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Systematic review and meta-analysis of performance of
wearable artificial intelligence in detecting and predicting
depression
Alaa Abd-Alrazaq 1✉, Rawan AlSaad 1,2, Farag Shuweihdi3, Arfan Ahmed 1, Sarah Aziz1 and Javaid Sheikh1

Given the limitations of traditional approaches, wearable artificial intelligence (AI) is one of the technologies that have been
exploited to detect or predict depression. The current review aimed at examining the performance of wearable AI in detecting and
predicting depression. The search sources in this systematic review were 8 electronic databases. Study selection, data extraction,
and risk of bias assessment were carried out by two reviewers independently. The extracted results were synthesized narratively
and statistically. Of the 1314 citations retrieved from the databases, 54 studies were included in this review. The pooled mean of the
highest accuracy, sensitivity, specificity, and root mean square error (RMSE) was 0.89, 0.87, 0.93, and 4.55, respectively. The pooled
mean of lowest accuracy, sensitivity, specificity, and RMSE was 0.70, 0.61, 0.73, and 3.76, respectively. Subgroup analyses revealed
that there is a statistically significant difference in the highest accuracy, lowest accuracy, highest sensitivity, highest specificity, and
lowest specificity between algorithms, and there is a statistically significant difference in the lowest sensitivity and lowest specificity
between wearable devices. Wearable AI is a promising tool for depression detection and prediction although it is in its infancy and
not ready for use in clinical practice. Until further research improve its performance, wearable AI should be used in conjunction with
other methods for diagnosing and predicting depression. Further studies are needed to examine the performance of wearable AI
based on a combination of wearable device data and neuroimaging data and to distinguish patients with depression from those
with other diseases.
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INTRODUCTION
Depression is a serious illness that affects ~3.8% of the population
worldwide (i.e., 280 million people)1. Depression “causes feelings of
sadness and/or a loss of interest in activities that were once
enjoyed” and can lead to a variety of emotional and physical
problems for those affected. Individuals with depression may have
a decreased ability to interact and function at home and/or at
work2. They may experience feelings of sadness, changes in
appetite, altered sleep patterns, and/or feelings of fatigue.
Depressed individuals may also experience feelings of worthless-
ness and guilt, poor concentration, and impaired decision-making,
as well as being at increased risk of suicide and/or death2. If left
untreated, it can become disabling and can lead to poor quality of
life2. One study found that depressed adults had 28 more years of
quality-adjusted life expectancy (QALE) than non-depressed adults,
resulting in a 28.9-year QALE loss due to depression3. Therefore, it
is very crucial to detect depression as soon as possible.
Current approaches for the assessment of depression disorders

are primarily based on clinical observations of patients’ mental
states, clinical history, and self-reported questionnaires (e.g.,
Patient Health Questionnaire-9 (PHQ-9)) for depression. These
methods are subjective, time-consuming, and challenging to
repeat. As a result, contemporary psychiatric assessments can be
inaccurate and ineffective at assessing depression symptoms in a
reliable and personalized manner. Furthermore, shortage of mental
health professionals worldwide is one of the largest barriers to
detecting depression in its early stages2,4. For example, there are 9
psychiatrists per 100,000 people in developed countries5. The

situation is more concerning in middle to low-income countries,
where there are 0.1 psychiatrists for every 1,000,000 in low-income
countries6. Additionally, traditional methods of capacity building
(i.e., increasing the number of trained mental health professionals)
may take years to achieve3. Another factor that can prevent the
early detection of depression is the stigma of being labelled as an
individual living with a mental health disorder.
While technology has been implemented in healthcare settings

with promising results, there is a need to utilize technologies to
overcome the challenges of current approaches in depression
assessment. Wearable devices have been one of the technologies
used for detecting and predicting depression. Wearable devices
are usually sensors worn by individuals to collect and analyze
biomarkers or biosignals such as heart rates, physical activities,
sleep patterns and quality, blood oxygen, and repository rate.
Wearable devices are present in various forms such as watches,
bands, jewellery, shoes, and clothing. Wearables can be classified
into four categories: on-body devices (fixed directly on the body/
skin), near-body devices (fixed close to the body with no direct
contact with the body/skin), in-body devices (implantable
electronics), and electronic textile (textiles with integrated
electronics)7. The use of wearables has rapidly increased over
the past few years; in 2020, 21% of Americans reported using a
smartwatch or fitness tracker, a number which continues to grow8.
Some countries report as high as 45% of their population using
wearables9.
Symptoms of depression can be assessed by many para-

meters collected by wearable devices. Due to the desire for
automatic, objective, efficient, and real-time approaches to
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detect or predict depression, Artificial Intelligence (AI) has been
utilized with wearable devices, introducing what we call
“Wearable AI”. Wearable AI refers to wearable devices that are
paired with AI to analyze a large amount of wearable data and
provide personalized feedback. Wearable AI has the potential to
provide an early and accurate diagnosis and prediction of
depression.
Numerous studies have been published on the performance of

wearable devices and AI for detecting depression. Several reviews
were conducted to summarize these studies; however, they had
the following limitations. Firstly, they focused on wearable devices
rather than wearable devices paired with AI10–13. Secondly, they
only targeted certain age groups such as children and adoles-
cents11,12. Thirdly, they did not search relevant databases such as
PsychInfo10,12,13, IEEE Xplore10–12, and ACM Digital Library10–13.
Fourthly, they focused on a specific type of algorithms (neural
networks) and data (e.g., electroencephalogram (EEG) data13, self-
reported data14, and neuroimaging data15). Lastly, and most
importantly, they were not systematic reviews and did not assess
the performance of the wearable AI in detecting depression via
either a narrative approach or statistical approach (e.g., meta-
analysis)7,10–13. Therefore, the need for a systematic review that
focuses on the performance of wearable AI in detecting and
predicting depression has never been higher. To address the
above-mentioned limitations, the current review aimed at
examining the performance of wearable AI in detecting and
predicting depression.

