

Since January 2020 Elsevier has created a COVID-19 resource centre with

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related

research that is available on the COVID-19 resource centre - including this

research content - immediately available in PubMed Central and other

publicly funded repositories, such as the WHO COVID database with rights

for unrestricted research re-use and analyses in any form or by any means

with acknowledgement of the original source. These permissions are

granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.

Expert Systems With Applications 227 (2023) 120367

Available online 6 May 2023
0957-4174/© 2023 Elsevier Ltd. All rights reserved.

Self-adaptive moth flame optimizer combined with crossover operator and
Fibonacci search strategy for COVID-19 CT image segmentation

Saroj Kumar Sahoo a, Essam H. Houssein b,*, M. Premkumar c, Apu Kumar Saha a,*, Marwa
M. Emam b

a Department of Mathematics, National Institute of Technology Agartala, Tripura 799046, India
b Faculty of Computers and Information, Minia University, Minia, Egypt
c Department of Electrical and Electronics Engineering, Dayananda Sagar College of Engineering, Bengaluru, Karnataka 560078, India

A R T I C L E I N F O

Keywords:
Moth flame optimization algorithm
Metaheuristics
COVID-19 CT images
Multilevel thresholding
Image segmentation

A B S T R A C T

The COVID-19 is one of the most significant obstacles that humanity is now facing. The use of computed to-
mography (CT) images is one method that can be utilized to recognize COVID-19 in early stage. In this study, an
upgraded variant of Moth flame optimization algorithm (Es-MFO) is presented by considering a nonlinear self-
adaptive parameter and a mathematical principle based on the Fibonacci approach method to achieve a higher
level of accuracy in the classification of COVID-19 CT images. The proposed Es-MFO algorithm is evaluated using
nineteen different basic benchmark functions, thirty and fifty dimensional IEEE CEC’2017 test functions, and
compared the proficiency with a variety of other fundamental optimization techniques as well as MFO variants.
Moreover, the suggested Es-MFO algorithm’s robustness and durability has been evaluated with tests including
the Friedman rank test and the Wilcoxon rank test, as well as a convergence analysis and a diversity analysis.
Furthermore, the proposed Es-MFO algorithm resolves three CEC2020 engineering design problems to examine
the problem-solving ability of the proposed method. The proposed Es-MFO algorithm is then used to solve the
COVID-19 CT image segmentation problem using multi-level thresholding with the help of Otsu’s method.
Comparison results of the suggested Es-MFO with basic and MFO variants proved the superiority of the newly
developed algorithm.

1. Introduction

COVID-19 is a highly contagious and severe disease that has spread
rapidly across the world (Ferrer, 2020). The disease has caused
numerous deaths and respiratory complications, including COVID-19
pneumonia, acute respiratory distress syndrome (ARDS), and acute
respiratory failure. The World Health Organization (WHO) declared the
outbreak a global pandemic on March 11, 2020 (Sohrabi et al., 2020),
stressing the need for a global effort to combat the disease and reduce its
impact on healthcare systems. One of the challenges in managing
COVID-19 is the need for quick and accurate diagnostic technologies.
The real-time polymerase chain reaction (PCR) test is commonly used to
measure gene expression. However, it can produce false-negative re-
sults, is invasive, and takes a long time to diagnose. Chest computed
tomography (CT) is another critical diagnostic tool for COVID-19. CT
scans can guide the diagnosis and track the progression of the disease,
making it a valuable technique for treating COVID-19-related lung

disease (Harmon et al., 2020). Preliminary studies have shown that
chest CT is highly sensitive in detecting lung disease associated with
COVID-19.

In various computer vision applications, including medical and
geographical imaging, autonomous target recognition, and robotic
vision, image segmentation is considered a critical and fundamental step
in analyzing and interpreting captured images (Houssein et al., 2022).
Medical imaging methods play a crucial role in diagnosing and treating
severe illnesses and patient care. These techniques aid doctors in iden-
tifying, treating, and detecting life-threatening diseases at an early
stage. Chest CT images contain a wealth of information, but manual
processing is prone to errors. Therefore, numerous algorithms have been
developed to assist in identifying and diagnosing COVID-19. Image
segmentation is a practical approach that has been employed to improve
the COVID-19 detection process (Ilhan et al., 2023; Qi et al., 2022).
Image segmentation techniques have gained significant interest due to
their versatile applications as a pre-processing phase in image

* Corresponding authors.
E-mail addresses: essam.halim@mu.edu.eg (E.H. Houssein), apusaha_nita@yahoo.co.in (A. Kumar Saha), marwa.khalef@mu.edu.eg (M.M. Emam).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2023.120367
Received 23 January 2023; Received in revised form 15 April 2023; Accepted 1 May 2023

mailto:essam.halim@mu.edu.eg
mailto:apusaha_nita@yahoo.co.in
mailto:marwa.khalef@mu.edu.eg
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2023.120367
https://doi.org/10.1016/j.eswa.2023.120367
https://doi.org/10.1016/j.eswa.2023.120367
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.120367&domain=pdf

Expert Systems With Applications 227 (2023) 120367

2

processing. Particularly, in designing computer-aided diagnosis systems,
image segmentation is a vital stage and is considered a crucial step in
image processing. There are various ways to segment an image into
distinct parts, and the most popular method is called thresholding seg-
mentation. Thresholding segmentation, one of several popular seg-
mentation algorithms, uses a thresholding value to separate a picture
into many regions that are visually similar in terms of texture, colour,
brightness, contrast, and size (s) (Houssein, Emam, & Ali, 2021a). The
thresholding technique is widely used because it is simple to apply, re-
quires minimal storage space, and is quick to execute. It includes two
types of segmentation: bilevel and multilevel (Emam et al., 2023).
Applying the bi-level threshold to an image produces two equally sized
halves, one each for the foreground and background. Images in practical
contexts unfortunately have more than two classes, hence multilevel
thresholding is required. Multilevel thresholding methods are a type of
image segmentation technique that divide an image into more than two
regions based on the histogram of pixel intensities. This approach is
useful when there are multiple objects or features in an image that need
to be separated. However, choosing the right threshold values is essen-
tial to obtain accurate segmentation results. It is a critical task because
the number of possible thresholds for an image is enormous, and
selecting the optimal values requires careful consideration. Multilevel
thresholding is a common technique used for image segmentation,
especially for grayscale images like CT scans. It is particularly useful
when there are distinct regions of interest within an image with different
pixel intensities. COVID-19 CT images typically exhibit multiple regions
of interest with varying pixel intensities, making the segmentation
problem a multilevel one. In other words, it is necessary to identify
multiple thresholds that can accurately distinguish between different
regions of interest within the image.

There are two main methods for determining the optimal threshold
value for image segmentation: Otsu’s method (Otsu, 1979), which
maximizes between-class variance, and Kapur’s entropy (Kapur et al.,
1985), which maximizes the entropy of the classes. Tsallis entropy (Tsai,
1985) is another method that can be used. These approaches are useful
when only one threshold value is needed. However, these methods have
significant drawbacks when dealing with multi-level thresholding,
including long processing times and high complexity. Therefore, multi-
level thresholding is considered a challenging optimization problem,
and metaheuristic algorithms have been successfully employed to
address these issues.

Overall, research has shown that metaheuristic algorithms are
effective in solving difficult optimization problems in various fields,
including bioinformatics, engineering, communication, drug design,
and feature selection (Houssein et al., 2023). In recent years, it has been
seen those real-world problems, constrained or unconstrained, linear or
nonlinear, continuous or discontinuous, can be easily tackled with the
help of various nature-inspired algorithms (Nama & Saha, 2019). These
algorithms are prevalent due to their simplicity and user-friendly
approach and play a significant role in tackling complicated optimiza-
tion issues (Nama & Saha, 2018). Some of these algorithms have been
developed by considering natural evolution, living and survival systems
of birds, animals and insects, etc. A few of them are Genetic algorithm
(GA) (Holland, 1992), Particle swarm optimization (PSO) (Kennedy &
Eberhart, 1995; Cheng & Prayogo, 2014; Arora & Singh, 2015), Differ-
ential evolution (DE) (Storn & Price, 1997), Butterfly optimization al-
gorithm (BOA; Arora & Singh, 2015), Moth-flame optimization
algorithm (MFO) (Mirjalili, 2015), whale optimization algorithm (WOA)
(Mirjalili & Lewis, 2016), Jaya algorithm (Rao, 2016), Sine cosine al-
gorithm (SCA) (Mirjalili, 2016a), Salp swarm algorithm (SSA) (Mirjalili
et al., 2017). In addition to these old algorithms there are many newer
ones like arithmetic optimization algorithm (AOA) (Abualigah et al.,
2021; Heidari et al., 2019)

Furthermore, several excellent algorithms have been developed be-
tween 2020 and 2022, such as weighted meaN oF vectOrs (INFO)
(Ahmadianfar et al., 2022) is an optimization algorithm developed in

2022, Ebola Optimization Search Algorithm (EOSA) (Oyelade et al.,
2022), and Dwarf mongoose optimization algorithm (DMO) (Agushaka
et al., 2022). In 2023, there are some new optimization algorithms such
as, Rime optimization algorithm (RIME) (Su et al., 2023) and Nutcracker
optimization algorithm (NOA) (Abdel-Basset et al., 2023).

Metaheuristic algorithms have both strengths and weaknesses. On
the positive side, they are versatile and can handle non-linear, higher-
dimensional, and multimodal situations. They are also straightforward
to design and implement, even without knowledge of the aims’ de-
rivatives. However, some drawbacks exist, such as the need for a balance
between exploration and exploitation. This can lead to issues like
becoming trapped in local optima, slow convergence, and loss of di-
versity. Moreover, no single metaheuristic algorithm is universally
effective, and researchers worldwide are developing many algorithms,
hybrids, and modified variants. The development of metaheuristic al-
gorithms depends on their ability to explore and exploit solutions
effectively. The No Free Lunch theory (Wolpert & Macready, 1997)
demonstrates that no algorithm can solve all problems optimally. Re-
searchers have proposed two strategies to overcome these limitations:
modifying existing algorithms or hybridizing multiple metaheuristics.
Hybridization can enhance optimization performance, but it is essential
to choose appropriate algorithms. Therefore, selecting algorithms is a
crucial step; typically, they are chosen based on their performance. One
way to enhance algorithm performance is to incorporate optimization
components into the original algorithm. As a result, this encourages us to
improve the MFO algorithm and apply it to solve the multilevel image
segmentation problem.

An efficient algorithm named MFO, which was first developed by
Mirjalili (Mirjalili, 2015) in 2015, is considered for deep study, and the
transverse orientation of moths motivates authors for MFO’s design. The
MFO algorithm has attracted the attention of many researchers. MFO is a
versatile algorithm with minimal algorithm-specific parameters, making
it suitable for real-world problems. For example, it has been applied
successfully to tasks such as parameter estimation for solar modules
(Sharma et al., 2022), flexible operation modeling (Hou et al., 2022),
intelligent route planning for multiple UAVs (Ma et al., 2022), deep
learning (Khan et al., 2022), machine scheduling problems (Mohd Rose
& Nik Mohamed, 2022), neural network optimization (Ramachandran
et al., 2021), and many more. The MFO is a promising new population-
based optimization method. However, it still has room for development
in areas like accelerating convergence and expanding the scope of its
search (Khalilpourazari & Khalilpourazary, 2019). In recent years,
several variants of the Moth-Flame Optimization (MFO) algorithm have
been proposed to overcome its weaknesses and improve its performance.
The following is a summary of various modified versions of the MFO
algorithm. Zhao et al. (2022a) proposed the Multiswarm Improved MFO
(MIMFO) algorithm that incorporates chaotic and dynamic grouping
mechanisms to enhance population diversity. They also added linear and
spiral search strategies and Gaussian mutation to improve search ca-
pabilities and maintain a balance between diversification and intensi-
fication. Similarly, Sahoo, Saha, Nama, and Masdari (2022a) introduced
a variant of MFO named m-DMFO, which uses a modified dynamic op-
position learning (DOL) strategy to speed up convergence and prevent
stagnation in local optima. Other approaches include covariance based
MFO (CCMFO) by Zhao, Fang, Liu, Xu, and Li (2022b) that utilizes
covariance and Cauchy mutation to upgrade location updates and
enhance exploration, and multi-operator MFO (MOMFO) by Gu and
Xiang (2021) that uses various strategies to balance global and local
search. Moreover, Nadimi-Shahraki, Fatahi, Zamani, Mirjalili, Abuali-
gah, and Abd Elaziz (2021a) developed the Migration-based MFO
(M− MFO) to balance the exploration–exploitation characteristics of the
classical MFO by using a random and guided migration operator. Li et al.
(2021) created the ODSMFO method with the help of the OBL mecha-
nism and DE, as well as a developed local search technique and the death
mechanism for diversity enhancement. Shan et al. (2021) showed that
the MFO algorithm might be stabilized using the Double Adaptive

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

3

Weight Mechanism (WEMFO) and tested it by utilizing it to train Kernel
Extreme Learning Machines (KELMs).

Sahoo et al. (2022b) developed the upgraded MFO (EMFO) by
embedding the mutualism strategy on the basic MFO for a better balance
between the search processes by enhancing its searching capability.
Nadimi-Shahraki, Fatahi, Zamani, Mirjalili, and Abualigah (2021b)
created the improved MFO (I-MFO) that assists in locating trapped
moths in local optima by defining memory for each moth. While Pelusi
et al. (2020) proposed the improved MFO (IMFO) by addressing the
MFO’s weaknesses, such as the rate of convergence and inclusive
searchability, by introducing a weight component to the suggested IMFO
to maintain the search balance.

