Skip to main content
. 2023 May 5;6:84. doi: 10.1038/s41746-023-00828-5

Table 2.

Features of wearable AI.

Feature Number of studies (%) References
Wearable device
Actiwatch AW4 19 (35.2) 16,18,26,27,2931,35,36,40,41,52,55,57,5962,69
Fitbit series 14 (25.9) 20,21,25,28,33,34,42,44,46,47,50,53,63,68
Empatica series 3 (5.6) 22,32,56
Mi Band 2 (3.7) 19,45
GENEActiv 2 (3.7) 43,49
Others 1 each (1.9) 17,23,24,38,39,48,49,51,54,58,6467
Not reported 1 (1.9) 37
Placement
Wrist 50 (92.6) 1637,3947,4953,5565,6769
Head 1 (1.9) 48
Lower back 1 (1.9) 38
Fingers 1 (1.9) 54
Chest 1 (1.9) 66
Waist 1 (1.9) 23
Thigh 1 (1.9) 23
Ankle 1 (1.9) 23
Aim of AI algorithms
Detection 48 (88.9) 1620,2224,2641,4346,4867,69
Prediction 6 (11.1) 21,25,34,42,47,68
Problem-solving approaches
Classification 44 (81.5) 1626,2831,33,34,3643,4549,5155,5762,66,68,69
Regression 5 (9.3) 32,50,56,64,67
Classification and regression 5 (9.3) 27,35,44,63,65
AI Algorithms
Random Forest 32 (59.3) 1619,21,22,25,2834,36,39,42,43,45,46,48,50,51,54,55,57,5962,64,69
Logistic Regression 13 (24.1) 16,17,19,20,23,25,39,43,45,46,49,54,67
Support Vector Machine 11 (20.4) 16,18,19,22,25,30,43,54,55,58,64
Extreme Gradient Boosting 10 (18.5) 17,18,22,23,35,46,50,54,63,65
Decision Tree 8 (14.8) 18,19,22,30,39,43,48,55
AdaBoost 8 (14.8) 20,25,30,32,50,59,64,68
Convolutional Neural Network 6 (11.1) 26,27,36,40,41,52
Ensemble model 6 (11.1) 32,4547,52,56
K-Nearest Neighbours 6 (11.1) 17,20,22,30,54,55
Long Short-Term Memory 5 (9.3) 24,37,38,40,41
Gradient Boosting 4 (7.4) 17,20,22,64
Multilayer Perceptron 3 (5.6) 22,23,66
Artificial Neural Network 3 (5.6) 25,30,59
Naive Bayes 3 (5.6) 30,48,55
Gradient-Boosted Decision Trees 2 (3.7) 25,46
Ridge Regression 2 (3.8) 32,44
Gaussian Process 2 (3.7) 30,32
Linear regression 2 (3.7) 32,67
Deep Neural Network 2 (3.7) 31,36
elasticNet 2 (3.7) 34,64
Support Vector Classifier 2 (3.7) 17,23
least Absolute Shrinkage and Selection Operator 2 (3.7) 20,44
Others 1 each (1.9) 18,25,30,32,39,41,48,53,64
Dataset source
Closed 34 (63) 1922,24,25,28,30,3234,3739,4251,53,54,56,58,6368
Open 20 (37) 1618,23,26,27,29,31,35,36,40,41,52,55,57,5962,69
Data input to AI algorithm
Physical activity data 47 (87) 1622,2527,2945,4965,6769
Sleep data 26 (48.1) 1921,25,28,3234,39,4247,4951,53,54,56,6365,67,68
Heart rate data 17 (31.5) 17,19,21,22,24,25,42,44,45,50,51,53,54,56,64,65,67
Mental health measures 12 (22.2) 21,25,32,34,39,44,46,47,49,51,54,64
Smartphone usage data 9 (16.7) 19,20,32,50,51,54,56,67,68
Location data 9 (16.7) 19,20,32,44,50,54,56,67,68
Social interaction data 8 (14.8) 19,20,32,50,51,56,67,68
Light exposure 5 (9.3) 21,39,42,51,65
Demographic data 5 (9.3) 25,46,47,49,59
Electrodermal activity data 4 (7.4) 17,22,32,56
Circadian rhythms 3 (5.6) 23,49,63
Skin temperature data 2 (3.7) 22,65
Weather data 2 (3.7) 53,56
Others 1 each (1.9) 32,37,43,4648,51,53,64,66
Ground truth assessment
MADRS 19 (35.2) 16,18,26,27,2931,35,36,40,41,52,55,57,5962,69
PHQ-4, -8, and -9 14 (25.9) 19,22,23,25,33,34,4648,50,51,63,64,67
DSM-IV and -5 5 (9.3) 21,38,44,51,66
HDRS 5 (9.3) 32,39,45,56,65
BDI-II 5 (9.3) 17,20,37,51,68
Clinical assessment 2 (3.7) 42,43
STAI 2 (3.7) 24,37
DASS 2 (3.7) 24,54
DAMS 2 (3.7) 28,53
QIDS 2 (3.7) 44,66
GDS 2 (3.7) 22,39
Others 1 each (1.9) 49,62,66
Not reported 1 (1.9) 58
Validation approach
K-fold cross-validation 25 (46.3) 17,19,22,2527,29,30,32,33,38,40,4547,5153,56,59,62,63,6567
Hold-out cross-validation 22 (40.7) 21,23,24,26,27,29,32,37,39,4143,45,51,52,56,58,60,61,66,68,69
Leave-one-out cross-validation 12 (22.2) 18,20,27,28,31,32,35,36,44,48,50,68
Nested cross-validation 5 (9.3) 16,34,54,57,64
External validation 2 (3.7) 49,68
Time-series cross-validation 1 (1.9) 54
Not reported 1 (1.9) 55

BDI-II Beck Depression Inventory-II, DASS Depression, Anxiety and Stress Scale, DSM Diagnostic and Statistical Manual of Mental Health, HDRS Hamilton Depression Rating Scale, MADRS Montgomery-Asberg Depression Rating Scale, PHQ-9 Patient Health Questionnaire-9, QIDS Quick Inventory of Depressive Symptomatology, STAI State-Trait-Anxiety-Inventory.