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Abstract
Nanoengineered nanoparticles have a significant impact on the morphological, physiology, biochemical, cytogenetic, and 
reproductive yields of agricultural crops. Metal and metal oxide nanoparticles like Ag, Au, Cu, Zn, Ti, Mg, Mn, Fe, Mo, etc. 
and ZnO,  TiO2, CuO,  SiO2, MgO, MnO,  Fe2O3 or  Fe3O4, etc. that found entry into agricultural land, alter the morphological, 
biochemical and physiological system of crop plants. And the impacts on these parameters vary based on the type of crop 
and nanoparticles, doses of nanoparticles and its exposure situation or duration, etc. These nanoparticles have application in 
agriculture as nanofertilizers, nanopesticides, nanoremediator, nanobiosensor, nanoformulation, phytostress-mediator, etc. 
The challenges of engineered metal and metal oxide nanoparticles pertaining to soil pollution, phytotoxicity, and safety issue 
for food chains (human and animal safety) need to be understood in detail. This review provides a general overview of the 
applications of nanoparticles, their potentials and challenges in agriculture for sustainable crop production.
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Introduction

Agriculture is the primary need for any country to lead a 
better life. The presence of metal and metal oxide nanopar-
ticles in agriculture soils has risen more in the past years. 
It is because of the increased production of a great number 
of nano-products by industries to meet the teeming world 
population. However, the accumulation of these engineered 
nanoparticles (ENPs) in plants, their translocation and 
their growth response are not clearly understood (Siddiqi 
and Husen 2016). These nanoparticles have a size ranging 
between 1 and 100 nm and disturb food chain system and 
impair the health of humans and animals. Metal nanoparti-
cles like Ag, Au, Cu, Zn, Ti, Ce, Fe, Mg, Mn, and Mo are 
used as coating materials, antibacterial agents for biomedical 

applications, textile application, implants industry, personal 
care products, drug delivery, etc. Metal oxide nanoparticles 
such as  TiO2, ZnO, CuO,  SiO2, MnO, MgO,  Fe2O3/Fe3O4 
and GO have antibacterial, antifungal, and photocatalytic 
activities with self-cleaning properties (Fruth et al. 2021; 
Valenzuela et al. 2019). Superparamagnetic  Fe2O3 nanopar-
ticles, graphene, carbon nanotubes (CNTs) are utilized to 
treat heavy metals, pesticides, insecticides, microbes into 
water and wastewater as sorbent materials. Carbon nano-
tubes and ceramic nanoparticles have application in printed 
electronics inks. These ENPs directly or indirectly go into 
the agricultural land and improve or decrease the quality 
of crops, soil pH, plant growth, yield, and its nutritional 
value. Also due to the continuous accumulation of ENPs in 
different parts of crops, they can pose a significant impact 
on plant’s physiological responses such as germination, 
anatomical changes, metabolism, cell growth and cytoge-
netic effects and yield (Kralova and Jampilek 2021; Sheikh 
Mohamed and Sakthi Kumar 2016; Shukla et al. 2016). 
Their presence in agricultural soils may improve or dete-
riorate the crop characteristics and its value. During the 
past few years, engineered nanoparticles have been used 
for crops as nanofertilizers, nanopesticide, nanoremedia-
tor, nanobiosensor, disease management, phytohormones, 
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nanoformulation, phytostress-mediator, etc. (Mahakham 
et al. 2016). This paper attempts by narrative approach, to 
provide reviews on the various types of engineered metal 
and metal oxide nanoparticles, their agricultural usefulness 
in terms of crop improvement and the challenges and risks 
of the adoption of nanotechnology in crop production.

Types of engineered nanoparticles

Engineered nanoparticles are 1–100 nm in size and fabri-
cated from bulk materials (> 500 nm). These nanoparticles 
have many common characteristics such as a larger surface 
area to volume ratio, electronic, optical, magnetic proper-
ties and high surface reactivity (Abbas et al. 2020). Engi-
neered nanoparticles are classified into ceramic, polymeric, 
carbon-based, semiconductor and lipid-based nanoparticles 
(Table 1.) based on size, shape, morphology, physical and 
chemical properties (Khan et al. 2019; Ogunkunle et al. 
2021).

i. Metal/metal oxide nanoparticles: Metal nanoparticles 
are synthesized by various procedures and classified into 
bottom-up approaches and top-down approaches (Jam-
khande et al. 2019). Different metal nanoparticles have 
wide applications in our daily life and have gained mar-
ket use worldwide. Among various metal nanoparticles, 
silver (Ag) nanoparticles have multifunctional properties 
for example bactericide, fungicide, antiviral, antioxidant 
and anti-inflammatory pest control for crop improvement 
because of its high surface area and a fraction of surface 
atoms (Cho et al. 2005; Kale et al. 2021). Ag nanopar-
ticles are also used as coating materials for commercial 
applications on metals, textiles, paint, electrical, batter-
ies, photography (Clarence Davies 2008). Ag nanoparti-
cles of 1–100 nm in size have wide application in plant 
growth and development (Yan and Chen 2019) where 
the rate of seed germination (Shelar and Chavan 2015) 
with enhanced chlorophyll contents (Hatami and Ghor-
banpour 2013) and yields (Sadak 2019) are significantly 
improved by the nanoparticles. Many reasons have been 