RESULTS
Search results
As depicted in Fig. 1, we identified 1314 publications through
searching all pre-identified databases. EndNote X9 found and

removed 351 duplicates from those publications. Further 634
publications were excluded after screening titles and abstracts of
the remaining 963 publications. We retrieved and read the full text of
all the remaining 329 publications, and this process led to removing
280 records for several reasons shown in Fig. 1. We identified 5
additional publications relevant to this review by backward and
forward reference list checking. Overall, 54 publications were included
in the current review16–69, and 38 of them were included in the meta-
analyses16–21,24–29,31,35,36,38,41,42,45–50,52,53,56–66,69.

Characteristics of included studies
The included studies were published between 2015 and 2022
(Table 1). The year in which the largest number of included studies
was published was 2022 (15/54, 27.8%). Studies were carried out
in 17 different countries (Table 1), and the country that published
the largest number of the included studies was the United States
(13/54, 24.1%). The included studies were peer-reviewed journal
articles (40/54, 74.1%), conference papers (12/54, 22.2%), and
theses (2/54, 3.7%).
Number of participants in the included studies ranged from 8 to

4036, with an average of 315.7 (standard deviation (SD)= 826.1)
(Table 1). The mean age of participants was reported in 44 studies
and ranged between 15.5 and 78 years, with an average of 39.9
(SD 13). Only 1 of the included studies targeted children
(<18 years), and 3 studies focused on only older adults (≥65 years).
The percentage of female participants was reported in 46 studies
and varied between 2.4% and 100%, with an average of 60.2 (SD
15.2). Half of the studies (27/54, 50%) recruited both patients with
depression and healthy individuals. Supplementary Table 1 shows
characteristics of each included study.

Fig. 1 Flow diagram of the study selection process. A total of 1314 publications were retrieved by searching all databases. Of these, 351
duplicates were removed. Screening titles and abstracts of the remaining publications led to excluding 634 citations. By reading the full text of
the remaining 329 publications, we excluded 280 publications. Five additional publications were identified by checking the list of the included
reviews. In total, 54 publications were included in the current review.
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Features of wearable AI
The included studies used 30 different wearable devices, but the
most common wearable devices used were Actiwatch AW4 (19/54,
35.2%) and Fitbit series (e.g., Fitbit Charge, Fitbit Flex, Fitbit Altra)
(14/54, 25.9%) (Table 2). The wearable devices in the included
studies were worn on 8 different parts of the body, but the wrist-
worn devices were most common in the included studies (50/54,
92.6%).
AI in this review was used to detect the current depression

status in 48 studies or predict the occurrence or level of
depression in the future based on previous and current biosignals
in 6 studies (Table 2). Studies used algorithms to solve
classification problems (44/54, 81.5%), regression problems (5/

54, 9.3%), and both classification and regression problems (5/54,
9.3%). There were 36 different algorithms used in the included
studies, but the most commonly used algorithms were Random
Forest (RF) (32/54, 59.3%), Logistic Regression (LogR) (13/54,
24.1%), and Support Vector Machine (SVM) (11/54, 20.4%). The
included studies used datasets from either closed sources (i.e.,
collected by authors of the study or obtained from previous
studies) (34/54, 63%) or open sources (i.e., public databases) (20/
54, 37%). Depresjon was the most common dataset obtained from
open sources and used in the included studies (17/20, 85%).
The included studies used >30 types of data to develop the

model (Table 2). The most common data used to develop the
models were physical activity data (e.g., step counts, calories,

Table 1. Characteristics of the included studies.

Feature Number of studies
(%)

References

Year of publication

2022 15 (27.8) 17,22,25,26,33,34,38,41,42,47,50,53,54,57,62

2021 11 (20.4) 16,18–20,23,43,46,52,59,63,64

2020 11 (20.4) 24,28,36,37,48,49,51,56,60,61,65

2019 11 (20.4) 21,27,29,35,39,40,45,55,58,68,69

2018 4 (7.4) 30,31,44,67

2017 1 (1.9) 32

2015 1 (1.9) 66

Country of publication

USA 13 (24.1) 20,25,32,34,35,44,50,56,57,64,67,68

Mexico 7 (13) 26,29,55,60–62,69

South Korea 7 (13) 21–23,38,39,42,51

Norway 6 (11.1) 18,27,30,31,36,40

Japan 4 (7.4) 28,53,58,65

United Kingdom 3 (5.6) 24,33,41

China 2 (3.7) 19,37

India 2 (3.7) 45,48

Switzerland 2 (3.7) 46,47

Others (Bangladesh, Finland, Italy, Netherlands, Poland, Singapore, Spain,
Taiwan)

1 (each) (1.9) 16,43,49,52,54,59,63,66

Type of publication

Journal article 40 (74.1) 16,17,19–26,29,33–37,39,41–45,47–51,54–57,60–66,68,69

Conference Paper 12 (22.2) 18,27,28,30–32,38,52,53,58,59,67

Thesis 2 (3.7) 40,46

Number of participants

Mean (Standard Deviation) 315 (826) 16–69

Range 8-4036 16–69

Age of participants

Mean (Standard Deviation) 39.9 (13) 16,18,21–27,29–36,38–42,45,47,49,50,52–65,67,69

Range 15.5-78 16,18,21–27,29–36,38–42,45,47,49,50,52–65,67,69

Gender (Female %)

Mean (Standard Deviation) 60.2 (15.2) 16,18,21–27,29–42,44,47–50,52–65,67,69

Range 2.4-100 16,18,21–27,29–42,44,47–50,52–65,67,69

Health conditions1

Depression 38 (70.4) 16–21,25–27,29–33,35,36,38–42,44,49–52,54–62,64,65,69

Healthy 27 (50) 16,18,20,26,27,29–31,35,36,38,40,41,44,49,51,52,54,55,57–62,65,69

Any health condition 13 (24.1) 22–24,28,34,37,46–48,53,63,67,68

Bipolar 4 (7.4) 21,42,43,66

Schizophrenia 1 (1.9) 62

Mood swings 1 (1.9) 45
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Table 2. Features of wearable AI.

