadth and significantly overlapwith genes that
are downregulated in Dpy30-KO cells, which perform contextu-
ally important biological functions in mature beta cells.

Discussion

In this study we describe a gene regulatory system in mature
beta cells with consequences for cell function in health and
type 2 diabetes. We find that sustained methylation of H3K4
is essential for the preservation of insulin content and stimu-
lated secretion. Reduction of H3K4 methylation led to a less
active and more repressed epigenome. Gene expression
became more stochastic, a feature shared with beta cells
during type 2 diabetes. We furthermore describe epigenetic
features associated with genes that are sensitive to H3K4
demethylation in beta cells in vivo, providing support for a
generalisable, but limited, function for H3K4me3 in the regu-
lation of transcription in a terminally differentiated tissue
in vivo (Fig. 8).

Conditional mutagenesis of Dpy30 revealed a slow turn-
over of H3K4 methylation in mature beta cells. We observed
slower loss of H3K4me1 than H3K4me3, consistent with
previously reported relative turnover rates [74], and that loss
of methylation was probably driven by enzymatic demethyl-
ation and nucleosome eviction rather than dilution due to
mitosis or overall H3 degradation [74, 75]. Following an
initial delay of between 15 and 30 days after tamoxifen admin-
istration, H3K4 methylation was progressively lost from beta
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cells, leading to impaired glucose tolerance by 45 days, and
hyperglycaemia shortly thereafter. The initial delay may result
from the action of pre-existing DPY30, while the metabolic
dysfunction appearing by 45 days apparently represents a
threshold beyond which methylation was too low to sustain

normal beta cell functions. Then, unabated decline of H3K4
methylation and/or a feed-forward of beta cell dysfunction led
to worsening hyperglycaemia and euthanasia by 60 days.
Although reduction of methylation was obvious by 30 days
after tamoxifen administration, no defect in glucose tolerance
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was observed at this time point, indicating that beta cells can
maintain normal function when faced with a moderate reduc-
tion in methylation levels. This suggests that therapeutic strat-
egies that cause limited demethylation of H3K4 could be
tolerated, although long-term effects were not examined here.
Further, this may explain why human pathologies caused by
heterozygous mutations in COMPASS methyltransferases,
such as Wiedemann–Steiner syndrome (caused by mutations
in KMT2A) and subgroups of generalised dystonia (KMT2B)
and Kabuki syndrome (KMT2D), do not present with glucose
intolerance and hyperglycaemia; compensation by other
methyltransferases means that it is unlikely that H3K4me3 is
reduced to an extent that impairs beta cell function.

DPY30 was depleted in Dpy30-KO cells by 15 days after
tamoxifen administration but no phenotype was apparent until
H3K4me3 was also depleted, several weeks later. This
suggests that DPY30 has little direct impact on gene expres-
sion or insulin secretion by beta cells. Still, we cannot exclude
the possibility that DPY30 stimulates methylation of stable
non-histone substrates, or contributes to non-transcriptional
functions, with a subtle or delayed phenotype. For instance,
SETD1B-COMPASS has a non-enzymatic role in cytosolic
lipid metabolism [36]. Lipid metabolism potentiates glucose-
stimulated insulin secretion [76] so, if DPY30 contributes to
this role, its ablation conceivably contributed to the impaired
glucose-stimulated insulin secretion we observed.
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Fig. 8 Summary of H3K4me3 in mature mouse beta cells. (a) Active
gene promoters are enriched for H3K4me3, H3K4me1 and H3K27ac
and are depleted of repressive H3K27me3 and DNAme. Reduction of
H3K4me3 and H3K4me1 in Dpy30-KO cells was associated with a
generalised reduction of H3K27ac and specific gain of H3K27me3 in
downregulated gene promoters. (b) A continuum of H3K4me3 peak
breadth distinguishes disallowed and lowly expressed genes from critical

mature beta cell lineage factors. Global reduction of H3K4me3 inDpy30-
KO cells impaired expression of genes with very narrow or very broad
peaks. In Leprdb/dbmice, accumulation of H3K4me3 at narrow peaks and
loss of H3K4me3 from broad peaks was associated with concordant
changes in gene expression. Genes with an intermediate H3K4me3 peak
profile were not generally dysregulated in either model