adduced as to why Ag nanoparticles have more applica-
tions as bactericide and fungicide. Ag nanoparticles break 
the cell wall of microorganism, damage cell membrane, 
accumulate in cell and release many free radicals which 
lead to cell death (Gupta et al. 2018). Ag ions block the 
respiratory enzymes of the microorganism and produce 
reactive oxygen species (ROS) is another reason for 
cell death (Aziz et al. 2015; Banerjee et al. 2010). Gold 
(Au) nanoparticles are exposed to the environment by 
consumer products such as electronic goods, cosmetics 
products, pharmaceuticals, textiles, and water treatment. 
These nanoparticles have applications in drug delivery, 
cell imaging, coating, and photodynamic therapy. Copper 
(Cu) nanoparticles are antimicrobial agents, that prevent 
the spoilage of food and enhance the shelf-life of food 
(Rai et al. 2018). Cu nanoparticles have antibacterial effi-
cacy against Escherichia coli and Staphylococcus aureus 
which was reported earlier (Jia et al. 2012). Similarly, the 
fungicidal ability of Cu nanoparticles coated with chi-
tosan was evaluated against Alternaria solani and Fusar-
ium oxysporum for tomato plants (Saharan et al. 2015). Fe 
nanoparticles have metal-binding properties in various 
environmental conditions and are used for water purifica-
tion as adsorbents (Kornarzyński et al. 2020). They also 
have the potential to enhance the germination capability 
of harvest plants (Alam et al. 2015). Manganese (Mn) 
nanoparticles are known to increase the photosynthetic 
activity of plants (Pradhan et al. 2014). Nickel (Ni) nano-
particles have unique magnetic properties, and are used 
as catalyst, manufacture of batteries, printing inks, textile 
applications and the adsorption of dyes. Ni nanoparticles 
are antimicrobial (Chaudhary et al. 2019), superparamag-
netic materials (Li et al. 2012a), used in water splitting 
(Li et al. 2017), electrocatalyst (Fadil et al. 2014) and 
functionalized materials (McKeown et al. 2012). Cerium 
(Ce) nanoparticles have significant effects on agricul-
tural crops (Ramírez-Olvera et al. 2018).
Metal oxide nanoparticles have several commercial and 
industrial products applications (Kaweeteerawat et al. 
2015). ZnO-engineered NPs,  Fe2O3-engineered NPs 
and NiO-engineered NPs are used as nano-fertilizer in 

Table 1  Classification of engineered nanoparticles and their descriptions

Adapted from Khan et al. (2019), Ogunkunle et al. (2021)

Types Description summary

Metal/metal oxide-based These NPs are derived from metal or metal-oxide precursors
Carbon-based NPs These are NPs derived from carbon atoms-carbon nanotubes, carbon quantum dots and fullerenes
Ceramic-based NPs They are derived from inorganic solids of carbides, oxides, phosphates and carbonates
Polymeric-based NPs They are organic-based NPs with nanocapsular or nanospheric shape
Semi-conductor NPs They are derived from elements that are presence in group II-IV, III-V or IV-VI in the periodic table
Lipid-based NPs These are NPs that are spheric in shape and consist of a solid core of lipids and soluble lipophilic molecules
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agriculture to improve nutrient deficiency, regulate phy-
tohormones and antioxidant action in agricultural crops 
(Rameshraddy et al. 2017; Rui et al. 2016). Cerium oxide 
nanoparticles  (CeO2) are used in sunscreens, catalysts, 
corrosion protection, polishing agents, microelectronics, 
and fuel additives. (Cassee et al. 2011). Because of the 
optical, thermal, and electrical features, these nanoparti-
cles have been used for agricultural crops (Rajeshkumar 
and Naik 2018), especially in the enhancement of crop 
improvement (Cao et al. 2017; Yang et al. 2020).
ii. Semiconductor nanoparticles: They have wide band 
gaps and are placed in the periodic table of II-VI, III-V 
or IV-VI groups. They demonstrate properties between 
metals and non-metals properties and commonly used 
for electronics devices, photocatalysis, water splitting 
applications, photo-optics, etc. At this point, groups like 
III-V include GaN, GaP, InP, InAs, II-VI comprises ZnO, 
ZnS, CdS, CdSe, CdTe and IV consists of silicon and 
germanium. This activity of ZnO nanoparticles invited 
great attention in agricultural crops for pesticides, insec-
ticides, fertilizer, herbicides, etc. Even ZnO nanosensors 
can detect the pesticides residue level, soil moisture and 
nutrients (Sabir et al. 2014). Titanium dioxide  (TiO2) nan-
oparticles, as photocatalyst and semiconductor materials, 
have great consideration in agriculture in the aspect of 
the plant sprouting and growth, deprivation of chemicals 
such as pesticides, finding and control of plant disease, 
plant protection, antibacterial activity (Wang et al. 2016).
iii. Lipid-based nanoparticles: Lipid-based nanoparti-
cles are used as fungicides carrier such as carbendazim 
and tebuconazole for their slow release to reduce their 
toxicity level and prevent the plants from fungal disease 
(Campos et al. 2015). The essential oil from Artemisia 
arborescens L as pesticides formulated with solid lipid 
nanoparticles for regular treatment of soil (Lai et al. 
2006). Solid lipid nanoparticles are also used in a con-
trolled manner with the usage of herbicides atrazine and 
simazine to control the weeds in agricultural fields (De 
Oliveira et al. 2015).
iv. Ceramic nanoparticles: Ceramic nanoparticles such 
as clay and hydroxyapatite have been used in agricultural 
crops. Nano-clays loaded with different types of fertiliz-
ers such as nitrogen, phosphorus, and potassium have 
shown a slow release of nutrients (Sen et al. 2015). It has 
also been reported that nano-clays have the capacity of 
holding water as they possess a high absorbing ability to 
improve plants’ productivity in dry lands. The studies on 
zeolite and kaolinite clays have shown the slow release of 
phosphatic fertilizer and the regulation of nutrient release 
from conventional fertilizer respectively (Bansiwal et al. 
2006). Hydroxyapatite nanoparticles have been found to 
possess the potentials to be used as fertilizer for Solanum 
lycopersicum L when mixed with carboxymethylcellulose 