Feature Number of studies (%) References

Wearable device

Actiwatch AW4 19 (35.2) 16,18,26,27,29–31,35,36,40,41,52,55,57,59–62,69

Fitbit series 14 (25.9) 20,21,25,28,33,34,42,44,46,47,50,53,63,68

Empatica series 3 (5.6) 22,32,56

Mi Band 2 (3.7) 19,45

GENEActiv 2 (3.7) 43,49

Others 1 each (1.9) 17,23,24,38,39,48,49,51,54,58,64–67

Not reported 1 (1.9) 37

Placement

Wrist 50 (92.6) 16–37,39–47,49–53,55–65,67–69

Head 1 (1.9) 48

Lower back 1 (1.9) 38

Fingers 1 (1.9) 54

Chest 1 (1.9) 66

Waist 1 (1.9) 23

Thigh 1 (1.9) 23

Ankle 1 (1.9) 23

Aim of AI algorithms

Detection 48 (88.9) 16–20,22–24,26–41,43–46,48–67,69

Prediction 6 (11.1) 21,25,34,42,47,68

Problem-solving approaches

Classification 44 (81.5) 16–26,28–31,33,34,36–43,45–49,51–55,57–62,66,68,69

Regression 5 (9.3) 32,50,56,64,67

Classification and regression 5 (9.3) 27,35,44,63,65

AI Algorithms

Random Forest 32 (59.3) 16–19,21,22,25,28–34,36,39,42,43,45,46,48,50,51,54,55,57,59–62,64,69

Logistic Regression 13 (24.1) 16,17,19,20,23,25,39,43,45,46,49,54,67

Support Vector Machine 11 (20.4) 16,18,19,22,25,30,43,54,55,58,64

Extreme Gradient Boosting 10 (18.5) 17,18,22,23,35,46,50,54,63,65

Decision Tree 8 (14.8) 18,19,22,30,39,43,48,55

AdaBoost 8 (14.8) 20,25,30,32,50,59,64,68

Convolutional Neural Network 6 (11.1) 26,27,36,40,41,52

Ensemble model 6 (11.1) 32,45–47,52,56

K-Nearest Neighbours 6 (11.1) 17,20,22,30,54,55

Long Short-Term Memory 5 (9.3) 24,37,38,40,41

Gradient Boosting 4 (7.4) 17,20,22,64

Multilayer Perceptron 3 (5.6) 22,23,66

Artificial Neural Network 3 (5.6) 25,30,59

Naive Bayes 3 (5.6) 30,48,55

Gradient-Boosted Decision Trees 2 (3.7) 25,46

Ridge Regression 2 (3.8) 32,44

Gaussian Process 2 (3.7) 30,32

Linear regression 2 (3.7) 32,67

Deep Neural Network 2 (3.7) 31,36

elasticNet 2 (3.7) 34,64

Support Vector Classifier 2 (3.7) 17,23

least Absolute Shrinkage and Selection Operator 2 (3.7) 20,44

Others 1 each (1.9) 18,25,30,32,39,41,48,53,64

Dataset source

Closed 34 (63) 19–22,24,25,28,30,32–34,37–39,42–51,53,54,56,58,63–68

Open 20 (37) 16–18,23,26,27,29,31,35,36,40,41,52,55,57,59–62,69

Data input to AI algorithm

Physical activity data 47 (87) 16–22,25–27,29–45,49–65,67–69
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metabolic rate) (47/54, 87%), sleep data (e.g., duration and
patterns) (26/54, 48.1%), heart rate data (e.g., heart rate, heart
rate variability, interbeat interval) (17/54, 31.5%), mental health
measures (e.g., depression level, anxiety level, stress level, mood
status) (12/54, 22.2%), smartphone usage data (e.g., display on/off,
charging activity, number of apps used) (9/54, 16.7%), location
data (e.g., latitude, longitude, % of time at home) (9/54, 16.7%),
and social interaction (e.g., call and message logs) (8/54, 14.8%).
The included studies identified the ground truth based on 13

different tools, but the most common tool was Montgomery-
Asberg Depression Rating Scale (MADRS) (19/54, 35.2%). The
included studies used 6 different validation methods for the
models (Table 2). The most commonly used validation methods
were K-fold cross-validation (25/54, 46.3%) and hold-out cross-
validation (22/54, 40.7%). Supplementary Table 2 shows features
of wearable AI in each included study.

Results of risk of bias appraisal
More than two-thirds of the studies (37/54, 69%) did not provide
sufficient information to verify if an appropriate consecutive or
random sample of eligible patients was used. Majority of the
studies (50/54, 93%) avoided inappropriate exclusions. An
adequate balance in the number of patients between the
subgroups was used in 73% (34/54) of the studies. Researchers
have used an insufficient sample size in 44% (24/54) of the
included studies. Thus, the risk of bias owing to the “selection of
participants” was rated as low in only 33% (18/54) of the studies
(Fig. 2). Concerns regarding the matching between the spectrum
of participants and the pre-stated requirements in the review
question were rated as low in 87% (47/54) of the studies (Fig. 3).
The AI models were described in detail in 72% (39/54) of the

studies. The features (predictors) used in the models were clearly
described in almost all studies (53/54, 98%) and were assessed in