�Fig. 7 H3K4me3 peak breadth encodes gene expression changes in a
mouse model of type 2 diabetes. (a) H3K4me3 peaks in Dpy30-WT
beta cells ranked from narrow to broad. Peaks associated with beta cell
transcription factor genes are labelled. (b) Genome browser views
showing H3K4me3 at a housekeeping gene (Rplp0) and an expression-
matched beta cell transcription factor gene (Nkx6-1). (c) Enrichment
p values of genes down- or upregulated in islets from Leprdb/db mice,
with genes ranked by H3K4me3 peak breadth (as in [a]) and grouped
into 20 quantiles. P values were calculated using one-sided Fisher’s exact
tests. (d, e) The same data as in (a, b) for human beta cells. (f) Enrichment
p values of genes down- or upregulated in islets from donors with type 2
diabetes, with genes ranked by H3K4me3 peak breadth (as in [d]) and
grouped into 20 quantiles. P values were calculated using one-sided
Fisher’s exact tests. (g) Immunoblots of H3K4me3 and H3 in islet
lysates from Lepr+/+ and Leprdb/db mice. H3-normalised H3K4me3
band densities are listed. (h) Average enrichment profiles of
H3K4me3 at the TSS of all expressed genes in Lepr+/+ and Leprdb/db

islets. (i) Genome browser views of H3K4me3 in Lepr+/+ and Leprdb/db

islets at notable genes that are downregulated (Pdx1, Slc30a8) or induced
(Aldh1a3, Ldha) in Leprdb/db islets. (j) Enrichment p values of H3K4me3
peaks showing significant change in peak breadth in Leprdb/db vs Lepr+/+

islets (y axis) in the different gene groups ranked from narrow to broad (x
axis). Enrichment p values were calculated using one-sided Fisher’s exact
tests. (k) Box and whisker plot showing the log2(fold change) in
H3K4me3 peak breadth for genes that are downregulated, stably
expressed and upregulated in Leprdb/db islets. P values were calculated
using Wilcoxon rank-sum tests with Benjamini–Hochberg correction.
***p<0.001. (l) Stratified rank/rank hypergeometric overlap plot
comparing gene expression changes caused by Dpy30-KO (x axis) and
by Leprdb/db (y axis) mutations. Colourscale shows the hypergeometric
enrichment p value. (m) Same as (c) for genes down- or upregulated in
Dpy30-KO cells
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In Dpy30-KO beta cells, changes in RNA expression were
linked to local changes in histonemethylation, leading to dysreg-
ulation of ~5% of genes. This mirrors findings in yeast [25],
Drosophila embryos [19] and mouse embryonic stem cells [18]
that H3K4 methylation is not required to maintain expression of
most genes. H3K4 methylation may, therefore, be important for
allocation of transcriptional machinery to particular genes, rather
than their absolute activity. In other words, promoter-associated
H3K4me3 levels modulate expression of target genes but global
H3K4me3 levels should not be assumed to reflect a cell’s tran-
scriptional output. We note, however, that total mature mRNA
content, which we measured here, is not a direct measure of
transcription, and measurement of nascent RNA may have
uncovered more widespread roles in transcription regulation. In
either case, our findings raise the important question of why
reduction of H3K4me3 was associated with downregulation of
a specific group of H3K4me3-marked genes. Part of the answer
probably arises from cooperation with specific transcription
factors. For example, there is evidence that MAF bZIP transcrip-
tion factor A (MAFA) and paired box 6 (PAX6) activate target
genes by recruiting COMPASS methyltransferases [77, 78] and
the activity of bothwas decreased inDpy30-KO cells. Additional
specificity probably arises from compensation and competition
from other epigenetic regulators. H3K27ac, an unambiguous
marker of active chromatin, was globally reduced in Dpy30-
KO cells and was positively linked to gene up- and downregu-
lation. H3K27me3, a modification that antagonistically drives
gene repression, accumulated at the promoters of downregulated
genes. Thus, our results are consistent with a cooperative role for
H3K4me3 within a larger ‘histone code’ [79]. We focused our
analyses on promoters but it should be noted that H3K4 methyl-
ation also influences gene expression from distal enhancers [15].
We suspect that consideration of enhancers would further refine
the link between gene regulation and H3K4 methylation in beta
cells. More broadly, we believe that, provided one has sufficient
knowledge of the epigenetic profile of a given gene, the degree to
which its expression depends on H3K4 methylation could be
accurately predicted.