(CMC) which enhance plant metabolism and has role in 
plant growth (Marchiol et al. 2019).
v. Polymeric nanoparticles: Polymeric nanoparticles are 
used as nanocarriers for the target release of pesticides as 
growth promotors. This enhances the effective efficiency 
of agrochemicals such as slow release, enhances adhesion 
on the surface of roots and leaves and delays degradation 
of chemicals (Shakiba et al. 2020). The synthetic polymer 
mostly used as a nanocarrier is poly(lactic-co-glycolic 
acid) (PLGA) which is biocompatible and biodegrad-
able. Alginate/chitosan polymer as a nano-carrier encap-
sulated with gibberellic acid was used as seeds priming 
of Solanum lycopersicum and demonstrated the potential 
to improve production in the plants (Pereira et al. 2019). 
Poly(lactide-co-glycolide)-b-poly(ethylene glycol) methyl 
ether (mPEG-PLGA) nanoparticles encapsulated with 
metolachlor was also used as pesticide delivery in plants 
(Tong et al. 2017).
vi. Carbon-based nanoparticles: This includes the 
structures such as graphene, fullerenes, carbon nanotubes, 
and carbon nanofibres which have various applications 
in semiconductor fields, electronics, and solar cells due 
to their multiple structures (Mathur 2016; Saleh 2020). 
Carbon-based nanomaterials penetrate the various types 
of cells and have the ability to improve the development 
of reactive oxygen species (Paramo et al. 2020; Zaytseva 
and Neumann 2016). A study on rice and Cicer arieti-
num plants has shown that carbon nanomaterials help to 
store the water content in the seeds and have the ability 
to translocate in upwards directions for the leaves (Nair 
et al. 2012). This may be because of the attachment of 
carbon nanotubes to the vascular bundles of the plants 
(Paramo et al. 2020).

Application of engineered nanoparticles 
in crop production

Crop production is a major sector of agriculture that needs 
fortification and improvement to meet the unrelenting 
demands for food by the teeming world population. It has 
been documented that the world population in 2013 was 7 
billion and projected to achieve around 9.6 billion by 2050 
and 10.9 billion by 2100 (United Nations 2013). Therefore, 
to obtain food security for this teeming world population, 
it is very important and expedient to increase food produc-
tion and improve the quality of produced foods (FAO 2009). 
Nanotechnology, due to its ability to promote and improve 
the agricultural sector by increasing crop production, has 
been promoted as the rising technology to combat food 
security in recent times (Singh Sekhon 2014). Engineered 
nanoparticles (ENPs), due to their distinctive features like 
high surface area, particle and pore dimension and reactivity 
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have been implemented in the process of improving crop 
production. In fact, it has been asserted that the interaction 
of nanoparticles with cells of plants always lead to the altera-
tion of gene expressions as well as biological pathways that 
subsequently affect and promotes plant metabolism (Nair 
et al. 2010). The different applications of engineered metal/
metal oxide nanoparticles in crop production viz-a-viz 
nanonutrition/nanofertilizer and nanopesticides are item-
ized in Table 2.

Use as nanonutrition/nanofertilizers

In the strive to achieve sustainable crop production in the 
post-Green Revolution era, serious issues of environmental 
and human health safety were reported due to dependency 
on agrochemicals in agriculture (Mishra and Singh 2015). 
One of the problems is the pollution of downstream surface/
ground water as a large number of applied fertilizers are 
wasted and washed off through runoffs and other processes. 
These problems were overcome with the adoption and use 
of environmental-friendly bioformulations such as biofer-
tilizers and biopesticides which is sustainable and proven 
to ensure biosafety. However, this exciting approach was 
confronted with the concerns of shelf-life, on-site stabil-
ity and high-dose requirement of bioformulations (Mishra 
et  al. 2017). In recent times, nanotechnological-based 
approaches in the use of nanoparticle-based formulations 
such as nanofertilizers and nanopesticides with superior 
properties over conventional bioformulations have been 
developed. Nanoparticles have been utilized successfully 
either as nano-carrier matrices or as nutrients (both micro- 
and macronutrients) due to their intrinsic ability to penetrate 
directly into cells of plants or promote micro- and macro-
nutrients uptake by plant roots and enhance the growth 
and productivity of crops. This behavior of nanoparticles 
to effect enhanced growth has been reported to be greatly 
dependent on some intrinsic properties of nanoparticles such 
as the concentration, composition, both physical and chemi-
cal properties and surface charge (Bandala and Berli 2019; 
Lambreva et al. 2015; Ma et al. 2010).