Table 2 continued

Feature Number of studies (%) References

Sleep data 26 (48.1) 19–21,25,28,32–34,39,42–47,49–51,53,54,56,63–65,67,68

Heart rate data 17 (31.5) 17,19,21,22,24,25,42,44,45,50,51,53,54,56,64,65,67

Mental health measures 12 (22.2) 21,25,32,34,39,44,46,47,49,51,54,64

Smartphone usage data 9 (16.7) 19,20,32,50,51,54,56,67,68

Location data 9 (16.7) 19,20,32,44,50,54,56,67,68

Social interaction data 8 (14.8) 19,20,32,50,51,56,67,68

Light exposure 5 (9.3) 21,39,42,51,65

Demographic data 5 (9.3) 25,46,47,49,59

Electrodermal activity data 4 (7.4) 17,22,32,56

Circadian rhythms 3 (5.6) 23,49,63

Skin temperature data 2 (3.7) 22,65

Weather data 2 (3.7) 53,56

Others 1 each (1.9) 32,37,43,46–48,51,53,64,66

Ground truth assessment

MADRS 19 (35.2) 16,18,26,27,29–31,35,36,40,41,52,55,57,59–62,69

PHQ-4, -8, and -9 14 (25.9) 19,22,23,25,33,34,46–48,50,51,63,64,67

DSM-IV and -5 5 (9.3) 21,38,44,51,66

HDRS 5 (9.3) 32,39,45,56,65

BDI-II 5 (9.3) 17,20,37,51,68

Clinical assessment 2 (3.7) 42,43

STAI 2 (3.7) 24,37

DASS 2 (3.7) 24,54

DAMS 2 (3.7) 28,53

QIDS 2 (3.7) 44,66

GDS 2 (3.7) 22,39

Others 1 each (1.9) 49,62,66

Not reported 1 (1.9) 58

Validation approach

K-fold cross-validation 25 (46.3) 17,19,22,25–27,29,30,32,33,38,40,45–47,51–53,56,59,62,63,65–67

Hold-out cross-validation 22 (40.7) 21,23,24,26,27,29,32,37,39,41–43,45,51,52,56,58,60,61,66,68,69

Leave-one-out cross-validation 12 (22.2) 18,20,27,28,31,32,35,36,44,48,50,68

Nested cross-validation 5 (9.3) 16,34,54,57,64

External validation 2 (3.7) 49,68

Time-series cross-validation 1 (1.9) 54

Not reported 1 (1.9) 55

BDI-II Beck Depression Inventory-II, DASS Depression, Anxiety and Stress Scale, DSM Diagnostic and Statistical Manual of Mental Health, HDRS Hamilton
Depression Rating Scale, MADRS Montgomery-Asberg Depression Rating Scale, PHQ-9 Patient Health Questionnaire-9, QIDS Quick Inventory of Depressive
Symptomatology, STAI State-Trait-Anxiety-Inventory.
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the same way for all participants in 94% (51/54) of the studies.
Features were collected without the knowledge of outcome data
in 93% (50/54) of the studies. Therefore, there was a low risk of
bias because of the “index test” in 87% (47/54) of the studies
(Fig. 2). All the included studies (54/54, 100%) were judged to have
low concerns that the definition, assessment, or timing of
predictors in the model do not match the review question (Fig. 3).
Researchers in 98% (53/54) of the studies assessed the outcome

of interest (i.e., depression level) using appropriate tools. In 94%
(51/54) of the studies, the outcome was defined in a similar way
for all participants and was determined without knowledge of
predictor information. However, only 10 studies (19%) used an
appropriate interval between the index test and the reference
standard. According to these judgments, the risk of bias because
of the “reference standard” was low in 89% (48/54) of the studies
(Fig. 2). Nearly all studies (53/54, 98%) were judged to have low
concerns that the outcome definition, timing, or determination do
not match the review question (Fig. 3).
All participants enroled in the study were included in the data

analysis in 65% (35/54) of the studies. In 94% (51/54) of the
studies, the data preprocessing was carried out appropriately and
the breakdown of the training, validation, and test sets was
adequate. The performance of the model was evaluated using
suitable measures in 85% (46/54) of the studies. Accordingly, 78%
(42/54) of the studies had a low risk of bias in the analysis domain
(Fig. 2). Supplementary Table 3 shows reviewers’ judgments about
each domain in “risk of bias” and “applicability concerns” for each
included study.

Results of the studies
Meta-analyses were carried out for the highest and lowest results
of 4 measures: accuracy, sensitivity, specificity, and RMSE. Further,
when applicable, subgroups meta-analyses were performed to
assess the performance of wearable AI based on different AI
algorithms, aims of AI, used wearable devices, data sources, types
of data, and reference standards. The following sections show the
above-mentioned results.

Accuracy. Wearable AI accuracy, which is the ability of the AI to
correctly classify patients with and without depression, was
reported in 35 studies. We identified 75 estimates of accuracy

from these studies as many of them reported accuracy for more
than one algorithm. The highest accuracy in these studies ranged
from 0.56 to 1.00. As presented in Fig. 4, a meta-analysis of the 75
estimates from 249,203 participants in the 35 studies showed a
pooled mean accuracy of 0.89 (95% confidence interval (CI) 0.83 to
0.93). The statistical heterogeneity of the evidence was consider-
able (Cochran’s p < 0.001; I2= 99.5%). As shown in Supplementary
Table 4, subgroup analyses revealed that there is no statistically
significant difference in the highest accuracy between subgroups
in all groups except for the “algorithms” group (Cochran’s
p < 0.001).
We extracted 39 estimates of the lowest accuracy from 24

studies. The lowest accuracy estimates ranged between 0.20 and
1.00. As demonstrated in Fig. 5, a meta-analysis of the 39
estimates of the lowest accuracy from 44,846 participants in the
24 studies showed a pooled mean of 0.70 (95% CI 0.62 to 0.78).
The statistical heterogeneity of the evidence was considerable
(Cochran’s p < 0.001; I2= 98.9%). As shown in Supplementary
Table 5, subgroup analyses revealed that there is no statistically
significant difference in the lowest accuracy between subgroups
in all groups except for the “algorithms” group (Cochran’s
p < 0.001).