Kigsirisin and Miyauchi (2021) proposed a solution to handle the
challenges in unit commitment (UC) using a modified version of the
MFO algorithm called alternative binary MFO. However, this approach
suffered from a flaw due to a fixed flame technique that caused the al-
gorithm to become trapped at a local optimum. To address this issue, the
authors developed four new techniques called BAMFO. These techniques
were used to develop a plan to repair the UC. Sahoo and Saha (2022c)
introduced an improved variant of the MFO algorithm that incorporated
both global and local phases of BOA to strike a balance between diver-
sification and intensification. Meanwhile, Nadimi-Shahraki et al.
(2021c) proposed a discrete MFO for community discovery by recreating
its successful tactics. This approach utilized a locus-based adjacency
formulation of moths and flames to analyze node relationships and
community organization during startup. An updated movement strategy
was employed using single-point crossover, two-point crossover, and
single-point neighbor-based mutation to balance explor-
ation–exploitation. Dabba et al. (2021) developed the mutual informa-
tion maximization-modified moth flame method (MIM-MFA) to address
gene assortment in microarray data sorting with MIM. Kadry et al.
(2021) used a modified version of Kapur’s MFO algorithm and his
threshold image segmentation to eliminate the tumor area from flair and
T2 clinical MRI slices. The authors used images from the BRAINIX and
TCIA-GBM benchmark sets to evaluate the suggested approach. Their
experimental results revealed that the T2 modality was subpar. Sapre
and Mini (2021) employed the differential MFO (DMFO) to alleviate
challenges inherent in WSNs with a mobile sink. Dash et al. (2020) in-
tegrated the Jaya-based MFO and the original MFO to minimize the
impact of FACTS devices on network performance in an IEEE network.
The two compensators, TCSC and SVC, served as fitness functions for the
JMFO and MFO algorithms in the IEEE 14 and IEEE 30 bus systems.

Apinantanakon and Sunat (2017) developed a new variant of the
MFO algorithm called OMFO to address its drawbacks, such as sluggish
convergence and mediocre solutions. They employed an opposition-
based strategy to produce new moths in MFO and subsequently used
those in the position upgrade process for rapid convergence. Li et al.
(2018) developed the double-evolutionary learning MFO algorithm
(DELMFO) by combining two evolutionary learning strategies to create
high-performance flames and dynamically regulate the hunt for moths.
Zhao et al. (2020) presented the boosted MFO algorithm, a refined
version of a population-based method. Both the MFO method and the
OBL strategy for creating flames were modernized using the mutation
mechanism and linear quest strategy. For further details on the MFO
works and their variants, one may refer to the survey work on MFO
(Sahoo, Saha, & Ezugwu, 2022d).

In this paper, we suggest a modified form of the MFO algorithm (Es-
MFO, for short) that uses an upgraded solution strategy to address the
problems with metaheuristics techniques mentioned above. The pro-
posed Es-MFO is and used to obtain the best solution for determining the
optimal thresholding that devastates the multi-level thresholding image
segmentation for CT COVID-19 images. The experimental section of this
paper is particularly robust, with tests of not just the diversity, effect of
parameters, statistical analysis, and normal engineering test issues, but
also comparisons to other popular algorithms. It has also been used to
solve the segmentation problem in CT images for the COVID-19. The

following is a brief summary of the main contribution of this paper:

A crossover operator is employed in MFO algorithm to enhance the
searching efficacy of the suggested Es-MFO algorithm.
A mathematical approach-based technique is employed at the end of
the position update phase of the MFO, which avoids the local optimal
solutions and improves the convergence speed of the proposed Es-
MFO algorithm.
The proposed Es-MFO has been applied to solve IEEE CEC’2017 test
suite for dimensions 30 and 50 and the results are compared with six
well-known metaheuristics and three MFO variants.
Statistical tests like the Friedman rank test and the Wilcoxon signed-
rank test are also used to measure how well the proposed algorithm
works.
To test the proposed problem-solving Es-MFO’s capability, it was
used to solve three CEC 2020 limited real-world engineering
problems.
At the end, Es-MFO has been applied to solve the COVID-19 CT image
segmentation problem.

The article is laid out as follows: in Section 2, relevant works on the
image segmentation issues are given. The MFO method is summarized in
Section 3. Section 4 demonstrates the proposed Es-MFO algorithm. In
Section 5, we give the experimental designs, simulation outcomes, sta-
tistical tests, and convergence analyses. Section 6 presents the engi-
neering design challenge, Section 7 presents the COVID-19 CT image
segmentation problem, and Section 8 discusses the conclusions.

2. Related works

Image segmentation methods have recently received much attention
and are often used as a preprocessing step in various image processing
applications. Numerous methods are available for solving the image
segmentation problem, but multilevel thresholding segmentation is
considered the best. However, traditional techniques need help solving
the image segmentation problem as the threshold levels increase due to
time complexity issues. Metaheuristic algorithms have been employed
to overcome these problems and have proven efficient and useful in the
relevant literature. Metaheuristic algorithms have been successfully
used in medical imaging segmentation, including in the segmentation of
COVID-19 medical imaging. This section provides some state-of-the-art
techniques for COVID-19 segmentation. Several metaheuristic-based
multilevel thresholding segmentation methods have been employed to
detect COVID-19 infections in CT scans. One such approach is the
Improved Manta Ray Foraging Optimization (MRFO) was created by
(Houssein, Emam, & Ali, 2021b) by integrating the opposition-based
learning (OBL) technique in the early phase of the MRFO algorithm to
increase the population variety in the search space. The suggested al-
gorithm is known by its abbreviation, MRFO-OBL. By using Otsu’s
approach to address the COVID-19 CT image segmentation problem, the
effectiveness of the suggested MRFO-OBL algorithm was evaluated. The
experimental results demonstrated that, in terms of performance metrics
including the structural similarity index (SSIM), peak signal-to-noise
ratio (PSNR), consistency, and quality, the suggested MRFO-OBL algo-
rithm outperformed the other optimization algorithms.

Wang et al., (Wang et al., 2022) proposed a new hybrid algorithm for
segmenting COVID-19 chest X-ray images by combining the PSO and
firefly algorithm (FA). Multi-threshold segmentation technique based on
two-dimensional reciprocal cross-entropy is suggested to solve the
problem of undefined and zero values of Shannon cross entropy due to
logarithm operation. The proposed algorithm was evaluated on a dataset
of 300 chest X-ray images. The results showed that it outperformed
several state-of-the-art algorithms regarding segmentation accuracy and
computational time.

Elaziz et al. (Abd Elaziz et al., 2020) proposed a technique called
MPAMFO that combines two swarm intelligence algorithms, MPA and

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

4

MFO, to achieve better results in image segmentation. MPAMFO uses
MFO as a local search technique to prevent the algorithm from getting
stuck in local optima. The method was tested on ten gray-scale images
and thirteen CT images of COVID-19 and outperformed other swarm
intelligence algorithms regarding segmentation quality. The experi-
mental results showed that MPAMFO is a reliable and effective approach
for image segmentation and has advantages over existing methods.

In another study, Houssein et al. (2022) developed a new improved
equilibrium optimizer (I-EO) with the help of dimension learning
hunting (DLH) technique. The efficiency of the suggested I-EO was
tested by IEEE CEC 2020 test problems and COVID − 19 CT image seg-
mentation problem. The obtained experimental results outperform as
compared to other metaheuristic algorithms.

Nama (2022) proposed a new population-based optimization algo-
rithm called improved slime mould algorithm (in short QRSMA) by
adding quasi-reflection-based learning (QRBL) and it’s jumping mech-
anism to improve the population diversity and accelerate the conver-
gence speed, respectively. The author then applied the suggested
QRSMA to solve the COVID-19 X-ray image segmentation problem. The
experimental results demonstrated the superiority of the proposed
QRSMA algorithm among other competitive metaheuristic algorithms.

Chakraborty and Mali (2021) suggested a modified version of the
WOA called the Modified WOA algorithm that uses random initialization
solutions in the search prey stage. A new parameter was developed to
balance the exploitation and exploration of the algorithm. The algorithm
was evaluated using three COVID-19 x-ray image segmentation prob-
lems and a few benchmark images. The experimental results demon-
strated that the proposed algorithm outperformed other optimization
algorithms in terms of several performance indicators.

Abualigah et al. (2022) proposed an upgraded version of the Ant Lion
Optimizer (AOA) algorithm named DAOA by incorporating the Differ-
ential Evolution (DE) technique to enhance the local search of the al-
gorithm. The algorithm was evaluated using a COVID-19 CT image
segmentation problem, and its effectiveness was compared with other
state-of-the-art algorithms in terms of SSIM and PSNR values.

Chakraborty et al. (2021) created a morphology-based radiological
segmentation method for the early identification of probable COVID-19
patients. The method was evaluated using over 400 different photos, and
the results showed that the proposed approach outperformed other
optimization strategies in terms of SSIM, PSNR, and Mean Square Error
(MSE).

Liu et al. (2021) proposed an improved version of the Ant Colony
Optimization (ACO) algorithm called CLACO using Cauchy and greedy
Leavy mutation. The algorithm was evaluated using Kapur’s entropy to
solve the COVID-19 X-ray image segmentation problem after testing it
on IEEE CEC 2014 benchmark functions.

Qi et al. (2022) used the directional mutation and directional
crossover operator to create a fresh ACO algorithm. The COVID-19 X-ray
image segmentation problem and the IEEE CEC 2017 benchmark func-
tions were used by the author to test the suggested technique. By
examining the experimental findings, the suggested algorithm displays
more consistent and superior segmentation outcomes than existing
models at various threshold values.

Moreover, A few additional studies have been done by scholars with
the help of several unique meta-heuristic algorithms in (Chakraborty
et al., 2022a; Houssein et al. 2021c, 2021d, 2021d; Sharma et al., 2021;
Sharma et al., 2021) to address image segmentation issues.

The literature review mentioned some weaknesses in the segmenta-
tion of COVID-19 CT images. Metaheuristic techniques used in optimi-
zation problems have certain drawbacks, such as getting stuck in local
areas, early termination, and requiring better global search capabilities.
The studies reviewed on multilevel thresholding segmentation have
shown that it is commonly done with metaheuristic algorithms and that
the optimal thresholding set depends on the algorithm used. Therefore,
using a high-performance metaheuristic algorithm can significantly
improve the results of multilevel segmentation. These motivated us to

improve the diagnosis of COVID-19 by combining an effective optimi-
zation algorithm with Otsu’s segmentation method for CT COVID-19
images.

3. Classical MFO algorithm

In this Section, Sections 3.1 and 3.2 explain where the MFO algo-
rithm came from and how it works with the help of a mathematical
formula.

3.1. Inspiration

Arthropoda includes moths, which are insects. Research into moths’
unique navigation methods has piqued the interest of scientists. As
shown in Fig. 1, moths use a transverse orientation mechanism to help
them navigate at night. These moths use moonlight to fly across a hor-
izontal inclination for a long distance in a straight line by keeping a fixed
tendency toward the moon. The moth moves in a helix path around the
flame as the distance between it and the flame decreases, increasing
preference efficiency. As a result of his research into moth behaviour and
mathematical modeling, Mirjalili created the MFO algorithm in 2015.

3.2. MFO algorithm

In MFO, the entire swarm consists of N moths; they are characterized
as a group of candidate solutions to a specific problem by using a matrix
as follows:

X =

⎡

⎢
⎢
⎣

X1
X2
⋮

XN

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

x1,1 x1,2 ⋯ x1,n− 1 x1,n
x2,1 ⋱ ⋯ ⋯ x2,n
⋮ ⋯ ⋱ ⋯ ⋮

xN− 1,1 ⋯ ⋯ ⋱ xN− 1,n
xN,1 xN,2 ⋯ xN, n− 1 xN,n

⎤

⎥
⎥
⎥
⎥
⎦

(1)

where the position of each moth is considered as a vector
Xi =

[
xi,1, xi,2,⋯, xi,n

]
, i ∈ {1,2,⋯,N}.

while ‘n’ denotes variable numbers. The jth dimension of each Xi is
expressed as scalar xi,j, j ∈ {1,2,⋯, n} in the boundary range
[
xj min, xj max

]
, where xj minandxj max are the minimum and maximum

boundary of the jth dimension of each Xi, respectively.
For i ∈ {1,2,⋯,N}, we suppose that the corresponding fitness value

of Xi =
[
xi,1, xi,2,⋯, xi,n

]
can be expressed as Fit(Xi), where Fit (*) rep-

resents fitness function candidate solution. Then, the corresponding
fitness vector of X is represented as follows:

Fit[X] =

⎡

⎢
⎢
⎣

Fit(X1)

Fit(X2)

⋮
Fit(Xn)

⎤

⎥
⎥
⎦ (2)

Fig. 1. Transverse orientation of Moth.

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

5

Each moth can fly toward its corresponding flame so that the flame
matrix has the same size as the matrix X as follows:

FM =

⎡

⎢
⎢
⎣

FM1
FM2

⋮
FmN

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

Fm1,1 Fm1,2 ⋯ Fm1,n− 1 Fm1,n
Fm2,1 ⋱ ⋯ ⋯ Fm2,n

⋮ ⋯ ⋱ ⋯ ⋮
FmN− 1,1 ⋯ ⋯ ⋱ FmN− 1,n
FmN,1 FmN,2 ⋯ FmN− 1 FmN,n

⎤

⎥
⎥
⎥
⎥
⎦

(3)

where FMi is defined as the flame corresponding to the Xi =
[
xi,1, xi,2,⋯, xi,n

]
; n denotes variable number of FMi, N is the number of

flames.
Similarly, the fitness of each FMi =

[
Fmi,1, Fmi,2,⋯, Fmi,n

]
; i =

{1,2,⋯,N}, we also assume that its corresponding fitness value can be
expressed as Fit(FMi), Further, the fitness vector of FMx is as follows:

Fit[FM] =

⎡

⎢
⎢
⎣

⎡

⎢
⎢
⎣

Fit(FM1)

Fit(FM2)

⋮
Fit(FMN)

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦ (4)

Moth and flame are two important components of MFO algorithm.
Suppose that K and k, k ∈ {1,2,⋯,N} indicate the maximum iterative
number and the current iterative number, respectively. Moth moves
spirally when it nearer to the flame therefore, author used a logarithmic
spiral function which is as follows:

Xk+1
i =

{
δi • ebt • cos(2πt) + FMi(k), i ≤ Flno

δi • ebt • cos(2πt) + FMFlno (k), i ≥ Flno
(5)

where δi =
⃒
⃒Xk

i − FMi(k)
⃒
⃒, that indicates the distance between ith moth Xi

and its corresponding flame FMi. Here b is a fixed constant equal one
used to recognize the spiral flight shape, Flno represents flame number
that has the ability to decrease the number of flames adaptively through
the entire iterative process and Fig. 2 represents moths helix manner, t
be any random number in [a1, 1] and is a1 is a convergence constant
which linearly decreased from (− 1) to (− 2) over the course of iteration
and mathematically, it can be represented as follows:

a1 = − 1+ k
(
− 1
K

)

(6)

t = (a1 − 1) × r+ 1 (7)

where, r is a random number in [0, 1],
Current and prior flame positions are gathered and organised by

global and local fitness in every iteration. Other flames are extinguished,
and only the best Flno are maintained (Li et al., 2018). The fittest flames
are the first and last ones. The moths arrived to seize the flames. Moths

in the same and lower orders invariably take the final flame. The
following formula is used for the determination of flame number (Flno).