An important aspect of the use of nanofertilizers is the 
sustained release of nutrients for crop plants as coated ferti-
lizers with nanoparticles provide a slow release of nutrients 
to plants because of higher surface tension (Duhan et al. 
2017; Santoso et al. 1995). Ombodi and Saigusa estimated 
40–70%, of nitrogen, 80–90% of phosphate and 50–70% 
of potassium as applied fertilizers which are lost into the 
ecosystem causing pollution (Ombodi and Saigusa 2008). 
Therefore, nanocoating of nutrients, due to its stability mini-
mizes the leaching of fertilizers from crop plants. Kotte-
goda et al. were used altered hydroxyapatite nanoparticles 
with urea and encapsulated in the soft wood of Gliricidium 
sepium as nano-fertilizer for a gradual release of nitrogen for 

60 days (Kottegoda et al. 2011). Also, Zulfiqar et al. (2019) 
employed nano sulphur to coat urea fertilizer and utilized it 
as sustained-release sulphur nutrient in soil with low sulphur 
content. In addition, Corradini et al. (2010) have utilized 
biodegradable polymeric chitosan nanoparticles of less than 
78 nm for a gradual release of NPK as manure to plant.

The use of nanoparticles, especially metal/metal oxide 
nanoparticles as foliar-applied nano-fertilizers has also 
been documented. Dhoke et al. (2013) reported the usage 
of metal oxide-engineered nanoparticles like  TiO2, FeO and 
ZnO as foliar nano-fertilizer sprays because of their ability 
to directly infiltrate leaf pores and influence the growth of 
crop plants, though there was threshold limit in this case. 
Delfani et al. reported that foliar function of Fe-Engineered 
NPs at a concentration of 500 mg/l to peas produced a sig-
nificant increase of 47% in the number of pods per plant, 
34% and 10% increase in Fe content and chlorophyll content 
of leaves, respectively, and 7% increase in weight of 1000-
seeds (Delfani et al. 2014). The role of nanofertilizers in the 
agricultural sector is not only to achieving enhanced crop 
production but also help to improve crop resistance to abiotic 
stresses (Zulfiqar et al. 2019).

Use as nanopesticides

Plant protection is a major aspect of crop production that 
needs to be addressed in view of the menace that insect-pests 
wreck to food production. Hence, nanoparticles portend sig-
nificant potential in the control of insect pest and pathogen-
hosts in crop production. Nanoparticles with different char-
acteristics have been reported for utilization as nanocarriers 
for encapsulating insecticides (de Oliveira et al. 2014). The 
process of nano-encapsulation has allowed adequate absorp-
tion of chemicals into crop plants because of the slow and 
sustained discharge of chemicals and proffer lasting and per-
sistent results (Duhan et al. 2017; Scrinis and Lyons 2007).

For instance, carvacrol derived as a bioactive compound 
from thyme has been encapsulated with chitosan-engineered 
NPs and utilized as a bactericidal agent in crop production 
(Higueras et al. 2013; Keawchaoon and Yoksan 2011). Simi-
larly, Zein Engineered NPs was used for the encapsulation 
of eugenol and curcumin and utilized as both insecticides, 
nematicide and bactericide (Gomez-Estaca et  al. 2012; 
Zhang et al. 2014). Similarly, essential oil from garlic is 
insecticidal for Tribolium castaneum (red flour beetle) was 
encapsulated in polyethylene glycol-coated nanoparticles 
and the formulation was found efficienct compared to T. 
castaneum by 80% because of their sustained delivery of 
active principle from the nanoparticles (Yang et al. 2009). 
Entomotoxicity of several other nanoparticles have also been 
tested and confirmed. Debnath et al. (2010) showed the silica 
nanoparticles portend entomotoxicity in opposition to Sit-
ophilus oryzae (rice weevils) with higher efficacy of about 
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Table 2  Selected applications of engineered nanoparticles in crop production

Application Form of Engineered NPs Application dose Crop plant Endpoint benefits References

Nanofertilizers
Nano  Fe3O4, 18.9–20.3 nm 30–60 mg/l Glycine max Increased chlorophyll 

content by 10% in green-
house for 7 days

Ghafariyan et al. (2013)

Metallic Mn, 20 nm 0.05–1 mg/l Vigna radiata Enhanced length of roots, 
shoot; promoted chlo-
rophyll and carotenoid 
content

Pradhan et al. (2013)

Nano-ZnO, 20 nm 1–200 mg/l Cicer arietinum Increased root length, 
shoot height, biomass 
and fruit starch plus 
glutelin content

Dhoke et al. (2011)