Sensitivity. The wearable AI sensitivity, which is the ability of the
AI to correctly detect patients with depression, was reported in 29
studies. We identified 58 estimates of sensitivity from these
studies because many of them reported sensitivity for more than
one algorithm. The highest sensitivity in these studies ranged
from 0.53 to 1.00. As presented in Fig. 6, a meta-analysis of the 58
estimates from 54,169 participants in the 29 studies showed a
pooled mean sensitivity of 0.87 (95% CI 0.79 to 0.92). The statistical
heterogeneity of the evidence was considerable (Cochran’s
p < 0.001; I2= 98.1%). As exhibited in Supplementary Table 6,
subgroup analyses revealed that there is no statistically significant
difference in the highest sensitivity between subgroups in all
groups except for the “algorithms” group (Cochran’s p= 0.002).
We extracted 30 estimates of the lowest sensitivity from 21

studies. The lowest sensitivity estimates ranged between 0.00 and
0.98. As demonstrated in Fig. 7, a meta-analysis of the 30
estimates of the lowest sensitivity from 13,015 participants in the
21 studies showed a pooled mean of 0.61 (95% CI 0.49 to 0.72).

Fig. 2 Results of the assessment of risk of bias in the included studies. A modified version of QUADAS-2 was used to assess the risk of bias
in the included studies in terms of 4 domains (participants, index test, reference standard, and analysis). Low risk (green) refers to the number
of studies that have a low risk of bias in the respective domain. Unclear (yellow) refers to the number of studies that have an unclear risk of
bias in the respective domain due to lack of information reported by the study. High risk (Red) refers to the number of studies that have a high
risk of bias in the respective domain.
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The statistical heterogeneity of the evidence was considerable
(Cochran’s p < 0.001; I2= 98.6%). As shown in Supplementary
Table 7, subgroup analyses revealed that there is no statistically
significant difference in the lowest sensitivity between subgroups
in all groups except for the “wearable devices” group (Cochran’s
p= 0.038).

Specificity. The wearable AI specificity, which is the ability of the
AI to correctly detect patients without depression, was reported in
28 studies. We identified 54 estimates of specificity from these
studies given that many of them reported specificity for more than
one algorithm. The highest specificity in these studies ranged
from 0.51 to 1.00. As presented in Fig. 8, a meta-analysis of the 54
estimates from 157,576 participants in the 28 studies showed a
pooled mean specificity of 0.93 (95% CI 0.87 to 0.97). The statistical
heterogeneity of the evidence was considerable (Cochran’s
p < 0.001; I2= 99.6%). As shown in Supplementary Table 8,
subgroup analyses revealed that there is no statistically significant
difference in the highest specificity between subgroups in all
groups except for the “algorithms” group (Cochran’s p= 0.042).
We extracted 27 estimates of the lowest specificity from 20

studies. The lowest specificity estimates ranged between 0.25 and
0.99. As demonstrated in Fig. 9, a meta-analysis of the 27
estimates of the lowest specificity from 26,654 participants in the
20 studies showed a pooled mean of 0.73 (95% CI 0.62 to 0.82).
The statistical heterogeneity of the evidence was considerable
(Cochran’s p < 0.001; I2= 98.6%). As shown in Supplementary
Table 9, subgroup analyses revealed that there is no statistically
significant difference in the lowest specificity between subgroups
in all groups except for the “algorithms” group (Cochran’s
p < 0.001) and the “wearable devices” group (Cochran’s p= 0.038).

Root Mean Suare Error (RMSE). The wearable AI RMSE, which
estimates the average difference between depression scores
predicted by wearable AI and the actual depression scores as
assessed by depression assessment tools (e.g., PHQ-9 and HDRS),
was reported in 3 studies. We identified 5 estimates of the RMSE
from these studies given that one study reported RMSE for 3
algorithms. The highest RMSE in these studies ranged from 3.2 to
6.00. As presented in Fig. 10, a meta-analysis of the 5 estimates
from 1,705 participants in the 3 studies showed a pooled mean
RMSE of 4.55 (95% CI 3.05 to 6.05). The statistical heterogeneity of
the evidence was considerable (Cochran’s p < 0.001; I2= 100%).
We extracted 5 estimates of the lowest RMSE from 3 studies.

The lowest RMSE estimates ranged between 0.11 and 1.16. As
shown in Fig. 11, a meta-analysis of the 5 estimates of the lowest
RMSE from 1,705 participants in the 3 studies showed a pooled
mean RMSE of 3.76 (95% CI 2.45 to 5.07). The statistical
heterogeneity of the evidence was considerable (Cochran’s
p < 0.001; I2= 99.9%).