Flno = round
(

Flmax − k
(Flmax − 1)

K

)

(8)

where, round can make the number of
(

Flmax − k (Flmax − 1)
K

)
be rounded to

its nearest integer and Flmax represents the maximum number of flames.
Further k and K are represents the current iteration and maximum it-
erations of the population. The more detailed pseudocode of the MFO
algorithm is presented in Algorithm 1.

Algorithm 1: Pseudo-code of MFO Algorithm

Input: Objective function f(X), X = (X1 X2⋯⋯⋯Xd), Number of moths in the
population (N), dimension (d), Current iteration (Iteration), Maximum iteration
(maxiter),Flame number (Flno), Lower bound (LB), Upper bound (UB), b = 1 and
other related parameters are determined.
for i = 1 : N

for j = 1 : d
Generate N organism solutions Xi,j (i = 1, 2, ⋯., N) using following Equation

X (i, j) = LB(i) + (UB (i) LB(i))*rand(); % rand() is a random number ∈ [0,1]
end for
end for
Calculate fitness value f(X)
While Iteration < maxiter + 1
if Iteration = = 1
Enter Flno = N in initial population
else

Apply Eq. (8)
end if
FM = Fitness Function f(X)
if Iteration == 1
arrange the moths according to FM
Update Flames
Iteration = 0
else
Sort the moths based on FM from last iteration

Update the Flames
end if

for j = 1 : N
for k = 1 : d
Find r and t using Eqs. (6 and 7)
Update moths position as to their particular flame using Eq. (5)
end for
end for
Iteration = Iteration + 1
end while

Output: The best solution with the minimum fitness function value in the ecosystem.

4. Proposed (Es-MFO) algorithm

This section presents the proposed Fibonacci search-based MFO al-
gorithm (Es-MFO, in short). The adaptation of non-linear function with

Fig. 2. Spiral movement around flame.

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

6

self-adaptive factor is presented in Section 4.1. The improved solution
quality technique is familiarized in Section 4.2. The two main charac-
teristics of the metaheuristic algorithms include exploration and
exploitation of the search space and a proper trade-off between them.
Exploration involves searching the entire region, whereas exploitation is
characterized as examining promising areas around a potential solution.
The joint effect of these two characteristics contributes to the algo-
rithm’s ability to prevent local optima stagnation and promote conver-
gence and solution variety. According to the literature, despite of its
effectiveness, MFO suffers from low solution accuracy, sluggish
convergence rate, lack of variety, and tendency to fall into local optimal
solutions, i.e., the algorithm struggles to maintain a suitable balance
between exploration and exploitation. To overcome the above issues, in
the present work, an improved MFO, namely Es-MFO, has been pro-
posed by integrating crossover operator and improved solution quality
technique. The details are discussed in the following subsections.

4.1. Crossover operator adaption in MFO algorithm

In MFO, the spiral motion of moths around the flame results explo-
ration and exploitation of the search space. It is easier to understand
exploration and exploitation when the exponent factor ‘t‘ is used to
explain it. If the value of ‘t‘ increases, then distance between moth and
flame increases that means moth will cover larger distance (exploration)
to reach at flame. Similarly, if ‘t‘ decreases, then distance between moth
and flame decreases that means moth will cover smaller distance
(exploitation) to reach at flame. Therefore, either a suitable value of ‘t‘
or an effective technique is necessary to handle the trade-off of the al-
gorithm. In addition to the above-mentioned reason, we have added a
different type of crossover (CR) operator strategy in the position update
phase to provide an effective balance between the diversification and
intensification. The following scheme is implemented to create the po-
sition at the next iteration:

Xk+1
i =

{
CR.δi • ebt • cos(2πt) + Fmi(k), i ≤ Flno

δi • ebt • cos(2πt) + CR.FmN.FM(k), i ≥ Flno
(9)

where, CR is a non-linear function and defined by CR = 2(0.5 − μ).f ; μ is
a random number uniformly distributed in [1,N], ‘N’ is number of search
agents in the population. f = exp(− (12.*(k/K))); K and k, k ∈ {1,2,⋯,

N} indicate the maximum iterative number and the current iterative
number, respectively and δi =

⃒
⃒XK

i − FMi(k)
⃒
⃒ that indicates the distance

between ith moth Xi and its corresponding flame FMi, b is a fixed constant
equal one used to recognize the spiral flight shape, Flno represents flame
number that has the ability to decrease the number of flames adaptively
through the entire iterative process t be any random number in [a1,1]
and is a1 is a convergence constant which linearly decreased from − 1 to
− 2 over the course of iteration and mathematically, it can be repre-
sented as follows:

t = (a1 − 1).r+1anda1 = − 1+k
(
− 1
K
)
; r is a random number in [0, 1].

4.2. Improved solution technique

An improved solution technique with the aid of the Fibonacci search
method (FSM) and the average of three random solutions has been
introduced in the suggested Es-MFO to improve the solution quality,
avoid local optima stagnation, and accelerate the convergence speed.

4.3. Fibonacci search method

The Fibonacci search is the strategy that yields the smallest possible
interval of uncertainty in which the optimal solution lies, after finite
number of tests are completed (Pierre, 1986). The Fibonacci search is
based on the sequence of Fibonacci numbers (Fib), which are shown by
Eq. (10).

F0 = 1 = F1,Fk = Fk− 1 +Fk− 2, k = 2, 3, 4,⋯.n (10)

The FSM is an elimination technique and can also be said as the

Initial Phase:

Possible condition in Update Phase:

Case 1: functional value at () functional value at ()

Case 2: functional value at () functional value at ()

Case 3: functional value at () functional value at ()

Where, the symbol represents the deleted area in the search space.

Fig. 3. The search mechanism of FSM.

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

7

interval reduction method, for solving for getting optimal for non-linear
optimization problem. The FSM shifts and narrows the search range
using Fibonacci numbers to obtain the extreme value of functions
(Ramaprabha, 2012). To improve the balance of the search in the MFO
algorithm, the proposed Es-MFO method incorporates the Fibonacci
search method (FSM), which focuses on updating the current best so-
lution obtained during the iterative process. The FSM ensures that the
solutions are not trapped in local optima and promotes high
diversification.

Let for any iteration T, for each moth (Xi,j), i = 1, 2,⋯,N and j = 1,2,
⋯, D, X = (x1, x2, x3,⋯xD) and Y = (y1, y2, y3,⋯yD) are two distinct
search agents. Take two experimental members xm1 and yn1 from X and
Y which are calculated as follows:

xm1 = aj +

(
Fk− 2

Fk

)
(
bj − aj

)
, yn1 = bj −

(
Fk− 2

Fk

)
(
bj − aj

)
(11)

where aj and bj are lower and upper bounds of ith variable. The range is
moved to the right if the function’s value at yn1 is greater than that at

xm1, and to the left if xm1 is greater than that at yn1. The new value xm2
and yn2 are generated using the Fibonacci search formula as,

xm2 = aj +

(
Fk− j

Fk− j+2

)
(
bj − aj

)
andyn2 = bj −

(
Fk− j

Fk− j+2

)
(
bj − aj

)
(12)

where j represents a variable with an initial value 2 in the FSM. If there
are two functional values that are not equal, then only one of them (xm2
or yn2 depending on the contracting direction) will be considered a new
experimental point. If the two function values are equal, then the two
new experimental points formed are xm2 or yn2; this process is repeated
until the stopping criterion is met, and a new solution is obtained by
averaging the last two experimental members in the final iteration. The
various scenarios that may arise in FSM are depicted in Fig. 3.

The proposed Es- MFO’s operational process is illustrated Algorithm
2 and the main Es-MFO steps are summarized below:

1. Randomly initialize parameters such as the number of populations,
maximum iteration, and function evaluation.

Fig. 4. 3D view of few randomly selected unimodal and multimodal functions: (a) Matyas (b) Zakhrov(c) Penalized 1.1 (d) Levy (e) Bohachevsky (f) Alpine and (g)
Salomon (h)Beale (i) Booth.

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

8

2. Sort the moth and flame matrices based on fitness value and update
the number of flames using Eq. (8).

3. Update a1 and t by Eqs. (6) and (7).
4. Update moth positions based on the corresponding flame using Eq.

(9).
5. To generate a new solution, randomly generate a number between

0 and 1. If the number is greater than 0.5, use Eq. (13). Otherwise,
use the Fibonacci search method (FSM) with Eqs. (10), 11, and 12) to
find the fitness value of the new solution. The best fitness value gives
the optimum value.

XNew = e(Xavg/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
fit(xr1)*fit(xr2)*fit(xr3)

√
) (13)

6. If the stopping criteria are not met, repeat steps 2–5 until the best
fitness value is obtained.

Algorithm 2: Pseudo-code of the Es-MFO algorithm.

Input: Maximum iteration (maxiter), Objective function f(X), X = (X1 X2⋯⋯⋯Xd),
dimension (D), Initial moth number (N), Flame number (Flno), Lower bound (LB),
Upper bound (UB), b, Current iteration (Iteration), Maximum iterations, and other
related parameters are determined.
fori = 1 : N

for j = 1 : D
Generate N organism solutions Xi,j (i = 1, 2, ⋯., N) using following Equation
X (i, j) = LB(i) + (UB (i) LB(i))*rand(); % rand() is a random number ∈ [0,1]

Find fitness
end

end
While stopping criteria not met

if Iteration= 1
Flno = N

else
Use Eq. (8)

end if
FM = Fitness Function f(X)
if Iteration= 1

Place the moths in order of FM
Update the Flames
Iteration = 0

else
Sort the moths based on FM from last iteration
Update the Flames

end if
Reduce the convergence constant

for j = 1 : N
for k = 1 : n

Update a1 ,t and moths position as to their particular flame using Eq. (9)
end for

end for
if p < 0.5 % p is a random number ∈ [0,1]

Find new solution using Eq. (13)
Check boundary

else
Apply Fibonacci approach using Eqs. (10)–(12) and check boundaries

end if
Iteration = Iteration + 1

end while
Output: The best solution in the ecosystem with the lowest fitness function value.

5. Simulation study and discussions

Section 5.1 provides a high-level overview of the benchmark func-
tions that formed the basis of this investigation. The experimental setup
for our proposed method is discussed in Section 5.2. In Section 5.3, we
see how Es-MFO stacks up against other common base algorithms. The
Sections 5.4, 5.5, and 5.6 show results from statistical analysis,
convergence performance, complexity and diversity analysis of the
proposed Es-MFO algorithm, respectively. There is a presentation of
experimental analysis including statistical and convergence analysis in
Section 5.7.

5.1. Benchmark functions

When it comes to the trustworthiness, verifiability, and effectiveness
of an algorithm, benchmark functions are indispensable. The selected
test functions are included in Appendix-1. In order to test the effec-
tiveness of the proposed Es-MFO method, 29 benchmark functions were
chosen and classified as either unimodal or multimodal. Some chosen
unimodal and multimodal functions’ three-dimensional structures are
displayed in Figs. 5 and 6.

Because each of the unimodal functions (F1-F7) has a unique optimal
value, they can be used to test the efficiency of an algorithm in
exploiting data. However, the multimodal functions (F7-F19) are rife
with local optima, and so can be used to test an algorithm’s ability to
avoid such solutions. As more dimensions, search areas, and local op-
timum values are added to a multimodal function, its complexity in-
creases. In Fig. 4, we see a three-dimensional representation of randomly
chosen unimodal and multimodal benchmark functions.

5.2. Experimental setup

The proposed algorithm’s source code has been written and imple-
mented in MATLAB R2015a, which has been run on a computer with an
Intel i5 processor, 8 GB of RAM, and Windows 2010. All algorithms are
terminated after reaching a maximum of 1000 iterations and a popula-
tion size of 30. Because of the randomness inherent in the proposed and
compared algorithms, we have run each function 30 times and calcu-
lated the average and standard deviation for each. The results have been
rounded up to two decimal points to provide smaller statistical errors
and statistically meaningful output. Table 1 provides the parameters
used by each compared algorithm. Table 2 compares Es-MFO to some of
the most popular existing algorithms for data collection and organisa-
tion, including DE, PSO, SCA, JAYA, BOA, and MFO. In Appendix 1, we
see the precise mathematical expressions for all nineteen of our
standard-setting functions, complete with their dimensions, variable
ranges, and optimal values.

5.3. Discussion on classical benchmark functions

Simulation results of our proposed Es-MFO have been compared to
those of 6 (six) other meta-heuristics, including DE, PSO, SCA, JAYA, and
BOA, on 19 benchmark functions, both unimodal and multimodal.
Table 2 includes the mean and standard deviation for optimized unim-
odal functions, Es-MFO, and the other six techniques. Table 2 makes
clear that Es-MFO provided the fewest values when compared to other
methods. The best outcomes for the functions F1, F3, F4, F6, and F7 are
produced by the Es-MFO algorithm. It provides the second-best out-
comes for the F2 and F5 functions. Table 2 also shows the investigation
of functions F8 to F17 under multimodal function optimization. For the
functions F8, F12, F13, and F17, it is obvious that Es-MFO produces
better results than other techniques. It provides the second and third-

Table 1
The parameters setup of Es-MFO and other algorithms.

Algorithm Parameters values

DE Scaling Factor (F) = 0.5 = Crossover probability
PSO Inertia weight (w) = 0.9 to 0.4, Accelaration coefficient c1 = c2 = 0.2,

Maximum velocity (Vmax = 4)
FPA Switching probability (p) ∈ [0, 1], Scaling factor (γ) = 0.01
BOA Switch probability (p) = 0.8, Sensor modality (c) = 0.01, Power

exponent (a) = 0.1 to 0.3
SSA Tworandom numbers (c1andc2) where 0 ≤ c1, c2 ≤ 1
SCA Random numbers (r2 = rand*2π, r3 = rand*2andr4 = rand) and

constant a = 2
MFO Convergence constant t ∈ [− 1, 1] and parameter ‘r′ decreases linearly

from (− 1) to (− 2), b = 1
Es-MFO Convergence constant t ∈ [− 1, 1] and Parameter ‘r′ decreases non-

linearly from (− 1)to(− 2),b = 1

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

9

highest outcomes for functions F9, F10, F15, F18, and F19, and it per-
forms worse than other methods for functions F14 and F16. As a result, it
can be said that Es-MFO is a better algorithm for optimizing multimodal
functions than the other six algorithms.