Nano-calcite, 20–80 nm 160 mg/l Arachis hypogaea Increased ground biomass 
by 1.2 times, increased 
Ca content in both roots 
and stems and, increased 
soluble sugar and protein

Xiumei et al. (2005)

Nano-apartite 16 nm
_

21.8 mg/l Glycine max Increased ground biomass, 
growth rate and yield by 
6.5-fold, 2.0-fold and 
5.4-fold, respectively

Liu and Lal (2014)

Nano-ZnO, 25 nm NA Arachis hypogaea Yield was increased by 
25–30%

Prasad et al. (2012)

Nanopesticides
Nano-TiO2; 32 nm NA Oryza sativa & Zea mays Applied as fungicides to 

reduce rice blast and 
maize southern leaf 
spot by 38% and 67%, 
respectively

Lu et al. (2006)

Imidacloprid 
 (C9H10ClN5O2); 30 nm

NA Oryza sativa Applied as insecticides 
with 95% effectiveness 
than conventional imi-
decloprid on Martianus-
dermestoides insec

Guan et al. (2008)

ZnO; 70–80 nm NA NA Used as a fungicide to 
retard the growth of 
Botrytis cinerea and 
Penicillium expansum 
by 63–80% and 61–91%, 
respectively

He et al. (2011)

Cu; 3–10 nm NA NA Used as fungicides and 
activity was superior to 
bavistin (commercial 
fungicide) against F. 
oxysporum, C. lunata, 
A.alternata, and P. 
destructiva

Kanhed et al. (2014)

Nanosensor
Au; NA NA Not applicable Utilized as biosensor for 

neurotoxic organophos-
phorus pesticides in the 
environment

Simonian et al. (2005)

Cu; 100 nm NA Not applicable Utilized as an electrical 
biosensor for fungal 
pathogen-Sclerotinia 
sclerotiorum in oilseed 
rape

Wang et al. (2010)
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90% than the bulk-sized silica. Scrinis and Lyons (2007) 
opined that the encapsulation of pesticides in nanoparticles 
offers adequate combination of chemical principle with crop 
plants which provides long-lasting effects.

Use in disease management

Engineered nanoparticles are also known for their poten-
tial to control plant diseases either used solely as appli-
cant or carriers of conventional ingredients (Table 3). 
They have been reported as promising materials in plant 
disease management due to their inherent potential to 
increase effectiveness at little dose application and ensure 
human health safety to consumers (Bandala and Berli 
2019; Srilatha 2011). Among such Engineered NPs that 
have been reported as effective against plant diseases, Cu 
hydroxide-engineered NPs have proven effective against 
fungal diseases caused by phytopathogens (Baker et al. 

2005). Silver-engineered NPs have also been identified 
as effective with higher efficiency at low doses against 
fungi (Jo et al. 2009; Kim et al. 2008; Mishra et al. 2015). 
Potency and efficacy of Ag-engineered NPs are reported to 
be connected to the different forms and particle size of the 
engineered NPs, and the efficacy reduces as increases the 
size (Duhan et al. 2017). Similarly, chitosan-Cu has been 
utilized as a carrier agent for the encapsulation of saponin 
and  CuSO4 as antifungal material (Saharan et al. 2013). 
In Cucurbitaceae which are prone to powdery mildew dis-
ease, it has been found that nano-Ag at a concentration of 
100 ppm was able to prevent the fungal hyphae growth in 
the plant family and prevent the germination of conidia 
(Lamsal et al. 2011). Nano silica has been utilized to con-
fer resistance on maize plants against Fusarium oxyspo-
rum and Aspergillus niger because of better expression 
of phenolic compounds induced by the engineered NPs 
(Suriyaprabha et al. 2014).

NA not available

Table 2  (continued)

Application Form of Engineered NPs Application dose Crop plant Endpoint benefits References

Au-coated CNT; 
30–60 nm

NA Not applicable Used as an electrical 
biosensor for Triazophos 
in vegetables and food 
sample

Li et al. (2012b)

Ag; 50 nm NA Not applicable Applied a monolayer film 
Raman detector to detect 
pesticides

Zhang (2013)

Table 3  Some applications of engineered nanoparticles in viral disease management of crop plants

Application Form of engineered NPs Crop plants Endpoint benefits References

Nano-antiviral Ag-NPs; 77 nm Vicia faba Decrease in concentration bean yel-
low mosaic virus, percentage of 
infection, and disease severity in 
the crop plant

Elbeshehy et al. (2015)

Ag-NPs; 12 nm Solanum tuberosum Conferred resistance to potato virus 
infection in the crop plant

El-shazly et al. (2017)

Au-NPs Hordeum vulgare Dissolved barley yellow mosaic viral 
particle in vitro in barley

Aref et al. (2012)

Au-NPs; 31.67 nm Hordeum vulgare Destroyed gold barley yellow dwarf 
virus and eliminates virus infectiv-
ity hazards in barley

Alkubaisi and Aref (2017)

TiO2; 20 nm Nicotiana benthamiana Effectively limits viral infection and 
replication of Turnip mosaic virus

Hao et al. (2018)

NiO; 20 nm Cucumis sativus Reduced disease severity and 
concentration of cucumber mosaic 
virus