DISCUSSION
This review examined the performance of wearable AI in detecting
and predicting depression. Meta-analyses of estimates from 38
studies revealed AI has a good performance in diagnosing
depression using wearable device data, but it is not optimal.
Specifically, this review showed that AI could correctly classify
patients with and without depression in between 70% from 89%
of cases. The review demonstrated that AI has a slightly higher
performance in detecting patients without depression (73–93%)
than patients with depression (61%-87%). Similarly, this review
found that AI has good performance in predicting depression
scores using wearable device data, but it is not optimal (RMSE
3.76-4.55).
Subgroup analyses in this review showed that the performance

of wearable AI is statistically different between algorithms. To be
more precise, AdaBoost outperformed all other algorithms in most
analyses. In contrast, logistic regression and decision trees were
the worst in most analyses. These results should be interpreted
with caution as most of the pooled estimates of the above-
mentioned algorithms were based on a few studies (i.e., ≥4) and
small sample sizes. Some subgroup analyses found that the
performance of wearable AI is affected by the wearable device
used to collect data. Specifically, wearable AI has better
performance when data is collected by Actiwatch in comparison
with Fitbit. This finding should also be interpreted carefully
because all studies that used Actiwatch are based on the same
dataset (i.e., Depresjon30). None of the subgroup analyses showed
a statistically significant difference between subgroups in the
remaining groups (i.e., aims of AI, data sources, data types, and
reference standards).
Similar to the current review, two previous systematic reviews

showed that AI has a slightly higher performance in detecting
patients without depression (specificity) than patients with
depression (sensitivity)14,15. However, the two reviews showed
pooled sensitivity (80%14 and 77%15) and specificity (85%14 and
78%15) that are slightly lower than those in the current review

Fig. 3 Results of the assessment of applicability concerns in the included studies. A modified version of QUADAS-2 was used to assess the
applicability concerns in the included studies in terms of 3 domains (participants, index test, and reference standard). Low risk (green) refers to
the number of studies that have a low risk of applicability concerns in the respective domain. Unclear (yellow) refers to the number of studies
that have an unclear risk of applicability concerns in the respective domain due to lack of information reported by the study. High risk (Red)
refers to the number of studies that have a high risk of applicability concerns in the respective domain.
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Fig. 4 Meta-analysis of the highest accuracy estimates. A total of 75 estimates of the highest accuracy from 35 studies were used in this
meta-analysis. The square shape represents the highest accuracy in each study. The rhombus shape represents the pooled estimates of the
highest accuracy in all studies. CI Confidence interval. p p-value.
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although they were within the range reported in our review. This
may be attributed to the fact that the previous reviews focused on
the performance of AI based on only self-reported data collected
using mobile-based PHQ-914 or neuroimaging data15.
From the findings of this review and previous reviews, it seems

that AI has a better performance in detecting and predicting
depression than in predicting treatment responses in depression.
Specifically, a systematic review conducted by Cohen et al. 70

found an overall area under the curve of 84%, sensitivity of 77%,
and specificity of 79% for AI in predicting response to
antidepressant treatment using magnetic resonance imaging
(MRI). Another review reported a pooled accuracy of 82% for AI
in predicting the outcome of different therapeutic interventions
(pharmacological, neuromodulatory, or manual-based psychother-
apeutic interventions) using different data types (neuroimaging
data, genetic data, and phenomenological data)71. A review
carried out by Watts et al. 72 found a pooled accuracy of 84% for AI
in predicting response to pharmacological and nonpharmacolo-
gical interventions using EEG data. One rationale for AI’s higher
performance in detecting and predicting depression rather than
predicting treatment responses might be the present research
emphasis on diagnostic and predictive analysis of depression
rather than prescriptive analysis of depression treatment in this
area. More focus should be placed on prescriptive analytic
research using wearable devices since these are the gadgets that
patients can quickly examine and can cure or reduce the severity
of depression on the spot without causing serious effects.
The current review showed that wearable AI is a promising tool

for detecting and predicting depression. However, we cannot

advocate that wearable AI is ready to be implemented in clinical
practices for the following reasons: (1) its performance is not
optimal at the present, thus, there is still room for improvement,
(2) the sample size was small (≤55) in more than half of the studies
(57.4%), (3) about 37% of the studies used publicly available
datasets; especially Depresjon, and (4) few studies were judged to
have a low risk of bias in all domains. Therefore, wearable AI
should be used in conjunction with other methods for diagnosing
and predicting depression, such as self-report questionnaires or
interviews, to provide a more comprehensive understanding of a
patient’s condition.
In this review, AI was not embedded in any of the commercial

wearable devices; instead, AI was embedded in a host device (e.g.,
computers) where the data collected by wearable devices is
stored. Thus, we encourage tech companies to develop wearable
devices that can detect and predict depression immediately as
those that can detect stress (e.g., Fitbit Charge 5, Garmin Instinct
Solar 2, Apple Watch Series 7, and Samsung Galaxy Watch 4). We
envisage that this could happen in the near future especially as
the computing power of wearables increases as new chips are
developed and the tech improves. This may encourage research-
ers to conduct more studies in this area.
None of the included studies used neuroimaging data in

addition to wearable device data to detect or predict depression.
Several studies showed that AI has a high diagnostic performance
(ranging from 92% to 98%) when using neuroimaging data (e.g.,
diffusion tensor imaging and functional and structural magnetic
resonance imaging)73–77. Accordingly, future research vistas are to
assess the performance of wearable AI in the detection and

Fig. 5 Meta-analysis of the lowest accuracy estimates. A total of 39 estimates of the lowest accuracy from 24 studies were used in this meta-
analysis. The square shape represents the lowest accuracy in each study. The rhombus shape represents the pooled estimates of the lowest
accuracy in all studies. CI Confidence interval. p p-value.
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prediction of depression based on a combination of wearable
device data and neuroimaging data.
Most studies (89%) in this review used AI for detecting the

current depression status rather than predicting the occurrence
or level of depression in the future. Prediction of depression is as
important as, or even more important than, detection of
depression as this will enable the development of early mental
health warning systems and more effective, timely interventions
targeted to the individual. Therefore, we urge researchers to

conduct further studies on wearable AI for predicting
depression.
We noticed that only a few studies in this review used wearable

AI to differentiate depression from other disorders (e.g., bipolar,
schizophrenia, anxiety, and stress). In clinical practice, complex
and error-prone diagnostic processes are usually used to
differentiate between various patient groups rather than solely
distinguishing them from healthy individuals. Further studies
should be conducted to distinguish patients with depression from