The percentage of instances in which Es- MFO’s mean performance is
superior to, comparable to, or inferior to the other six algorithms is
shown in Table 3. According to Table 3, Es-MFO performs better than
MFO, DE, PSO, SCA, JAYA, and BOA in 14, 14, 15, 13, and 11 bench-
mark functions, respectively. On 2, 1, 0, 0, 2, and 4 instances, respec-
tively, comparable results can be observed, while poorer values are
obtained in 3, 4, 4, 4, 4, and 4 benchmark functions.

5.4. Discussion on statistical and convergence performance for basic
benchmark problems

For better performance evaluation, statistical tests have become
increasingly commonplace in computational methods in recent years
(Sahoo & Saha, 2022c; Sharma et al., 2022). The most common appli-
cation for them is in an experimental study designed to compare the

performance of different algorithms. This potentially challenging un-
dertaking is essential for figuring out if a newly proposed solution
significantly enhances the established solutions for a certain problem.
Analysis of the suggested Es-MFO algorithm’s efficacy is conducted here
using Friedman and Wilcoxon signed-rank tests. The strong

Table 2
Comparison of Es-MFO with some basic algorithms.

Sl. No. Performance
measure

Es-MFO MFO DE PSO SCA Jaya BOA

F1 Avrg
Sdev

3.42e− 03 1.34e− 02 2.65E− 01
6.28E− 01

6.28E− 03
1.31E− 03

1.60E− 02
0

7.24e− 07
1.22e− 06

0
0

4.61E− 01
4.41E− 01

F2 Avrg
Sdev

1.11e− 04 3.44e− 04 1.87
2.07

7.49E− 05
6.97E− 05

1.24E + 01
0

5.29e− 02
1.03e− 01

0
0

1.61E− 01
2.24E− 01

F3 Avrg
Sdev

0
0

1.11E− 11
4.27E− 11

1.14E− 04
1.11E− 04

3.47E− 02
0

1.71e− 187
0

9.45E− 56
3.01E− 55

0
0

F4 Avrg
Sdev

0
0

6.81E− 11
3.72E− 11

1.16E− 08
2.73E− 08

5.82E− 88
0

5.71e− 196
0

1.45E− 218
0

0
0

F5 Avrg
Sdev

− 1.55e− 02 8.75e− 01 − 3.55E− 03
3.40E− 04

− 3.78E− 03
6.22E− 06

8.63E− 03
0

− 3.79e− 03
2.35e− 08

− 3.78E− 03
2.20E− 09

− 3.43E− 03
7.59E− 04

F6 Avrg
Sdev

1.79e− 07 6.95e− 07 1.83E− 01
2.74E− 01

2.23E− 02
2.18E− 02

8.71E− 02
0

5.88e− 03
1.42e− 02

3.54E− 02
4.28E− 02

1.05E− 01
1.70E− 01

F7 Avrg
Sdev

0
0

7.46E− 98
4.08E− 97

9.93E− 15
3.87E− 14

6.59E− 01
0

2.93e− 03
1.35e− 02

1.14E− 110
4.51E− 112

0
0

F8 Avrg
Sdev

0
0

0
0

0
0

3.74E− 07
0

8.16e− 02
1.63e− 01

0
0

0
0

F9 Avrg
Sdev

8.24e− 01 9.95e− 01 6.35E− 02
1.02E− 01

4.08E− 21
7.56E− 21

2.07E− 01
0

4.39e− 03
1.40e− 02

9.30E− 01
1.01E− 47

2.55E− 01
3.11E− 01

F10 Avrg
Sdev

3.68e− 05 2.02e− 04 3.12E− 51
1.70E− 50

4.28E− 05
1.14E− 05

2.20E− 16
0

1.55e− 04
7.49e− 04

1.60E− 04
3.18E− 07

0
0

F11 Avrg
Sdev

− 4.91e− 11 3.89e− 11 − 1.12E− 10
1.32E− 14

− 1.12E− 10
9.60E− 14

− 5.85E− 11
0

− 1.14e− 10
2.53e− 13

− 1.15E− 10
1.46E− 25

− 9.50E− 11
2.00E− 11

F12 Avrg
Sdev

0
0

4.17E− 29
2.28E− 28

3.68E− 05
2.57E− 05

2.73E− 01
0

1.00e− 08
2.15e− 08

5.07E− 30
9.54E− 30

0
0

F13 Avrg
Sdev

7.10 1.29e + 01 1.60E + 01
2.00E + 01

3
1.61E− 02

3.60
0

9.93
2.86

3
2.13E− 04

1.28E + 01
9.65

F14 Avrg
Sdev

8.30e− 02 2.24e− 01 1.18E− 01
1.16E− 01

1.92E− 01
1.87E− 01

6.35E− 01
0

1.59e− 01
2.10e− 01

2.38E− 02
3.18E− 02

6.05E− 01
5.90E− 01

F15 Avrg
Sdev

3.57e− 01 2.79e− 01 2.41
4.36E− 01

1.66E + 05
1.32E + 05

4.35E + 08
0

4.87e− 01
4.07e− 01

4.19E− 01
5.17E− 01

3
0

F16 Avrg
Sdev

1.13e− 03 5.01e− 04 1.25E− 03
1.35E− 03

1.70E− 03
9.33E− 04

1.10E− 01
0

5.70e− 04
4.62e− 04

3.10E− 02
2.09E− 05

5.13E− 03
3.33E− 03

F17 Avrg
Sdev

0
0

0
0

6.44E− 05
9.78E− 05

7.34E + 01
0

1.60e + 00
8.20e− 01

0
0

1.37E− 04
7.06E− 04

F18 Avrg
Sdev

1.02 9.63e− 01 2.37E− 01
2.69E− 02

3.33E + 01
2.97E− 01

1.02E + 01 7.50E− 01 2.17e− 02
3.70e− 02

1.87E + 01
4.07E− 01

1.92E− 08
1.25E− 09

F19 Avrg
Sdev

2.90e− 01 2.96e− 01 0
0

5.24E + 01
4.52E− 01

2.56E + 01 1.35 4.73e− 01
6.02e− 01

4.15E + 01
5.10E− 01

9.09E− 01
1.35E− 02

Table 3
Evaluation of Es- MFO’s efficiency with other approaches using 19 standard
benchmark functions.

MFO DE PSO SCA JAYA BOA

Superior to 14 14 15 15 16 11
Similar to 2 1 0 0 2 4
Inferior to 3 4 4 4 1 4

Table 4
Wilcoxon’s test results for proposed Es-MFO.

Es-MFOvs. Algorithm P-Value R+ R- Winner

DE 0.000 135 36 Es-MFO
PSO 0.003 158 32 Es-MFO
JAYA <0.001 107 46 Es-MFO
BOA 0.000 110 40 Es-MFO
SCA 0.000 140 50 Es-MFO
MFO 0.004 104 49 Es-MFO

Table 5
Friedman’s rank test of proposed Es-MFOwith considered algorithms.

Method Average
rank

Rank P-value

DE 4.39 6 At the 1% level of significance, Ho is ruled out
with a P-value of (0.0000.01). At a 1% level of
significance, the performance of several
approaches differs significantly from one another.

PSO 5.79 7
JAYA 3.42 2
BOA 4.00 4
SCA 3.63 3
MFO 4.08 5
Es-

MFO
2.68 1

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

10

outperformance of the Es-MFO on the test functions was assessed by
running the multiple-problem Wilcoxon test and Friedman’s test in SPSS
simultaneously.

Table 4 shows the Wilcoxon rank test’s significance level of 5% for
comparing Es-MFO to the other algorithms studied for a set of 19

benchmark functions. Results in Table 4 show that Es-MFO is superior to
its competitors because the R + values are all greater than the R- values.

The results of the Friedman-Rank test, which are shown in Table 5,
have a 95% level of confidence, demonstrating that Es-performance
MFO’s is both significant and compatible with conventional

Fig. 5. Results of Friedman rank test.

Fig. 6. Convergence graph of Basic functions.

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

11

algorithms like MFO, DE, PSO, SCA, JAYA, and BOA for a set of 19
benchmark functions.

According to Table 5, the proposed algorithm’s mean level is the
lowest of all the others, making Es- MFO’s rank the lowest. Therefore, it
is clear from the results on these benchmarks that the suggested Es-MFO
has significantly improved space exploitation, convergence speed, and
numeric performance compared to the traditional rival. In Fig. 5. A
graphical comparison of mean rank to different advancement algorithms
is shown.

5.5. Convergence performance on basic benchmark functions

Some of the convergence graphs compared with MFO, DE, PSO, SCA,
JAYA, and BOA for a few benchmark functions, such as F1, F2, F4, F6,
F7, F10, F14, F15, and F16 have been provided in Fig. 6 in order to
compare the convergence rate of Es-MFO with other algorithms. These
figures display the objective function value as well as the function
evaluation along the horizontal and vertical axes, respectively. Dimen-
sional size 100 was used to illustrate the curves. Comparing ES-MFO to
other approaches, it converges quickly on the global optima. However,
due to their tendency to get caught in local optima, other optimization
methods under comparison have a moderate convergence rate. Due to its
location in a narrow canyon, convergent to the global optima for F14
and F16 is challenging for optimization problems. However, this global
optimum is attained within 100 dimensions by the suggested Es-MFO. As
a result, the suggested Es-MFO exhibits a high rate of convergence when
combined with other optimization techniques.

5.6. Complexity and diversity analysis of the Es-MFO algorithm

In this section, two efficient analyses such as complexity and di-
versity analysis of the suggested Es-MFO algorithm are discussed and
presented in Sections 5.6.1 and 5.6.2 respectively.

5.6.1. Complexity analysis
To properly evaluate population-based algorithms, it is important to

consider the quality of the solutions they produce, and the computa-
tional time required to obtain those solutions. The complexity of an
algorithm can be expressed as a function of its running time or space
requirements with the input size. This process of determining the for-
mula for the total time required for a successful algorithm execution is
known as time complexity analysis. The proposed Es-MFO algorithm’s
computational complexity is analyzed using big-O notation. The
Complexity of Es-MFO (TEs− MFO) also depends on initialization of moth
position (TIMP), evaluation of moth position (TEMP), sorting of moth
based on fitness (TMf), update of flames (T) and update phase of moth
position with FSM (tUMFSM). We will denote the maximum number of
iterations, number of variables, and number of moths as I, D, and N,
respectively. We will use time complexity for the comparison of both Es-
MFO and MFO algorithm.

Complexity of initialization of moth position is TIMP = O (N * D).
The computation of fitness function for each organism i.e.,

complexity of TEMP = O (D).
Computational complexity of TMf = O(NLog(N)).
Complexity of TFl = O (N ∗ D).
Complexity of.TUMFSM = O(N*D) + O(Log(N))

Since the original MFO algorithm (Mirjalili, 2015) uses quicksort

Fig. 7. Diversity analysis of Es-MFO for different benchmark functions.

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

12

Table 6a
Experimental outcomes of Es-MFO and basic algorithms on CEC’17 functions for D = 30.

Func. Es-MFO BOA JAYA SCA MFO GA BA MFO3 OMFO SMFO

1 Avrg 6.21 × 1010 6.70 × 1010 6.93 × 1010 6.39 × 1010 6.50 × 1010 4.69 × 1010 1.32 × 1011 6.92 × 1010 6.56 × 1010 6.21 × 1010

Sdev 1.01 × 1010 5.88 × 109 1.99 × 109 6.80 × 109 9.04 × 109 7.50 × 109 1.47 × 1010 8.65 × 109 8.16 × 109 6.24 × 109

3 Avrg 1.25 × 105 8.50 × 104 1.58 × 105 1.00 × 105 9.28 × 104 1.71 × 108 5.26 × 107 9.62 × 104 9.42 × 104 8.71 × 104

Sdev 3.07 × 104 6.92 × 103 2.09 × 104 1.37 × 104 3.67 × 103 2.13 × 108 1.50 × 108 1.45 × 104 3.43 × 103 5.33 × 103

4 Avrg 1.66 × 104 2.31 × 104 8.47 × 102 1.69 × 104 1.80 × 104 1.88 × 104 3.78 × 104 2.29 × 104 1.88 × 104 1.68 × 104

Sdev 3.93 × 103 4.26 × 103 1.53 × 102 2.87 × 103 3.90 × 103 3.59 × 103 9.33 × 103 4.67 × 103 4.48 × 103 2.80 × 103

5 Avrg 8.80 × 102 1.06 × 103 9.75 × 102 9.77 × 102 9.85 × 102 8.41 × 102 1.05 × 103 9.99 × 102 9.86 × 102 9.72 × 102

Sdev 1.94 × 102 7.96 × 101 1.87 × 101 3.56 × 101 2.59 × 101 3.36 × 101 6.59 × 101 3.48 × 101 2.77 × 101 1.63 × 101

6 Avrg 6.52 × 102 7.08 × 102 6.96 × 102 6.86 × 102 7.04 × 102 6.87 × 102 6.76 × 102 7.07 × 102 7.05 × 102 7.01 × 102

Sdev 2.82 × 101 1.20 × 101 2.54 × 100 5.80 × 100 6.12 × 100 5.77 × 100 7.04 × 100 7.93 × 100 8.61 × 100 6.35 × 100

7 Avrg 1.46 × 103 1.66 × 103 1.63 × 103 1.54 × 103 1.53 × 103 1.58 × 103 2.49 × 103 1.55 × 103 1.55 × 103 1.49 × 103

Sdev 2.41 × 101 1.16 × 101 2.00 × 101 4.86 × 101 4.97 × 101 3.33 × 101 3.49 × 102 3.78 × 101 4.08 × 101 2.84 × 101

8 Avrg 1.08 × 103 1.26 × 103 1.05 × 103 1.23 × 103 1.19 × 103 1.29 × 103 1.38 × 103 1.21 × 103 1.20 × 103 1.18 × 103

Sdev 1.50 × 102 5.59 × 101 1.45 × 101 2.47 × 101 2.45 × 101 2.69 × 101 8.85 × 101 2.98 × 101 2.51 × 101 1.80 × 101