Global reduction of H3K4 methylation was associated with
upregulation of almost 200 genes. This observation is at odds
with correlative and mechanistic evidence that H3K4 methyl-
ation is an ‘activating’ mark [13, 14, 26] but it is a common
observation when COMPASS genes are inactivated (e.g. [20,
24, 25, 43]). Although the mechanism by which this occurs is
unknown, it may point to roles for COMPASS/H3K4 methyl-
ation in gene repression. In this regard, it is notable that epige-
netic features were similar between upregulated and downreg-
ulated genes (Fig. 4). It is tempting to speculate that, in the
same way that transcription factors can activate or repress
target genes from identical DNA motifs, COMPASS/H3K4
methylation can activate or repress genes with common epige-
netic features based on the influence of other regulatory inputs.
Alternatively, reduction of H3K4 methylation is merely

permissive of gene upregulation caused by other factors, such
as (1) downregulation of negative transcriptional regulators,
(2) metabolic stimuli and (3) reallocation of transcriptional
machinery from downregulated genes. Whether H3K4me3
directly suppresses expression in some circumstances will
need to be tested by carrying out acute targeted methylation
and demethylation at candidate genes.

Peak breadth has emerged as an informative dimension of
H3K4me3 enrichment: H3K4me3 peak breadth predicts gene
expression levels [31]; breadth dynamics predict gene expres-
sion dynamics [80]; and exceptionally broad H3K4me3 peaks
are predictive of genes that are critical to the maintenance of a
cell’s lineage [27]. From our analyses of peak breadth, we
confirmed that markers of beta cells, including Ins1/2 and beta
cell transcription factors, possess broad H3K4me3 peaks in
mature beta cells. Dpy30-KO led to a genome-wide reduction
of H3K4me3 but transcriptional downregulation was largely
restricted to genes that had either very narrow or very broad
H3K4me3 peaks, indicating that these two classes of
promoters rely on H3K4me3 for the maintenance of gene
expression. Compared with the effect at narrow peaks, the
transcriptional defects for genes with broad H3K4me3 enrich-
ment was modest. For example, Ins1 and Ins2 were downreg-
ulated by 15–25% inDpy30-KO cells despite complete loss of
their broad H3K4me3 peaks. As broad peaks colocalise with
many other activating chromatin marks [27], the modest effect
is likely to result from compensation from other regulatory
inputs. In aggregate, our results show that broad H3K4me3
peaks increase expression levels and transcriptional consisten-
cy of associated genes but are not required for transcription.

A surprising finding is that weakly active promoters, with
little H3K4me3, show the greatest reliance on H3K4 methyl-
ation. One explanation is that these promoters are susceptible
to silencing as H3K4 methylation opposes repressive H3K27
and DNA methyltransferase activity [16, 17]. In support of
this, genes that were downregulated in Dpy30-KO cells
showed high initial enrichment of H3K27me3 and further
accumulation after reduction of H3K4me3. Weakly active
genes are also the most likely to be upregulated after inactiva-
tion of the Polycomb system [81] and, in beta cells, inactiva-
tion of the Polycomb system leads to activation of previously
silenced genes [4]. Therefore, weakly active genes may be the
most responsive targets in ongoing competition between the
Polycomb and trithorax systems in mature beta cells.

Weakly active genes become more active in Leprdb/db

islets, suggesting that the trithorax system is dominant during
the development of diabetes. Meanwhile, promoters with
broad H3K4me3 peaks showed a unique tendency to shrink
and for the associated gene to be downregulated.More work is
required to determine what drives H3K4me3 peak dynamics
in Leprdb/db islets and to what extent these mechanisms are
active in human diabetes. In any case, we favour a model
wherein redistribution of H3K4me3 away from promoters of

1112



Diabetologia  (2023) 66:1097–1115

genes with broad H3K4me3 peaks, which enforce beta cell
identity or functions, in favour of relatively inactive genes,
including stress response and disallowed genes, contributes
to transcriptome remodelling and type 2 diabetes.

Supplementary Information The online version of this article (https://doi.
org/10.1007/s00125-023-05896-6) contains peer-reviewed but unedited
supplementary material.
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