Fig. 6 Meta-analysis of the highest sensitivity estimates. A total of 58 estimates of the highest sensitivity from 29 studies were used in this
meta-analysis. The square shape represents the highest sensitivity in each study. The rhombus shape represents the pooled estimates of the
highest sensitivity in all studies. CI Confidence interval. p p-value.
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those with other diseases that have similar signs and symptoms of
depression.
As mentioned earlier, the sample size was small (≤55) in more

than half of the studies (57.4%). For this reason, potential
differences in the performance of wearable AI in subgroup
analyses might not have manifested. This might also have
prevented researchers to use some algorithms that need a very
large sample size to be trained and tested. We urge researchers to
conduct further studies with larger samples and over longer
periods of time to ensure adequate statistical power as well as to
enable the utilization of more complex and efficient algorithms
requiring a larger amount of data.
About 61% of the included studies used Fitbit or Actiwatch AW4

to collect biomarkers although there are many other wearable
devices in the market. For this reason, most subgroup analyses
included only Fitbit or Actiwatch AW4, thereby, differences in the
performance of different wearable devices in subgroup analyses
might not have manifested. Further, none of the included studies
compared the performance of different wearable devices. We
recommend researchers use other wearable devices and compare
the performance of different wearable devices.
This review cannot comment on (1) the performance of

wearable AI in detecting other mental disorders, (2) the
performance of wearable AI in predicting outcomes of treatment
for depression, and (3) the performance of non-wearable devices,
hand-held devices, near-body wearable devices, in-body wearable
devices, wearable devices connected with non-wearable devices
using wires, and wearable devices that need an expert to apply on
users. This is because such disorders, outcomes, and wearable
devices were beyond the scope of this review, thereby, our
findings may not be generalizable to such contexts. Further, we
likely missed some studies given that we restricted our search, for

practical constraints, to studies published in the English language
from 2015 onwards. Results of our meta-analyses are likely to be
overestimated or underestimated given that several included
studies were included in the meta-analyses because they did not
report results appropriate for the meta-analyses.
Wearable AI is a promising tool for detecting and predicting

depression, but it is still in its infancy; meaning, it is not quite
ready to be implemented in clinical practice. Until further research
improve its performance, wearable AI should be used in
conjunction with other methods for diagnosing and predicting
depression (e.g., self-report questionnaires or interviews) to
provide a more comprehensive understanding of a patient’s
condition. Tech companies should embrace the use of AI for the
purpose of detecting and predicting depression using wearables.
Researchers should examine the performance of wearable AI in
the detection and prediction of depression based on a combina-
tion of wearable device data and neuroimaging data. Further
studies should be conducted to distinguish patients with
depression from those with other diseases that have similar signs
and symptoms of depression. Wearables utilizing AI for detecting
and predicting depression are getting better over time and we will
likely see further development in this field via more accurate
sensors and improved AI algorithms, we envisage this eventually
leading to the possibility of use in clinical practice.

METHODS
Overview
We adhered to Preferred Reporting Items for Systematic Reviews
and Meta-Analyses- Extension for Diagnostic Test Accuracy
(PRISMA-DTA)78 in reporting this review. Supplementary Table
10 outlines the PRISMA-DTA Checklist for this review. The protocol

Fig. 7 Meta-analysis of the lowest sensitivity estimates. A total of 30 estimates of the lowest sensitivity from 21 studies were used in this
meta-analysis. The square shape represents the lowest sensitivity in each study. The rhombus shape represents the pooled estimates of the
lowest sensitivity in all studies. CI Confidence interval. p p-value.
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has been registered in with the International Prospective Register
of Systematic Reviews (PROSPERO) (ID: CRD42022367856). The
methods used in this review are detailed in the following
subsections.

Search strategy
We identified the relevant studies having searched 8 electronic
databases on October 3, 2022: MEDLINE (via Ovid), PsycInfo (via
Ovid), EMBASE (via Ovid), CINAHL (via EBSCO), IEEE Xplore, ACM
Digital Library, Scopus, and Google Scholar. An automatic search
was set up with biweekly alerts for 3 months (ending on January 2,
2023). Only the first 100 hits (i.e.,10 pages) were checked for
studies retrieved using Google Scholar in this review, due to the
large number of results returned. Reference lists of included
studies were checked (i.e., backward reference list checking), and
studies that cited the included studies were screened (i.e., forward
reference list checking) in order to identify additional studies.

Three experts in digital mental health were consulted whilst
developing the search query, furthermore, previous reviews of
relevance to the review were checked. Three groups of search
terms were used: terms related to AI (e.g., artificial intelligence,
machine learning, and deep learning), terms related to wearable
devices (e.g., wearable, smartwatch, and smartwatch), and terms
related to depression (e.g., depression and mood disorder). The
search queries used in this review are highlighted in Supplemen-
tary Table 11.

Study eligibility criteria
This review examined papers that focused on building AI
algorithms for depression utilizing wearable device data. We
concentrated specifically on all AI algorithms utilized for detecting
or predicting depression. We excluded studies that used AI for
predicting the outcome of an intervention or treatment for
depression. The data acquisition had to be non-invasive on-body
wearables such as smartwatches, smart glasses, smart clothes,

Fig. 8 Meta-analysis of the highest specificity estimates. A total of 54 estimates of the highest specificity from 28 studies were used in this
meta-analysis. The square shape represents the highest specificity in each study. The rhombus shape represents the pooled estimates of the
highest specificity in all studies. CI Confidence interval. p p-value.
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smart wristbands, and smart tattoos. We excluded studies that
used data collected by the following devices: non-wearable
devices, hand-held devices (e.g., mobile phones), near-body
wearable devices, in-body wearable devices (e.g., implants),
wearable devices wired to non-wearable devices, and wearable
devices that necessitate expert supervision (e.g., wearable devices
composed of many electrodes that need to be placed in very
specific points of the body). Studies that used data collected via
other methods (e.g., non-wearable devices, questionnaires, and

interviews) in addition to wearable devices were considered in this
review. To be included in the current review, studies had to assess
the performance of the AI algorithms in detecting or predicting
depression and report the confusion matrix and/or performance
measures (e.g., accuracy, sensitivity, specificity, etc.). We disre-
garded articles that typically demonstrated a theoretical founda-
tion of AI-powered wearable devices for depression. We accepted
journal articles, conference papers, and dissertations published in
English since 2015. Reviews, preprints, conference abstracts,