Hamed Derbalah and Elsharkawy 
(2019)

CeO2-NPs; NA Nicotiana tabacum Reduced virus symptoms of tobacco 
mosaic virus

Eugene and Zholobak (2016)

SiO2-NPs; 100 nm Solanum lycopersicum Reduced disease severity and con-
centration of tomato yellow leaf 
curl virus

El-Sawy et al. (2018)
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Viral infections in agriculture especially in the produc-
tion of vegetables have been reported to be a great chal-
lenge (Lysenko et al. 2018). Metallic nanoparticles from Zn, 
Au, Ag, Si and Fe are studied candidates and considered 
antiviral agents due to their ability to intervene in one or 
more steps of viral replication, though the mechanisms are 
poorly understood (Lysenko et al. 2018; Vargas-Hernandez 
et al. 2020). Antiviral activity of  SiO2-Engineered NPs and 
ZnO-Engineered NPs have been reported against tobacco 
mosaic virus (TMV) in vitro by directly inactivating TMV 
through the interaction with envelope glycoproteins in Nico-
tiana benthamiana plants (Cai et al. 2019). Similarly, Cai 
et al. (2020) treated TMV with  Fe3O4-engineered NPs and 
reported accumulation and fracture indicating interactions 
between the engineered NPs and TMV particles. Gold-engi-
neered NPs have also been proven effective against barley 
yellow dwarf virus-PAV in barley as the engineered NPs and 
harmful for virus-like particles (Alkubaisi and Aref 2017).

Use as nanosensors

In agriculture, nanosensors have been recently introduced as 
useful tools for input efficiency (such as pesticides and ferti-
lizers), and the detection of phytotoxicity, nutrient depletion/
deficiency in soil and diseases in crop plants (Dubey and 
Mailapalli 2016). In fact, nanosensors have been reported 
as an important nanotechnological-breakthrough in the 
detection of plant viruses, nutrients level in soils as well as 
pathogens in crop plants (Brock et al. 2011). These nanosen-
sors are produced mostly from two types of nanomaterials: 
(i) carbon nanotubes (single- or multi-walled), (ii) Metal-
based nanoparticles (Al, Au, Zn) and metal oxide nanopar-
ticles (ZnO,  TiO2, and  Al2O3) (Khodakovskaya et al. 2012). 
In agriculture, the main nanosensors employed are the (i) 
bionanosensor and (ii) electrical nanosensors. The biona-
nosensor incorporates the sensitivity of biological organ-
isms and nanoparticles into the sensor with the capacity to 
enhance sensitivity and minimize response-time (Dubey and 
Mailapalli 2016; Scott and Chen 2012). For instance, micro-
cystins which are toxins produced by cyanobacteria have 
been detected effectively by several developed biosensors in 
recent times (Singh et al. 2012). The electrical-nanosensor 
is also an important device in agriculture that provides pre-
cise time-based information for efficient crop production 
and quality control of agricultural produce. For instance, 
in the detection of the level of the phenolic phytohormone-
salicylic acid, Wang et al. (2010) developed an electrical 
nanosensor using nano-Au electrode that was modified with 
Cu-Engineered NPs to sense the electrocatalytic oxidation 
of salicyclic acid and detected the phytohormone levels in 
rape oilseed contaminated with Sclerotina sclerotiorum. 
Ogunkunle et al. (2021) also mentioned noble metal-engi-
neered NPs like palladium and platinum biometallic alloys 

as a primary ingredient, due to their exceptional size and 
shape (Smith and Gambhir 2017) in the processing of elec-
trochemical sensors.

Use as phytostress‑suppresant

Responses to biotic and abiotic stresses in plants are meas-
ured by the increase in production levels of reactive oxygen 
species (e.g.,  O2,  H2O2 and OH) and induction of local and 
systemic defense responses (Cai et al. 2019). The defense 
system involves the antioxidants such as catalase (CAT), 
ascorbate peroxidase (APX), superoxide dismutase (SOD) 
and guiacol peroxidase (GPX) that help to counterbalance 
the effects of oxidants. Therefore, to overcome the impact 
of stressors on crop plants, the use of nanoparticles amongst 
several other strategies has been considered to support plant 
(Rajput et al. 2021) (Table 4). For instance, phytostress 
induced by pathogens can be suppressed by metal/metal 
oxide-engineered NPs by the interference of cellular redox 
homeostasis through induction or reduction of the occur-
rence of oxidative stress (Vargas-Hernandez et al. 2020). 
Such engineered metal oxide NPs reported to have  the 
potential of repression of oxidative stress in crop plants are 
 TiO2,  CeO2, ZnO, CuO, Ag, NiO,  Al2O3,  CoFe2O4,  Fe3O4, 
and  Fe2O3 (Soares et al. 2018). Additionally, growth hor-
mones (gibberellin, auxin, cytokinin, brassinosteroids, absci-
sic acid, and strigolactone) have also been reported to be 
induced by Engineered NPs as modulating defense responses 
to phytostress, either by abiotic or biotic agents (Hernández-
Hernández et al. 2018; Rastogi et al. 2017). Copper nano-
particles mixed with chitosan polyvinyl alcohol hydrogels 
were tested on tomato plants in salt stress and found that the 
mixture overexpressed jasmonic acid (JA) gene in the crop 
plants (Hernández-Hernández et al. 2018). Similarly,  Fe2O3 
and  TiO2-engineered NPs were capable of to promote phy-
tohormone quantities such as zeratin riboside, abscisic acid, 
and brassinoid in tobacco mosaic virus-infected tobacco 
(Hao et al. 2018). Similarly, stress induced by abiotic factors 
like heavy metals, salinity and drought have been amelio-
rated by various applications of engineered NPs (Table 4). 
Stresses induced by metals in crop plants have been allevi-
ated by the applications of engineered NPs via both foliar 
and soil routes (Ogunkunke et al. 2022a, b). For instance, 
Cd stress in crop plants has been alleviated using nano-TiO2 
as phytostress suppressant via soil application, leading to 
reduced malonaldehyde (Ogunkunle et al. 2020a, b), and the 
foliar routes of application of nano-TiO2 (Ogunkunle et al. 
2020c) and nano-ceria (Ogunkunle et al. 2023) have also 
been proved effective in suppressing Cd stress in crop plants.