9 Avrg 1.25 × 104 1.73 × 104 3.98 × 104 9.73 × 103 1.53 × 104 1.24 × 104 1.79 × 104 1.49 × 104 1.55 × 104 1.33 × 104

Sdev 1.13 × 104 2.92 × 103 8.57 × 103 9.25 × 102 1.68 × 103 2.11 × 103 7.65 × 103 2.14 × 103 1.50 × 103 1.26 × 103

10 Avrg 6.83 × 103 7.79 × 103 9.91 × 103 9.31 × 103 9.69 × 103 8.06 × 103 1.34 × 109 9.74 × 103 9.74 × 103 9.30 × 103

Sdev 7.88 × 102 6.40 × 102 2.19 × 102 6.42 × 102 4.66 × 102 3.16 × 102 3.56 × 103 4.38 × 102 4.82 × 102 3.75 × 102

11 Avrg 5.31 × 103 7.77 × 103 3.58 × 104 9.57 × 103 1.46 × 104 4.66 × 104 5.84 × 104 1.28 × 104 1.36 × 104 1.01 × 104

Sdev 1.95 × 103 1.95 × 103 6.58 × 103 2.91 × 103 4.19 × 103 3.71 × 104 3.66 × 104 4.18 × 103 4.08 × 103 1.81 × 103

12 Avrg 2.31 × 109 1.81 × 1010 1.01 × 109 1.64 × 1010 1.51 × 1010 1.10 × 1010 6.63 × 1010 1.69 × 1010 1.68 × 1010 1.51 × 1010

Sdev 7.40 × 109 2.58 × 109 4.32 × 108 4.07 × 109 3.20 × 109 1.14 × 109 1.70 × 1010 4.89 × 109 3.58 × 109 2.24 × 109

13 Avrg 1.04 × 108 1.82 × 1010 2.16 × 108 9.84 × 109 1.33 × 1010 2.34 × 1010 3.31 × 1010 1.91 × 1010 1.52 × 1010 1.24 × 1010

Sdev 2.24 × 108 4.88 × 109 2.78 × 108 8.00 × 109 4.74 × 109 4.07 × 109 1.45 × 1010 6.91 × 109 6.62 × 109 4.85 × 109

14 Avrg 1.39 × 106 8.18 × 106 7.05 × 105 9.70 × 105 1.02 × 107 6.95 × 107 1.30 × 108 2.85 × 107 2.53 × 107 9.31 × 106

Sdev 1.99 × 106 8.85 × 106 3.77 × 105 1.31 × 106 8.01 × 106 3.95 × 107 1.23 × 108 2.82 × 107 2.59 × 107 7.40 × 106

15 Avrg 8.93 × 108 1.17 × 109 1.02 × 108 3.43 × 108 1.57 × 109 3.16 × 109 6.76 × 109 2.34 × 109 1.77 × 109 9.36 × 108

Sdev 2.25 × 109 4.63 × 108 6.67 × 107 3.84 × 108 1.26 × 109 1.59 × 109 3.75 × 109 1.59 × 109 1.35 × 109 5.33 × 108

16 Avrg 3.23 × 103 7.61 × 103 5.95 × 103 5.82 × 103 6.78 × 103 8.45 × 103 8.87 × 103 7.46 × 103 7.15 × 103 6.88 × 103

Sdev 3.80 × 102 1.88 × 103 2.20 × 102 6.06 × 102 9.69 × 102 2.79 × 103 2.98 × 103 1.61 × 103 1.14 × 103 9.27 × 102

17 Avrg 2.46 × 103 8.13 × 103 2.76 × 103 6.65 × 103 7.17 × 103 3.02 × 104 1.55 × 104 1.69 × 104 6.24 × 103 6.53 × 103

Sdev 2.35 × 102 5.55 × 103 1.46 × 102 4.85 × 103 4.79 × 103 4.81 × 104 1.77 × 104 2.12 × 104 4.36 × 103 3.89 × 103

18 Avrg 1.02 × 107 1.37 × 108 2.12 × 107 6.83 × 106 1.43 × 108 4.68 × 108 2.37 × 108 2.38 × 108 1.72 × 108 9.26 × 107

Sdev 1.54 × 107 1.03 × 108 1.06 × 107 6.05 × 106 1.05 × 108 2.64 × 108 1.97 × 108 1.69 × 108 1.35 × 108 4.95 × 107

19 Avrg 1.33 × 109 1.65 × 109 3.05 × 107 4.33 × 108 2.19 × 109 3.19 × 109 3.38 × 109 2.40 × 109 2.10 × 109 1.17 × 109

Sdev 2.70 × 109 7.45 × 108 3.40 × 107 3.69 × 108 1.15 × 109 1.77 × 109 1.89 × 109 1.05 × 109 1.37 × 109 5.56 × 108

20 Avrg 2.73 × 103 3.24 × 103 3.90 × 103 3.81 × 103 3.31 × 103 3.29 × 103 4.34 × 103 3.48 × 103 3.44 × 103 3.26 × 103

Sdev 2.52 × 102 2.50 × 102 1.28 × 102 2.46 × 102 1.84 × 102 1.63 × 102 6.39 × 102 2.01 × 102 1.66 × 102 1.55 × 102

21 Avrg 2.52 × 103 2.81 × 103 2.05 × 103 2.72 × 103 2.81 × 103 2.74 × 103 3.04 × 103 2.83 × 103 2.79 × 103 2.80 × 103

Sdev 3.36 × 101 7.08 × 101 1.57 × 101 4.31 × 101 4.44 × 101 4.64 × 101 1.39 × 102 5.80 × 101 3.38 × 101 4.85 × 101

(continued on next page)

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

13

algorithm, the computational complexity is O [NI* (D +N)] for the worst
case. Therefore, the overall complexity of the suggested Es-MFO algo-
rithm for worst case can be approximated as follows:

TEs− MFO = TIMP +TEMP + TMf + TFl + = O(I *(2ND + D + N2 + Log (N)))

(14)

So, the time complexity of Es-MFO is greater than MFO algorithm. It
is true that the complexity of computation has increased, but the in-
crease is negligible considering the enhancement.

5.6.2. Diversity analysis
Findings from studies of population variety can aid in the creation of

an evolutionary algorithm by shedding light on how such a programme
operates. Optimisation algorithms use a group of people to improve the
quality of the search areas and speed up the process of locating the
optimal answers. In most cases, search agents that have found the best
answers will try to steer you in that direction. This pulls search agents
further apart, diminishing the benefits of diversity. On the other hand,
the effect of intensification grows when distance between people
shrinks. A diversity assessment (Sahoo et al., 2022a) is examined and
defined as follows to evaluate the shrinking and growing distances be-
tween search agents:

divj =
1
N
∑N

i=1

⃒
⃒median

(
xj) − xj

i

⃒
⃒ (15)

div =
1
d
∑d

j=1
divj (16)

where, N and d represents number of search agents and design variables
respectively, xj

i is the dimension j of the i’th search agent and median
(
xj)

is the median of dimension j in the whole population, divj is the diversity
in each dimension and mathematically, it is defined as the distance

between the j’th dimension of every search agent and the median of that
dimension. The diversity of whole population (div) is then calculated by
taking average of every divj.

Furthermore, with the help of diversity measurement, we can
calculate the percentage of both exploration and exploitation during
each iteration using following Equations:

exploration% =

(
div

divmax

)

× 100 (17)

exploitation% =

(
|div − divmax|

divmax

)

× 100 (18)

where divmax is defined as the maximum diversity value in the whole
optimization process and |div − divmax| is the absolute value between div
and divmax. The exploration% is the link between the diversity in each
iteration and the maximum diversity obtained. The exploitation% relates
to the exploitation level and it is evaluated as the complemental per-
centage to exploration% as the difference between the maximal diversity
and the current diversity of an iteration is caused by the concentration of
search agents. ‘

Our proposed Es-MFO algorithm was tested on 23 benchmark func-
tions, allowing us to analyse the trade-offs between exploration and
exploitation. The benchmark functions F1, F2, F3, F6, F7, F10, F14, F15,
and F18 from Appendix 1 were chosen to ensure a level playing field and
presented in Fig. 7. The X-axis shows the number of iterations, while the
Y-axis displays the percentage of both exploration and exploitation.

5.6.3. Experimental comparisons on CEC 2017
To evaluate the performance of the novel hybrid Es-MFO algorithm,

it is tested with high complexity CEC2017 benchmark problems con-
sisting of four parts: (1) Unimodal (f1-f3); (2) Multimodal (f4-f10); (3)
Hybrid (f11-f20) and (4) composite (f21-30) benchmark problems. Out
of thirty functions, the second unimodal function (f2) has been discarded

Table 6a (continued)

Func. Es-MFO BOA JAYA SCA MFO GA BA MFO3 OMFO SMFO

22 Avrg 6.73 × 103 9.39 × 103 9.91 × 103 9.86 × 103 1.05 × 104 8.41 × 103 1.47 × 104 1.09 × 104 1.05 × 104 9.97 × 103

Sdev 2.30 × 103 7.84 × 102 1.35 × 103 1.00 × 103 6.94 × 102 2.18 × 103 3.36 × 102 5.72 × 102 5.73 × 102 7.11 × 102

23 Avrg 2.87 × 103 3.96 × 103 3.99 × 103 3.61 × 103 3.72 × 103 3.59 × 103 1.47 × 104 3.88 × 103 3.78 × 103 3.77 × 103

Sdev 3.65 × 101 2.08 × 102 4.66 × 101 1.11 × 102 1.41 × 102 1.85 × 102 3.36 × 103 2.13 × 102 1.73 × 102 1.58 × 102

24 Avrg 3.05 × 103 4.30 × 103 3.96 × 103 3.86 × 103 4.03 × 103 3.81 × 103 4.88 × 103 4.16 × 103 4.22 × 103 4.08 × 103

Sdev 4.10 × 101 1.44 × 102 2.73 × 102 1.77 × 102 1.96 × 102 1.20 × 102 2.80 × 102 2.45 × 102 2.02 × 102 2.25 × 102

25 Avrg 6.39 × 103 6.16 × 103 2.96 × 103 4.96 × 103 6.30 × 103 8.40 × 103 1.80 × 104 6.84 × 103 6.29 × 103 5.94 × 103

Sdev 2.92 × 103 6.24 × 102 2.46 × 101 4.86 × 102 9.06 × 102 1.78 × 103 2.91 × 103 1.03 × 103 7.23 × 102 4.78 × 102

26 Avrg 7.74 × 103 1.19 × 104 1.36 × 104 1.18 × 104 1.20 × 104 1.34 × 104 1.95 × 104 6.84 × 103 6.29 × 103 5.94 × 103

Sdev 3.44 × 103 8.02 × 102 4.97 × 103 8.73 × 102 9.52 × 102 2.38 × 103 2.90 × 103 1.03 × 103 7.23 × 102 4.78 × 102

27 Avrg 3.29 × 103 5.39 × 103 4.39 × 103 3.20 × 103 4.83 × 103 4.55 × 103 3.20 × 103 1.31 × 104 1.23 × 104 1.21 × 104

Sdev 2.52 × 101 5.13 × 102 7.06 × 103 1.89 × 103 4.45 × 102 3.38 × 102 5.68 × 103 1.25 × 103 8.23 × 102 7.18 × 102

28 Avrg 7.09 × 103 8.52 × 103 7.30 × 103 3.30 × 103 7.73 × 103 7.49 × 103 3.30 × 103 5.38 × 103 5.15 × 103 5.00 × 103

Sdev 3.03 × 103 4.33 × 102 6.90 × 103 4.25 × 103 1.01 × 103 5.16 × 102 6.14 × 103 5.82 × 102 4.08 × 102 4.42 × 102

29 Avrg 4.36 × 103 1.10 × 104 8.33 × 103 6.58 × 103 8.66 × 103 6.98 × 104 9.27 × 104 8.43 × 103 8.23 × 103 7.74 × 103

Sdev 3.06 × 102 5.37 × 103 3.60 × 102 9.67 × 102 3.13 × 103 5.34 × 104 1.01 × 103 7.84 × 102 8.18 × 102 7.03 × 102

30 Avrg 3.97 × 106 3.13 × 109 4.39 × 107 2.27 × 109 2.30 × 109 2.75 × 109 5.93 × 109 1.65 × 104 9.81 × 103 9.08 × 103

Sdev 3.29 × 106 1.08 × 109 3.63 × 107 1.02 × 109 1.08 × 109 6.85 × 108 3.11 × 109 2.70 × 104 3.42 × 103 2.90 × 103

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

14

Table 6b
Experimental outcomes of Es-MFO and basic algorithms on CEC’17 functions for D = 50.