Fig. 9 Meta-analysis of the lowest specificity estimates. A total of 27 estimates of the lowest specificity from 20 studies were used in this
meta-analysis. The square shape represents the lowest specificity in each study. The rhombus shape represents the pooled estimates of the
lowest specificity in all studies. CI Confidence interval. p p-value.

Fig. 10 Meta-analysis of the highest RMSE estimates. A total of 5 estimates of the highest RMSE from 3 studies were used in this meta-
analysis. The square shape represents the highest RMSE in each study. The rhombus shape represents the pooled estimates of the highest
RMSE in all studies. CI Confidence interval. p p-value.

Fig. 11 Meta-analysis of the lowest RMSE estimates. A total of 5 estimates of the lowest RMSE from 3 studies were used in this meta-analysis.
The square shape represents the lowest RMSE in each study. The rhombus shape represents the pooled estimates of the lowest RMSE in all
studies. CI Confidence interval. p p-value.
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posters, protocols, editorials, and comments were not included.
There were no constraints on the setting, reference standard, or
country of publication.

Study selection
In the study selection process, we followed three procedures.
EndNote X9 was used in the first stage to eliminate duplicates
from all retrieved studies. The titles and abstracts of the remaining
articles were examined in the second stage. Finally, we read over
the whole texts of the studies that were included in the previous
stage. The research selection procedure was carried out separately
by two reviewers. Disagreements in the second and third phases
were settled through dialogue. Cohen’s kappa was used to
calculate inter-rater agreement, which was 0.85 for “title and
abstract” screening and 0.92 for full-text reading.

Data extraction
Two reviewers independently extracted data on study meta-data,
wearable devices, AI algorithms, and results of studies using
Microsoft Excel. Disagreements among the reviewers were over-
come through discussion. When the raw data or confusion matrix
is reported in the included studies, we calculated all possible
performance measures such as accuracy, sensitivity, specificity,
and precision. We did not extract results related to the
performance of AI algorithms that are based on only non-
wearable-device data (e.g., data collected by smartphones or
questionnaires). Given that many studies conducted several
experiments to test, for example, different numbers of features,
data types, validation approaches, and AI techniques, they
reported several results for the same performance measure.
Therefore, we extracted the lowest and highest results for each
performance measure for each algorithm. The data extraction
form utilized in this review was trialled with five studies
(Supplementary Table 12).

Risk of bias and applicability appraisal
We modified a well-known risk of bias assessment tool (Quality
Assessment of Studies of Diagnostic Accuracy-Revised (QUADAS-
2))79 by removing some irrelevant criteria and adding other criteria
from another relevant tool (the Prediction model Risk Of Bias
ASsessment Tool (PROBAST))80. Similar to the original QUADAS-2,
the modified version evaluates the risk of bias of the included
studies in terms of four domains (participants, index test (AI
algorithms), reference standard (ground truth), and analysis)
whereas it evaluates their applicability to the review question in
terms of three domains (participants, index test (AI algorithms),
reference standard (ground truth)). Each domain consists of four
signalling questions that were tailored to the goal of this review.
Based on the answers to these questions, the risk of bias and
applicability in the corresponding domain was assessed. Supple-
mentary Table 13 shows the modified version of QUADAS-2, which
was pilot tested using four included studies. Two reviewers
independently used the modified version to assess the risk of bias
and the applicability of the included studies. Disagreements
between the two reviewers were settled by discussion.

Data synthesis
The extracted data were synthesized using narrative and statistical
approaches. Knowing that studies or groups of studies reported
multiple effect sizes will have a larger influence on the results of
the meta-analysis than studies reporting only one effect size.
Hence, the risk of biased estimates is high, meaning that the
potential dependency between effect sizes, for studies that
reported more than one effect size, is needed to be considered
in our meta-analysis. Multi-level meta-analysis is a statistical
technique used to combine the results of multiple studies while

taking into account that data is nested (i.e., the observations are
not independent) thereby reducing the likelihood of Type I errors.
We, therefore, used a three-level model to analyze the data, where
we anticipated a set of studies (level 3), repeated analysis nested
within studies (level 2), and a sample of subjects for each analysis
(level 1). Using three-level meta-analysis uses three sources of
variance: population differences between study population
effects, population differences between effects of experiments
from the same study, and, finally, sampling variance. We used a
random-effects model, assuming a priori significant heterogeneity
resulting from diverse study populations and different models.
The extracted data was used to compute pooled mean accuracy,
sensitivity, specificity, and root mean square error (RMSE).
Stratification (subgroup) analysis was conducted based on AI
algorithms, aims of AI, wearable devices, data sources, types of
data, and reference standards. To assess the degree of hetero-
geneity and the statistical significance of heterogeneity in the
meta-analyzed studies, we computed I2 and Cochran’s Q-test. The
presence of heterogeneity in the meta-analyzed studies is
indicated by a Cochran’s p-value ≤0.0581. The degree of
heterogeneity was considered insignificant when I2 ranged from
0% to 40%, moderate when it ranged from 30% to 60%,
substantial when it ranged from 50% to 90%, or considerable
when it ranged from 75% to 100%81. The R version 4.2.2 was used
to perform meta-analyses.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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