Salinity problems in agricultural soils have become a 
global phenomenon as there has been an increase in salt-
affected soil worldwide (Islam et  al. 2021). The stress 
induced can be detrimental to crop plants processes such 
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as the physiological, biochemical, and molecular activities, 
thereby causing a reduction in crop productivity (Kumar 
et al. 2020). However, several attempts have been made to 
mitigate these salinity-induced stresses using nanoparticles 
as phytostress suppressants in crop production. Crop plants 
under salinity stress feasible to improve by the usage of 
nanoparticles either through foliar or soil route through the 
process of regulation of ion balance as  Na+ ion toxicity is 
reduced and  K+ ion uptake is promoted, thereby activating 
antioxidant defense system in the crop plant (Rajput et al. 
2021). In addition, seed priming with engineered nano-
particles can also be utilized to ameliorate salinity stress. 
Seed primer of Lupinus termis with ZnO-Engineered NPs 
at 60 mg/l was able to ameliorate the detrimental effect of 
salinity stress induced by NaCl through increased pigmenta-
tion, osmoregulation, and improvement in stress-associated 
metabolites. Similarly, Ag-Engineered NPs were able to alle-
viate salinity stress in Triticum aestivum after seed priming 
(Mohamed et al. 2017). The major stress of the crop plants 
is drought and causes great loss in crop productivity if not 
checked or ameliorated by reducing leaf area, crop growth, 
carboxylation, and water potential in addition to causing 
crops’ hormonal imbalance (Kumari et al. 2018). Some 
applications of engineered nanoparticles in the alleviation 
of drought-induced stresses in crop plants are presented in 
Table 4.

Use as nanoremediator

Contamination of water bodies, soil, and air by heavy metals 
from industrial activities, manufacturing, landfills and oil 
fields posed a grave threat to human well-being and ecosys-
tem functionality. Since several decades ago, the discharge 
of metalloids and innumerable organic compounds from 
industrial and agricultural activities had resulted in a huge 
increase in contaminated land and water body (Gil-Díaz 
et al. 2019). Many of these metalloids are toxic, carcino-
genic and can endangered human health, even at a very low 
dose (Baragaño et al. 2020). They are usually intractable to 
biochemical responses and therefore difficult to eliminate 
from the environments. As such, it is a global concern that 
requires ecofriendly remediating approaches. Application of 
nanomaterials for remediation connotes an innovative solu-
tion with a tendency to induce significant changes in the spe-
ciation of heavy metals. Indeed, there is increasing interest 
in pollution remediation by nanotechnological approach as 
it serves as an alternative approach to prevent, reduced, and 
treat environmental pollution (Corsi et al. 2018; Gil-Díaz 
et al. 2016; Xue et al. 2018). For example, previous works 
had revealed that nanoscale iron particles have been quite 
effective for environmental remediation. The advantage of 
nanoscale zero-valent iron (nZVI) appears to as an effec-
tive strategy for the contaminated soil remediation (Gil-Díaz 

et al. 2019), likely due to their high surface area to weight 
ratio, which permits higher reactivity rate than micron-scale 
ZVI when normalized to mass. Nanoscale zero-valent iron 
(nZVI) remediate typical polluted soil and water by signifi-
cantly reducing the availability of both As and Hg (De et al. 
2009; Gil-Díaz et al. 2016). It has also been ascertained to 
be highly effective in elimination of several contaminants, 
like chlorinated compounds, heavy metals and others (Xue 
et al. 2018).