Func. Es-MFO BOA JAYA SCA MFO GA BA MFO3 OMFO SMFO

1 Avrg 9.29 × 1010 1.16 × 1011 2.89 × 1010 5.42 × 1010 1.29 × 1011 4.52 × 1010 1.52 × 1011 1.25 × 1011 1.24 × 1011 1.18 × 1011

Sdev 4.73 × 1010 6.02 × 109 4.51 × 109 9.22 × 109 8.04 × 109 8.37 × 109 1.47 × 109 6.57 × 109 6.83 × 109 6.35 × 109

3 Avrg 1.96 × 105 1.86 × 105 3.09 × 105 1.80 × 105 3.90 × 105 3.55 × 108 6.26 × 107 3.04 × 105 1.09 × 106 3.85 × 106

Sdev 3.38 × 104 2.21 × 104 4.57 × 104 2.01 × 104 4.86 × 105 7.05 × 108 1.57 × 107 1.31 × 105 2.41 × 106 1.98 × 107

4 Avrg 2.83 × 104 4.29 × 104 4.38 × 104 4.13 × 104 4.39 × 104 4.83 × 104 3.68 × 104 4.56 × 104 4.41 × 104 4.12 × 104

Sdev 2.58 × 104 4.79 × 103 6.46 × 103 5.40 × 103 7.35 × 103 3.06 × 103 9.53 × 103 5.98 × 103 5.71 × 103 4.74 × 103

5 Avrg 1.19 × 103 1.29 × 103 1.25 × 103 1.25 × 103 1.26 × 103 8.37 × 103 2.05 × 103 1.27 × 103 1.27 × 103 1.23 × 103

Sdev 1.55 × 102 6.16 × 101 3.20 × 101 3.27 × 101 3.29 × 101 2.72 × 101 6.59 × 101 3.97 × 101 3.17 × 101 2.19 × 101

6 Avrg 6.84 × 102 7.18 × 102 7.47 × 102 7.08 × 102 7.16 × 102 6.61 × 102 7.76 × 102 7.16 × 102 7.17 × 102 7.15 × 102

Sdev 3.85 × 101 1.12 × 101 6.00 × 100 6.45 × 100 4.75 × 100 7.59 × 100 7.04 × 100 6.90 × 100 5.45 × 100 4.33 × 100

7 Avrg 2.06 × 103 2.17 × 103 2.12 × 103 2.17 × 103 2.14 × 103 2.25 × 103 2.55 × 103 2.14 × 103 2.15 × 103 2.07 × 103

Sdev 2.07 × 102 5.16 × 101 5.55 × 101 4.96 × 101 3.64 × 101 3.11 × 101 3.59 × 102 4.21 × 101 3.68 × 101 3.36 × 101

8 Avrg 1.51 × 103 1.63 × 103 1.58 × 103 1.59 × 103 1.58 × 103 1.55 × 103 1.58 × 102 1.60 × 103 1.59 × 103 1.55 × 103

Sdev 1.82 × 102 6.08 × 101 3.23 × 101 3.12 × 101 3.98 × 101 1.91 × 101 8.85 × 101 3.29 × 101 3.56 × 101 3.10 × 101

9 Avrg 5.55 × 104 4.63 × 104 1.76 × 104 3.99 × 104 4.82 × 104 1.21 × 104 2.39 × 104 4.67 × 104 4.86 × 104 4.32 × 104

Sdev 2.83 × 104 4.42 × 103 4.41 × 103 3.29 × 103 4.16 × 103 4.55 × 103 7.65 × 103 4.55 × 103 5.12 × 103 2.92 × 103

10 Avrg 1.21 × 104 1.39 × 104 1.42 × 104 1.53 × 104 1.64 × 104 2.34 × 104 1.34 × 104 1.64 × 104 1.65 × 104 1.60 × 104

Sdev 1.06 × 103 7.49 × 102 3.72 × 102 4.13 × 102 4.15 × 102 6.80 × 103 3.56 × 103 5.35 × 102 4.96 × 102 3.81 × 102

11 Avrg 1.72 × 104 2.56 × 104 6.88 × 103 3.16 × 104 2.89 × 104 5.69 × 104 5.88 × 104 2.92 × 104 2.96 × 104 2.57 × 104

Sdev 5.28 × 103 2.25 × 103 1.43 × 103 2.30 × 103 3.20 × 103 2.60 × 104 3.76 × 103 5.21 × 103 2.50 × 103 2.30 × 103

12 Avrg 1.47 × 1010 8.76 × 1010 1.09 × 1010 7.74 × 1010 9.32 × 1010 1.09 × 1010 6.69 × 1010 9.11 × 1010 9.72 × 1010 9.01 × 1010

Sdev 3.53 × 1010 8.77 × 109 2.79 × 109 1.48 × 1010 1.47 × 1010 1.42 × 109 1.70 × 109 1.91 × 1010 1.49 × 1010 1.08 × 1010

13 Avrg 1.31 × 1010 4.39 × 1010 3.01 × 1010 4.36 × 1010 4.75 × 1010 1.76 × 1010 3.61 × 1010 5.78 × 1010 6.00 × 1010 5.50 × 1010

Sdev 3.42 × 1010 1.27 × 1010 9.97 × 104 1.54 × 1010 1.19 × 1010 8.71 × 109 1.65 × 1010 1.37 × 1010 1.24 × 1010 1.23 × 1010

14 Avrg 4.80 × 106 1.84 × 108 1.33 × 108 5.71 × 107 1.32 × 108 6.34 × 107 1.35 × 108 2.10 × 108 1.72 × 108 1.71 × 108

Sdev 4.95 × 106 1.08 × 108 7.22 × 107 5.98 × 107 6.81 × 107 2.97 × 107 2.23 × 108 1.29 × 108 7.26 × 107 9.32 × 107

15 Avrg 4.13 × 109 1.10 × 1010 6.92 × 1010 6.09 × 109 1.12 × 1010 3.06 × 109 7.76 × 109 1.23 × 1010 1.30 × 1010 1.09 × 1010

Sdev 9.02 × 109 2.92 × 109 4.02 × 109 3.72 × 109 4.34 × 109 2.22 × 109 3.78 × 109 5.45 × 109 4.74 × 109 3.94 × 109

16 Avrg 4.84 × 103 1.15 × 104 8.31 × 103 8.51 × 103 1.05 × 104 8.20 × 103 1.85 × 104 1.12 × 104 1.13 × 104 1.06 × 104

Sdev 4.92 × 102 1.84 × 103 3.08 × 102 1.64 × 103 1.74 × 103 3.39 × 103 2.98 × 103 2.19 × 103 1.66 × 103 1.18 × 103

17 Avrg 1.03 × 105 1.64 × 104 4.43 × 104 1.95 × 104 2.96 × 104 1.34 × 104 1.05 × 105 4.06 × 104 4.37 × 104 2.21 × 104

Sdev 8.81 × 104 1.07 × 104 3.16 × 103 7.03 × 103 2.38 × 104 1.02 × 104 1.87 × 104 3.83 × 104 3.10 × 104 1.11 × 104

18 Avrg 3.36 × 107 2.44 × 108 8.09 × 107 8.40 × 107 3.16 × 108 9.86 × 108 2.57 × 108 4.03 × 108 3.72 × 108 2.81 × 108

Sdev 2.14 × 107 9.07 × 107 3.48 × 107 6.66 × 107 1.43 × 108 1.52 × 108 1.98 × 108 2.62 × 108 1.90 × 108 1.39 × 108

19 Avrg 1.42 × 109 6.13 × 109 7.02 × 109 4.13 × 109 5.61 × 109 4.42 × 109 3.58 × 109 6.57 × 109 6.73 × 109 5.30 × 109

Sdev 4.28 × 109 1.61 × 109 8.49 × 108 1.46 × 109 1.73 × 109 1.11 × 109 2.89 × 109 2.19 × 109 1.95 × 109 1.39 × 109

20 Avrg 4.00 × 103 4.37 × 103 4.35 × 103 3.96 × 103 4.61 × 103 4.36 × 103 5.36 × 103 4.68 × 103 4.76 × 103 4.50 × 103

Sdev 6.95 × 102 3.78 × 102 1.51 × 102 3.59 × 102 2.41 × 102 2.51 × 102 6.39 × 102 2.52 × 102 2.01 × 102 1.68 × 102

21 Avrg 2.83 × 102 3.33 × 103 2.81 × 103 3.18 × 103 3.30 × 103 2.64 × 103 3.24 × 103 3.33 × 103 3.34 × 103 3.29 × 103

Sdev 8.09 × 101 9.27 × 101 3.01 × 101 7.66 × 101 8.74 × 101 3.79 × 102 1.59 × 102 8.45 × 101 9.02 × 101 8.20 × 101

(continued on next page)

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

15

due to its unstable behavior, as presented in (Awad, Ali, Liang, Qu, &
Suganthan, 2016a). All algorithms are evaluated on MATLAB 2015(a)
with D*10000 function evaluation (for stopping criteria), the initial
number of populations is 30 (thirty) and 30 independent runs have been
executed for thirty and fifty dimensions. The average (Avrg) and stan-
dard deviation (Sdev) values are recorded for comparison.

5.6.4. Simulation and statistical analysis on basic and MFO variants
On CEC 2017 test suits, the Es-MFO algorithm is evaluated to nine

traditional optimization algorithms: BOA, JAYA, SCA, MFO, GA, BA,
MFO3 (Soliman et al. 2016), OMFO (Elsakaan et al., 2018), and SMFO
(Chen et al., 2021). The comparison results of Es-MFO and with other
considered algorithms are presented in Tables 6a and 6b. According to
Tables 6a and 6b, our proposed Es-MFO algorithm reached more than
90% top results for all collections of CEC2017 benchmark problems on
thirty and fifty dimensions when compared to other traditional opti-
mization algorithms, but it only provides 80% best results when
compared to the JAYA algorithm. Tables 7a and 7b show the number of
occurrences of superiority, similarity, and inferiority for thirty and fifty

dimensions, respectively. From Table 7a, we revealed that Es-MFO
works better than BOA, JAYA, SCA, MFO, GA, BA, MFO3, OMFO, and
SMFO in 22, 22, 21, 25, 23, 26, 24, 25 and 26 benchmark functions,

Table 6b (continued)

Func. Es-MFO BOA JAYA SCA MFO GA BA MFO3 OMFO SMFO

22 Avrg 1.40 × 104 1.58 × 104 1.69 × 104 1.60 × 104 1.80 × 104 8.30 × 104 2.57 × 104 1.81 × 104 1.84 × 104 1.79 × 104

Sdev 7.50 × 102 9.58 × 102 3.20 × 102 6.25 × 102 5.46 × 102 1.60 × 103 2.36 × 103 6.24 × 102 5.06 × 102 4.89 × 102

23 Avrg 3.32 × 103 5.03 × 103 3.63 × 103 4.24 × 103 4.79 × 103 3.35 × 103 2.46 × 104 4.90 × 103 4.83 × 103 4.71 × 103

Sdev 6.26 × 101 2.40 × 102 1.54 × 102 1.65 × 102 2.68 × 102 6.28 × 101 3.66 × 103 2.81 × 102 2.97 × 102 2.56 × 102

24 Avrg 3.42 × 103 5.73 × 103 4.84 × 103 4.68 × 103 5.28 × 103 5.14 × 103 4.68 5.46 × 103 5.60 × 103 5.52 × 103

Sdev 6.51 × 101 4.14 × 102 1.81 × 102 3.17 × 102 3.60 × 102 2.15 × 101 2.85 × 103 4.11 × 102 3.66 × 102 2.68 × 102

25 Avrg 1.46 × 104 1.62 × 104 4.01 × 104 1.55 × 104 1.69 × 104 3.54 × 104 2.20 × 104 1.79 × 104 1.72 × 104 1.62 × 104

Sdev 6.11 × 103 1.04 × 103 2.35 × 103 1.30 × 103 1.56 × 103 1.06 × 103 2.51 × 103 1.29 × 103 1.23 × 103 1.07 × 103

26 Avrg 1.50 × 104 1.82 × 104 1.39 × 104 1.84 × 104 1.84 × 104 1.85 × 104 2.15 × 104 1.89 × 104 1.88 × 104 1.79 × 104

Sdev 5.15 × 103 6.37 × 102 1.68 × 103 8.66 × 102 9.39 × 103 1.97 × 103 1.70 × 103 1.05 × 103 7.05 × 102 7.40 × 102

27 Avrg 3.87 × 103 8.52 × 103 3.20 × 103 3.20 × 103 7.79 × 103 4.04 × 103 3.25 × 103 7.96 × 103 8.17 × 103 7.94 × 103

Sdev 1.10 × 102 8.67 × 102 2.99 × 103 1.27 × 103 7.94 × 102 2.32 × 102 5.58 × 103 1.03 × 103 1.05 × 103 8.54 × 102

28 Avrg 1.43 × 104 1.49 × 104 3.30 × 103 3.30 × 103 1.50 × 104 7.52 × 103 2.30 × 103 1.55 × 104 1.56 × 104 1.46 × 104

Sdev 6.12 × 103 1.05 × 103 5.41 × 103 1.62 × 103 1.76 × 103 1.13 × 103 6.15 × 103 1.73 × 103 1.58 × 103 1.32 × 103

29 Avrg 2.32 × 105 2.15 × 105 9.96 × 105 7.97 × 104 1.85 × 105 6.74 × 104 1.27 × 105 2.74 × 105 2.99 × 105 1.24 × 105

Sdev 1.24 × 106 1.47 × 105 1.24 × 104 1.36 × 105 2.66 × 105 3.68 × 104 1.01 × 104 2.59 × 105 4.66 × 105 1.07 × 105

30 Avrg 9.97 × 108 9.58 × 109 4.02 × 108 6.17 × 109 9.53 × 109 6.86 × 109 6.13 × 1010 1.15 × 1010 1.10 × 1010 9.27 × 109

Sdev 4.55 × 109 2.27 × 109 2.44 × 108 1.91 × 109 3.19 × 109 1.36 × 109 4.15 × 109 3.70 × 109 3.08 × 109 2.20 × 109

Table 7a
Simulation result for comparison of Es-MFO and basic algorithms for D = 30.

BOA JAYA SCA MFO GA BA MFO3 OMFO SMFO

Superior 22 20 21 25 23 26 24 25 26
Similar 0 0 0 2 1 0 0 0 0
Inferior 7 9 8 2 5 3 5 4 3

Table 7b
Simulation result for comparison of Es-MFO and basic algorithms for D = 50.

BOA JAYA SCA MFO GA BA MFO3 OMFO SMFO

Superior 24 23 21 27 22 22 25 26 24
Similar 0 0 0 0 0 0 0 0 0
Inferior 5 6 8 2 7 7 4 3 5

Table 8a
Friedman’s rank test of Es-MFO and basic algorithms with D = 30.

Method Mean
rank

Rank P-value

BOA 6.91 9 At the 1% level of significance, Ho is ruled out with
a P-value of (0.0000.01). At a 1% level of
significance, the performance of several approaches
differs significantly from one another.

JAYA 5.09 4
SCA 3.59 2
MFO 5.66 5
GA 6.07 7
BA 8.73 10
MFO3 6.73 8
OMFO 5.89 6
SMFO 3.68 3
Es-

MFO
2.66 1

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

16

respectively, Similar outcomes can be observed in 0, 0, 0, 2, 1, 0, 0, 0 and
0 instances, respectively, and inferior values are achieved in 7, 7, 8, 4, 6,
3, 5, 4 and 3 benchmark functions respectively. Again, From Table 7b,
we observed that Es-MFO outperforms the BOA, JAYA, SCA, MFO, GA,
BA, MFO3, OMFO, and SMFO in 24, 23, 21, 27, 22, 25, 26 and 24
benchmark functions, respectively.

5.6.4.1. Statistical and convergence analysis of Es-MFO on basic and MFO
variants. To measure the effectiveness of the suggested Es-MFO, the
Friedman rank test is conducted, and the results are displayed in
Tables 8a and 8b for thirty and fifty dimensions, respectively. From
Tables 8a and 8b, it can be concluded that the rank of the Es-MFO is the
least. The convergence performance of Es-MFO and other considered
optimization algorithms on the CEC’2017 test suite for dimensions thirty
and fifty are shown in Figs. 8a and 8b, respectively. For convergence
analysis, we have considered six different benchmark functions
randomly out of twenty-nine as all twenty-nine functions significantly
enlarge the article’s length. In Figs. 8a and 8b, the number of iterations
and logarithm of best values so far are set on X-axis and Y-axis,
respectively. In these figures, the suggested Es-MFO algorithm achieved
fast convergence as compared to the other six basic algorithms and three
MFO variants as the Es-MFO algorithm worked effectively by keeping a
good balance between global and local search.

5.6.4.2. Simulation and statistical analysis on recent optimization algo-
rithms. This subsection experiments on the proposed Es-MFO algorithm
using CEC 17 functions. It is then compared to six recent algorithms,
which are Fire Hawk Optimization (FHO) by Azizi et al. (2023), Arith-
metic Optimization Algorithm (AOA) by Abualigah et al. (2021), Arti-
ficial Gorilla Troops Optimizer (GTO) by Abdollahzadeh et al. (2021),
Multi Population-Based Adaptive Sine Cosine Algorithm (MAMSCA) by
Saha (2022), Quantum Mutation Based Backtracking Search Algorithm
(gQR-BSA) by Nama et al. (2022), and mLBOA by Sharma et al. (2022).
The results of all algorithms are presented in Table 9, displaying the
mean and standard deviation.

From Table 9, the proposed Es-MFO algorithm achieved competitive
results on CEC2017 benchmark problems on thirty dimensions
compared to GTO, MAMSCA, GQR-BSA, and mLBOA algorithms in most
of the cases, and it provides more than 80% better results when
compared to the FHO and AOA. Table 10 shows the number of superi-
ority, similarity, and inferiority occurrences for the anticipated Es-MFO
compared to FHO, AOA, GTO, MAMSCA, GQR-BSA, and mLBOA.
Table 10 reveals that Es-MFO works better than FHO, AOA, GTO,
MAMSCA, gQR-BSA, and mLBOA in 25, 24, 20, 21, 20, and 21 bench-
mark functions, respectively, and low values are achieved in 4, 5, 9, 8, 9
and 8 benchmark functions, respectively. Further, the Friedman rank
test is conducted to measure the effectiveness of the suggested Es-MFO,
and the results are displayed in Table 11. Table 11 shows that the rank of
the Es-MFO is the least, which shows that the suggested Es-MFO is the
best algorithm among those considered here.

5.6.4.3. Run time complexity of the proposed algorithm. This subsection
evaluates the runtime complexity to confirm the time it takes for the
algorithm to solve a problem. Using the evaluation procedure described
in (Awad, Ali, Suganthan, Liang, & Qu, 2017), the complexity of the
algorithm Es-MFO and its comparative algorithms are assessed in terms
of run time. First, the code provided below is evaluated for each algo-
rithm to determine the computing time T0.

for i = 1 to 100000 do

x = 0.55+ double(i) ; x = x+ x ; x =
x
2
; x = x × x ;

Table 8b
Friedman’s rank test of Es-MFO and basic algorithms with D = 50.

Method Average
rank

Rank P-value

BOA 4.69 5 At the 1% level of significance, Ho is ruled out
with a P-value of (0.0000.01). At a 1% level of
significance, the performance of several
approaches differs significantly from one another.

JAYA 3.43 3
SCA 3.18 2
MFO 5.21 7
GA 3.81 4
BA 4.88 6
MFO3 5.81 9
OMFO 5.51 7
SMFO 5.65 8
Es-

MFO
2.50 1

Fig. 8a. Convergence graph of Es-MFO with other algorithms on IEEE CEC 2017 problems for D = 30.

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

17

x = sqrt (x) ; x = log (x) ; x = exp (x) ; x =
x

(x + 2)

loop

By using the maximum function evaluation of 200,000 in dimension
D, T1 demonstrates the amount of time it took to compute the single
function F18 from the IEEE CEC 2017 test problem set. T2 is the average
time it takes to run the entire algorithm five times when the same
function is used, and function evaluation is 200000. Tables 12a to 12f
represent the pairwise comparisons of the algorithm’s estimated run-
time complexities for dimension 30. Tables 12a to 12f reveal that, except
for FHO and GTO, the proposed Es-MFO has a shorter run time than all
of the compared algorithms.

6. Application on CEC2020 engineering design problems

Here, we apply the proposed Es-MFO to three CEC2020 real-world
constrained mechanical design optimization problems (Kumar et al.,
2020a): weight minimization of a speed reducer problem, multiple disk
clutch break design problem and welded beam design problem. Further,
the best competitive algorithms of CEC2020 on real-life constrained
single objective optimization problems such as sCMAgES (Kumar, Das, &
Zelinka, 2020b), SASS (Kumar, Das, & Zelinka, 2020c) and COLSHADE
(Gurrola-Ramos et al., 2020) are used for comparison. Appendices 2(a),
(b) and (c) give the mathematical formulation of each engineering
design problem, which typically involves many restrictions of varying
types. When dealing with the restrictions that are utilized to regulate
these sorts of problems, the death penalty functions (Coello, 2002)
technique is a frequent and straight-forward method. For all of the
comparison methods used in the evaluation, the termination conditions
are specified at 100,000 function evaluations. All of the chosen algo-
rithms’ parameters were maintained as recommended in the corre-
sponding original study.

6.1. Application 1: Weight minimization of a speed reducer problem

A firm covering encloses the notches, which function independently
to reduce or increase speed. The term “speed reducer” is used when this
device is used to reduce the speed of any other device. Reducers are
commonly used to reduce speed in turbines and rolling mills. The detail
descriptions about speed reducer problem are presented in (Sharma
et al., 2022).

The algorithm was tested against other competitive algorithms and a
few MFO variants. and the comparison results of Es-MFO with other
algorithms in terms of best, mean, and standard deviations (SD) are
shown in Table 13. We can deduct from Table 13 that the proposed Es-
MFO algorithm achieves better results than other algorithms in terms of
best and mean values but in standard deviation case, COLSHADE algo-
rithm is winner outperforms the other three contenders. However, the
proposed Es-MFO algorithm provides competitive performance for
speed reducer design problem in terms of best, mean, and standard
deviation. This problem’s mathematical formulation can be found in
Appendix 2(a).

6.2. Application 2: Multiple disk clutch break (MDCB) design problem

It’s a type of design challenge encountered in mechanical engineer-
ing. The primary goal of this problem is to reduce the total weight of the
multiple disc clutch brake system. Moreover, the brief details of MDCB
design problem are presented in (Chakraborty et al., 2022b).

The mathematical formulation of the MDCB design problem is pre-
sented in Appendix 2(b). The proposed Es-MFO algorithm is used to
solve the MDCB problem and compared it with different competitive
optimization algorithms in terms of best, mean, and standard deviation,
shown in Table 14. From Table 14, we can say that the SASS algorithm
obtains better performance in all three formats of statistical measures
viz. best, mean, and standard deviation values as compared to all the
compared algorithms. Furthermore, the proposed Es-MFO achieves
more competitive results than other algorithms with slightly deviated
results than SASS algorithm for MDCB problems.

Fig. 8b. Convergence graph of Es-MFO with other algorithms on IEEE CEC 2017 problems for D = 50.

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

18

Table 9
Experimental outcomes of Es-MFO and recent algorithms on CEC’17 functions for D = 30.

Func. Es-MFO FHO AOA GTO MAMSCA gQR-BSA mLBOA

1 Avrg 6.21 × 1010 5.39 × 1010 4.63 × 1010 3.45 × 103 1.69 × 1010 2.04 × 109 2.55 × 1010

Sdev 1.01 × 1010 1.37 × 1010 6.37 × 1010 4.53 × 103 5.47 × 109 1.14 × 1010 4.88 × 109

3 Avrg 1.25 × 105 9.88 × 104 3.05 × 107 3.00 × 102 6.47 × 104 5.59 × 105 1.37 × 105

Sdev 3.07 × 104 8.08 × 103 1.26 × 108 5.62e− 06 6.52 × 103 8.85 × 103 2.19 × 104

4 Avrg 1.66 × 104 1.98 × 104 1.89 × 104 4.75 × 104 3.49 × 104 5.50 × 102 3.47 × 103

Sdev 3.93 × 103 4.65 × 103 2.60 × 104 3.08 × 101 1.28 × 103 2.22 × 101 8.21 × 102

5 Avrg 8.80 × 102 9.05 × 102 8.81 × 102 9.06 × 102 7.60 × 102 9.22 × 102 7.24 × 102

Sdev 1.94 × 102 5.29 × 101 2.11 × 102 4.45 × 101 3.87 × 101 3.16 × 101 2.15 × 101

6 Avrg 6.52 × 102 6.76 × 102 6.95 × 102 6.39 × 102 6.74 × 102 6.65 × 102 6.62 × 102

Sdev 2.82 × 101 1.17 × 101 4.20 × 101 8.07 8.57 5.64 3.42

7 Avrg 1.46 × 103 1.56 × 103 2.27 × 103 1.78 × 103 1.54 × 103 9.26 × 103 1.54 × 103

Sdev 2.41 × 101 5.00 × 101 7.13 × 102 6.65 × 101 6.06 × 101 5.21 × 101 4.91 × 101

8 Avrg 1.08 × 103 1.16 × 103 1.19 × 103 9.44 × 103 1.42 × 103 9.09 × 103 9.62 × 103

Sdev 1.50 × 102 2.26 × 101 1.95 × 102 3.04 × 101 2.52 × 101 2.47 × 101 1.66 × 101

9 Avrg 1.25 × 104 1.34 × 104 1.79 × 104 4.10 × 104 4.65 × 104 2.70 × 104 8.43 × 104

Sdev 1.13 × 104 1.59 × 103 1.40 × 104 6.91 × 102 1.13 × 103 8.44 × 102 1.13 × 103

10 Avrg 6.83 × 103 1.01 × 104 6.62 × 103 5.54 × 103 8.07 × 103 4.56 × 103 5.43 × 103

Sdev 7.88 × 102 6.38 × 102 2.15 × 103 9.36 × 102 6.80 × 102 6.53 × 102 2.89 × 102

11 Avrg 5.31 × 103 9.45 × 103 1.33 × 104 6.22 × 103 6.46 × 103 6.40 × 103 5.35 × 103

Sdev 1.95 × 103 1.94 × 103 3.00 × 104 5.03 × 101 1.35 × 103 2.20 × 102 1.33 × 103

12 Avrg 2.31 × 109 6.62 × 109 3.47 × 109 4.06 × 104 1.47 × 109 4.86 × 106 2.40 × 109

Sdev 7.40 × 109 4.53 × 109 1.00 × 1010 1.65 × 104 8.21 × 108 3.83 × 106 6.91 × 108

13 Avrg 1.04 × 108 1.47 × 109 9.72 × 109 1.83 × 104 2.52 × 108 8.88 × 108 5.71 × 108

Sdev 2.24 × 108 1.06 × 109 1.89 × 1010 1.91 × 104 3.57 × 108 3.67 × 105 6.25 × 107

14 Avrg 1.39 × 106 3.37 × 106 4.73 × 106 1.87 × 106 6.52 × 106 6.79 × 106 1.49 × 106

Sdev 1.99 × 106 1.83 × 106 1.58 × 107 2.75 × 102 7.07 × 105 8.96 × 104 1.14 × 105

15 Avrg 8.93 × 108 5.10 × 108 1.89 × 109 7.07 × 103 8.77 × 106 9.19 × 103 1.42 × 105

Sdev 2.25 × 109 6.83 × 108 4.35 × 109 8.47 × 103 2.47 × 107 9.05 × 103 4.10 × 104

16 Avrg 3.23 × 103 5.41 × 103 5.15 × 103 3.83 × 103 3.46 × 103 3.81 × 103 3.94 × 103

Sdev 3.80 × 102 5.96 × 102 3.41 × 103 2.62 × 102 3.68 × 102 2.96 × 102 2.23 × 102

17 Avrg 2.46 × 103 3.37 × 103 7.27 × 103 2.56 × 103 2.74 × 103 2.75 × 103 2.65 × 103

Sdev 2.35 × 102 2.16 × 102 1.39 × 104 2.92 × 102 2.44 × 102 1.74 × 102 1.39 × 102

18 Avrg 1.02 × 107 6.83 × 107 1.00 × 108 1.44 × 107 2.74 × 107 3.98 × 107 1.38 × 106

Sdev 1.54 × 107 7.81 × 107 3.39 × 108 1.14 × 104 4.73 × 106 6.45 × 105 7.87 × 105

19 Avrg 1.33 × 109 3.00 × 108 7.45 × 108 4.56 × 103 2.42 × 107 8.03 × 103 7.89 × 105

Sdev 2.70 × 109 1.88 × 108 2.14 × 109 2.76 × 103 4.79 × 107 1.02 × 104 4.86 × 105

20 Avrg 2.73 × 103 3.13 × 103 2.98 × 103 2.94 × 103 2.86 × 103 3.88 × 103 3.46 × 103

Sdev 2.52 × 102 1.15 × 102 4.95 × 102 2.05 × 102 1.15 × 102 2.05 × 102 9.80 × 101

21 Avrg 2.52 × 103 2.65 × 103 2.68 × 103 2.83 × 103 2.54 × 103 2.51 × 103 2.59 × 103

Sdev 3.36 × 101 4.52 × 101 1.92 × 102 6.03 × 101 3.65 × 101 2.79 × 101 4.73 × 101

(continued on next page)

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

19

6.3. Application 3: Welded beam design (WBD) problem

The problem of WBD problem is a structural design issue, which has
been solved by many researchers. The WB ’s mathematical representa-
tion is shown in Appendix 2(c) respectively. From Appendix- 2 (c), it is
clear that the beam has seven constraints, and four variables and detail

description are presented in (Sharma et al., 2022). The aim of this issue
is to maximize WB’s total cost with respect to the constraints of bending
stress, shear stress, end deflection, and overhang load, respectively.