The key benefits of using nanoremediator for agricultural 
soil and groundwater remediation, especially in urban clean-
ing, are reduction in cleanup time and cost accrue (Alazaiza 
et al. 2021). Unlike traditional methods, nanoremediator 
usually completely degrade some contaminants without the 
need for the disposal of polluted soil or water. However, 
the effects of nanoremediators on the environmental remain 
unclear and need more investigation to ascertain the envi-
ronmental fate and toxicity of these nanoremediators. Due 
to its magnetic property and small size effect, nZVI has a 
problem of aggregating quickly, which extensively reduces 
its reactivity towards the contaminant. To provide a solution 
to this issue, nZVI is often coated with surface modifiers. It 
can also be bound with Rhamnolipid, a glycolipid anionic 
biosurfactants that is produced by numerous strains of Pseu-
domonas aeruginosa. Rhamnolipid has surface/interfacial 
activities and could be a promising alternative to stabilize 
NZVI. Moreover, if a nanoremediation is combined with a 
traditional method such as the use of microorganisms, they 
could generate a better result. For example, It has been found 
that when Geobacter metallireducens was bound with par-
ticulate ferrous oxide, it reduced 4-nitroacetophane, a highly 
toxic organic compound (Braunschweig et al. 2013).

Challenges/risks of nanotechnology in crop 
production

In the current trends, traditional farming and nutritional 
demands are changing rapidly in agricultural crops. New 
challenges require a new approach to innovate the latest tech-
nology. Engineered nanoparticles such as fertilizers, pesti-
cides, remediators, sensors, phytohormones, formulation and 
stress-mediators are widely implemented to enhance plant 
growth, yield, soil improvement and minimize phytotoxicity. 
Since the global production of nanoparticles is daily increas-
ing, so the challenges and risks on crop production are based 
on dose and toxic effects on germination, root growth, chlo-
rophyll, chromosomal deviation, yield, etc. The nanotoxic-
ity studies of various metals and metal oxide nanoparticles 
like carbon nanotubes (single or multiwall), Ag, ZnO, Fe has 
shown arrest in plant growth (Dimkpa et al. 2012; Ghosh et al. 
2015). Phytotoxicity of metals and metal oxides nanoparti-
cles are controlled by the size of the plant and plant species, 
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size, concentration, and stability of engineered nanoparticles 
(Wang 1991; Wang and Freemark 1995). The toxicity of Ag 
nanoparticles in plants is because of their impact on the bio-
chemical properties which stimulate free radical generation 
thereby inducing oxidative stress in plants (Nair et al. 2010)). 
Engineered nanoparticles interact with various cellular com-
ponents and nucleic acids, causing chromosomal aberration, 
genomic changes and alter the cell signaling mechanism (Ray 
et al. 2012; Singh et al. 2017).

Soil pollution by metal and metal oxide nanoparticles is 
an emerging issue for food safety and threat for man and 
animals. Large concentrations of ENPs present in the soil 
enter through various agricultural activities and accumulate 
for long. A study indicated that the quantity of ENPs present 
in soil was far greater than water, air or other atmospheric 
components (Gottschalk et al. 2009). Usage of ENPs in soil 
has a negative impact on plant productivity, existing micro-
organism, soil enzymes activity because it generates free 
radicals that lead to lipid peroxidation and DNA damage 
(Thul and Sarangi 2015).

Safety issues along the food chain (human 
and animal safety)

Engineered nanoparticles are transmitted through several 
links to the food chain which is a great concern for safety 
issues. Toxicity of nanoparticles is based on the physical and 
chemical properties when exposed to biological systems. 
Nanoparticles are used for food, cosmetics, textiles, water 
treatment, coatings on materials, electronic devices, phar-
maceutical and biomedical fields, etc. (Aslani et al. 2014; 
Exbrayat et al. 2015). And some possible ways of the trans-
mission of nanoparticles into the food chain are inhalation 
through air, intake by water and food, absorption of nano-
particles through cosmetics products, and entry through the 
gills of aquatic animals (Maharramov et al. 2019). Ingested 
nanoparticles damage the cellular organ within the gastro-
intestinal tract (GIT) (Buzea et al. 2007). Though, nanopar-
ticles are used to treat water and wastewater, it is difficult 
to estimate the release concentration of used nanoparticles 
to the environments. Accumulation of ENPs in tissues of 
crop plants changes their physiochemical features by altering 
the proteins, lipid, nucleic acid content and by generating 
hydroxyl radicals which has an impact on the food chain 
(Da Costa and Sharma 2015; Rajput et al. 2019a, 2019b).

Conclusion and future perspectives

The crop production sector in agriculture is always facing 
massive environmental pressure and climate change with 
consequential negative effects on soil fertility and its nutri-
ents quality because of the continuous use of pesticides, 

herbicides, fertilizers and contamination by industrial 
chemicals and water effluents. Nanotechnology-based crop 
production is an emerging trend for the next-generation revo-
lution and transformation in the agricultural system. This 
is a sustainable approach for better plant productivity than 
the conventional type and supports progress in overall crop 
production in the agricultural sector. It has the potential to 
promote input use efficiency, enhance nutrient management 
of soils, and encourage the genetic improvement of crop 
plants for food safety and security.

In the meantime, research on the applications of nano-
technology in agriculture, especially the application in crop 
production is less than a decade old. This actually neces-
sitated the need for more studies on the unintended impli-
cations of the use of engineered nanoparticles on the envi-
ronment, especially the negative effects that are genetically 
transferable to offspring in future generations or multigener-
ation. It is also important that further research be carried out 
to understand the implication of the adoption of engineered 
nanoparticles on plants in the wild to unravel their implica-
tions on plant biodiversity.
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