Table 9 (continued)

Func. Es-MFO FHO AOA GTO MAMSCA gQR-BSA mLBOA

22 Avrg 6.73 × 103 8.59 × 103 7.82 × 103 7.80 × 103 7.51 × 103 6.91 × 103 7.57 × 103

Sdev 2.30 × 103 1.21 × 103 2.68 × 103 1.38 × 103 1.87 × 103 1.35 × 103 4.21 × 102

23 Avrg 2.87 × 103 3.42 × 103 3.12 × 103 2.97 × 103 3.07 × 103 3.11 × 103 3.15 × 103

Sdev 3.65 × 101 1.53 × 102 1.97 × 102 8.95 × 101 5.64 × 101 5.47 × 101 5.25 × 101

24 Avrg 3.05 × 103 3.37 × 103 3.31 × 103 3.42 × 103 3.26 × 103 3.95 × 103 3.40 × 103

Sdev 4.10 × 101 1.52 × 102 2.64 × 102 8.34 × 101 2.03 × 102 3.33 × 101 7.77 × 101

25 Avrg 6.39 × 103 7.10 × 103 8.77 × 103 2.90 × 103 3.51 × 103 2.95 × 103 3.48 × 103

Sdev 2.92 × 103 6.07 × 102 8.19 × 103 1.38 × 101 1.79 × 102 2.04 × 101 1.72 × 102

26 Avrg 7.74 × 103 1.02 × 104 1.05 × 104 5.31 × 103 7.26 × 104 7.84 × 103 7.29 × 104

Sdev 3.44 × 103 1.50 × 103 4.57 × 103 1.55 × 103 7.63 × 102 1.13 × 103 5.86 × 102

27 Avrg 3.29 × 103 3.95 × 103 4.10 × 103 3.30 × 103 3.54 × 103 4.13 × 103 3.63 × 103

Sdev 2.52 × 101 3.52 × 102 8.67 × 102 7.90 × 101 1.78 × 102 2.64 × 101 7.74 × 101

28 Avrg 7.09 × 103 7.10 × 103 6.97 × 103 3.17 × 103 4.54 × 103 3.33 × 103 4.17 × 103

Sdev 3.03 × 103 9.09 × 102 5.00 × 103 5.13 × 101 3.55 × 102 3.78 × 101 1.96 × 102

29 Avrg 4.36 × 103 6.60 × 103 3.01 × 104 4.19 × 103 4.60 × 103 4.77 × 103 4.44 × 103

Sdev 3.06 × 102 1.16 × 103 6.63 × 104 3.84 × 102 3.47 × 102 2.54 × 102 2.26 × 102

30 Avrg 3.97 × 106 6.67 × 108 1.31 × 109 9.67 × 103 4.57 × 107 8.84 × 104 6.67 × 106

Sdev 3.29 × 106 4.50 × 108 2.80 × 109 3.60 × 103 2.76 × 107 1.13 × 105 3.83 × 106

Table 10
Simulation result for comparison of Es-MFO and basic algorithms for D = 30.

FHO AOA GTO MAMSCA gQR-BSA mLBOA

Superior 25 24 20 21 20 21
Similar 0 0 0 0 0 0
Inferior 4 5 9 8 9 8

Table 11
Friedman’s rank test of Es-MFO and basic algorithms with D = 30.

Method Mean
rank

Rank P-value

FHO 5.28 6 At the 1% level of significance, Ho is ruled out
with a P-value of (0.0000.01). At a 1% level of
significance, the performance of several
approaches differs significantly from one another.

AOA 5.60 7
GTO 3.05 2
MAMSCA 3.78 3
gQR-BSA 3.90 5
mLBOA 3.85 4
Es-MFO 2.62 1

Table 12a
Time complexity according to CEC 2017 benchmark Es-MFO vs FHO.

Dimension T0 T1 Es-MFO FHO

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0

D = 30 0.06 1.64 97.99 1605.83 45.52 731.33

Table 12b
Time complexity according to CEC 2017 benchmark Es-MFO vs AOA.

Dimension T0 T1 Es-MFO AOA

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0

D = 30 0.06 1.64 97.99 1605.83 616.73 10215.5

Table 12c
Time complexity according to CEC 2017 benchmark Es-MFO vs GTO.

Dimension T0 T1 Es-MFO GTO

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0

D = 30 0.06 1.64 97.99 1605.83 14.99 222.5

Table 12d
Time complexity according to CEC 2017 benchmark Es-MFO vs MAMSCA.

Dimension T0 T1 Es-MFO MAMSCA

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0

D = 30 0.06 1.64 97.99 1605.83 237.21 3926.66

Table 12e
Time complexity according to CEC 2017 benchmark Es-MFO vs gQR-BSA.

Dimension T0 T1 Es-MFO gQR-BSA

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0

D = 30 0.06 1.64 97.99 1605.83 103.90 1704.33

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

20

The suggested Es-MFO algorithm is used to solve WBD problem, and
its performance is measured with three best performing algorithms of
CEC2020 real-world constraint single objective optimization problems
with few other traditional optimization algorithms. Table 15 represents
the comparison performance of the proposed Es-MFO algorithm with
other algorithms. From Table 15, it can be clearly visible that the pro-
posed algorithm provides better results than all other optimization al-
gorithms in terms of ‘best’ value but in case of mean and standard
deviation measures, SASS algorithm is winner. In addition to overall
performance, the suggested Es-MFO algorithms achieve a very
competitive result as compared to other algorithms in all formats of
statistical measures for WB design problem.

7. Application of Es-MFO for COVID-19 CT image segmentation

This section examines the performance of Es-MFO in solving real-
world problems by using it to determine the best thresholds for seg-
menting CT COVID-19 images. Image segmentation methods have
recently gained a lot of attention and can be used as a preprocessing
phase in various image-processing applications. Selecting suitable
threshold values is crucial because image quality depends heavily on
them. As a result, multi-level thresholding is considered an optimization
problem, and metaheuristic algorithms are often used to solve similar
problems by maximizing specific research criteria. The proposed Es-
MFO algorithm uses Otsu’s method as an objective function to deter-
mine the optimal thresholds in COVID-19 CT images.

The section is structured as follows: Section 7.1 presents the objec-
tive function. Section 7.2 presents the data set description used in the
experiments. The development of the proposed Es-MFO for image
segmentation-based Otsu objective function is discussed in Section 7.3.
The evaluation criteria used in the comparison are provided in Section
7.4. Section 7.5 reported the results in terms of PSNR, SSIM, and Feature
similarity index (FSIM) based on applying Otsu’s method. Finally, Sec-
tion 7.6 provides a Comparison the proposed Es-MFO with other state-
of-the-art methods also some recent metaheuristic algorithms.

7.1. Definition of multilevel thresholding segmentation

In this subsection, we will discuss the multi-level thresholding image
segmentation problem. Let’s assume that the input image is represented
by I’, which consists of R + 1 groups. The main objective of any method
for multi-level thresholding is to identify the R thresholds {thk, R = 1, 2,
R} required to segment I’ into sub-groups (CR, R = 1, 2, …, R). The
procedure for determining these thresholds is described in Eq. (19)

C0 = I ′ ij , 0⩽I ′ ij⩽t1 − 1,
C1 = I ′

ij , t1⩽I ′ ij⩽t2 − 1,
......

CR = I ′

ij , tR⩽I ′ ij⩽L′

− 1

(19)

where tR denotes the threshold values. I′ij is the gray level for the image.
L′ represents the total number of grey levels in the images.

Therefore, the challenge of multi-level thresholding can be framed as
a task of maximizing the selection of optimum thresholds, stated as:

t*1, t*2, t
*
3,, t

*
R = argmaxt1 ,...,tR Fitt(t1,, tR) (20)

We utilized Otsu’s (Otsu, 1979) method as the objective function Fitt to
be maximized. The rationale behind selecting Otsu’s method is its
extensive usage in solving multi-level thresholding problems in image
segmentation.

The definition of the fitness function Fitt is as follows:

Fitt =
∑R

i=0
ωi(μi − μ1)

2
, (21)

Table 12f
Time complexity according to CEC 2017 benchmark Es-MFO vs mLBOA.

Dimension T0 T1 Es-MFO mLBOA

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0

D = 30 0.06 1.64 97.99 1605.83 610.67 10150.5

Table 13
Comparison performance of Es-MFO with other algorithms for speed reducer
design problem.

Algorithm Best SD Mean

Es-MFO 2.84376e þ
03

1.2100e + 01 2.84101e þ
03

MFO 2.91160e +
03

9.5184e + 01 2.91201e +
03

SaDE (Qin & Suganthan,
2005)

2.99442e +
03

3.5420e + 01 2.99442e +
03

SHADE (Tanabe & Fukunaga,
2013)

2.99442e +
03

1.78130e + 01 2.99442e +
03

LSHADE (Tanabe &
Fukunaga, 2014)

2.99442e +
03

2.6940e− 10 2.99442e +
03

LSHADE− EpSin (Awad et al.,
2016b)

2.99442e +
03

8.92779e + 01 3.01072e +
03

COLSHADE 2.99441e +
03

4.64001e− 13 2.99441e +
03

SASS 2.99442e +
03

5.91000e− 09 2.99442e +
03

sCMAgES 2.99442e +
03

7.66000e− 12 2.99442e +
03

EMFO (Sahoo & Saha et al.,
2022b)

2.92009e +
03

1.85201e + 01 2.92201e +
03

SMFO 2.87602e +
03

1.86154e + 01 2.88041e +
03

LMFO 2.92341e +
03

1.17113e + 01 2.92102e +
03

Table 14
Comparison performance of Es-MFO with other algorithms for MDCB design
problem.

Algorithm Best SD Mean

Es-MFO 2.35242e− 01 5.25110e− 03 2.38142e− 01
MFO 3.36241e− 01 1.67142e− 01 5.93342e− 01
SaDE 23.5340 2.31150e− 16 23.5242
SHADE 25.5411 4.51150e− 16 23.5242
LSHADE 23.5681 2.31150e− 16 23.5242
LSHADE− EpSin 23.5900 3.60150e− 16 2.35242
COLSHADE 2.35242e− 01 2.35242e− 01 2.35242e− 01
SASS 2.35241e¡01 1.35014e− 17 2.35241e¡01
sCMAgES 2.35242e− 01 1.40143e− 16 2.35242e− 01
EMFO 2.60451e− 01 2.62412e− 01 2.62452e− 01
SMFO 2.87602e + 03 2.88101e + 03 2.88101e + 03
LMFO 2.60301e− 01 5.05291e− 03 2.67461e− 01

Table 15
Comparison performance of Es-MFO with other algorithms for WB design
problem.

Algorithm Best SD Mean

Es-MFO 1.6609 1.88201e− 01 1.69502
MFO 1.84282 1.12850e− 01 1.96201
SaDE 1.77141 1.652101e− 14 1.77141
SHADE 1.72213 3.12840e− 12 1.72213
LSHADE 1.74415 3.45310e− 13 1.74415
LSHADE− EpSin 1.74631 1.54123e− 02 1.74631
SASS 1.67022 7.72000E¡14 1.67021
COLSHADE 1.67010 1.69200e− 02 1.69632
sCMAgES 1.67022 1.57000e− 13 1.67022
EMFO 1.75315 8.43031e− 02 1.82407
LMFO 1.82420 4.91302e− 02 1.89784

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

21

ωi =
∑ti+1 − 1

j=ti

Phj, (22)

μi =
∑ti+1 − 1

j=tj

i
Phj

ωj
, (23)

Phj =
hi

Np
(24)

This subsection describes the mathematical model of the Otsu
method (Otsu, 1979), which is a thresholding method based on the
maximum variance between classes. The segmentation process depends
on the image histogram (Glasbey, 1993). The histogram is passed to the
Otsu’s method, selecting the best thresholding values to divide the
image into various classes. This technique assumes the Lv intensity levels
of the image, and the probability is obtained by Eq. (25). It can be used
for RGB images where Otsu is applied to each layer individually.

hj =
hj

Np
,
∑Pn

j=1
Phj = 1 (25)

where j is an intensity level in (0 ≤ j ≤ Lv − 1) and Pn is the total number
of pixels. hj is the number of intensity frequencies j in the image denoted
by the histogram. In a probability distribution Phj, the histogram is
normalized. The classes for bi-level segmentation are computed based
on the probability distribution as follows:

C1 =
Ph1

ω0(th)
,⋯,

Phth

ω0(th)
andC2 =

Phc
th+1

ω1(th)
,⋯,

PhLv

ω1(th)
(26)

where ω0(th) and ω1(th) are probabilities distributions for C1 and C2 that
is defined by Eq. (27).

ω0(th) =
∑th

j=1
Phj andω1(th) =

∑Lv

th+1
Phj (27)

It is essential to calculate the mean levels μ0 and μ1 that describe the
classes by Eq. (28). After those operators have been determined, the

Table 16
COVID-19 CT image and their corresponding histograms.

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

22

Otsu between-class σ2
B is computed by Eq. (29).

μ0 =
∑th

j=1

iPhj

ω0(th)
and μ1 =

∑Lv

j=th+1

Phj

ω1(th)
(28)

σ2
B = σ1 + σ2 (29)

Notice that σ1 and σ2 in Eq. (29) are the variances of C1 and C2 that
identified as follows:

σ1 = ω0
(
μ0 + μy

)2 andσ2 = ω1
(
μ1 + μy

)2 (30)

where μy = ω0μ0 + ω1μ1. Based on the values σ1 and σ2, Eq. (30) il-
lustrates the objective function. As a result, the optimization problem is
simplified to determining the intensity level that maximizes Eq. (31).

Fotsu(th) = Max
(
σ2

B(th)
)
, 0 ≤ th ≤ Lv − 1 (31)

where σ2
B(th) is the Otsu for a provided th value. Otsu’s approach is used

for a single layer from an image, which means that it is required to apply
it for the three layers for color images. The preceding idea of a bilevel
technique can be changed to accommodate multiple thresholds. The
fitness function Fotsu(th) in Eq. (31) can be changed for multiple
thresholds as the following:

Fotsu(TH) = Max
(
σ2

B(th)
)
, 0 ≤ thi ≤ Lv − 1, i = [1, 2, 3,⋯,K] (32)

where TH = [th1, th2,⋯.thk − 1], is a vector containing multiple thresh-
olding and the variances are calculated by Eq. (33).

σ2
B =

∑k

i=1
σi =

∑k

i=1
ω1
(
μ1 − μy

)2 (33)

where i denotes the specific class, ωi and μj are the probability of
occurrence and the mean of a class, respectively. For multiple thresholds
values are obtained as:

ωk− 1(th) =
∑Lv

j=thk+1
Phj (34)

for mean values:

μk− 1 =
∑Lv

j=thk+1

Phj

ω1(thk)
(35)

7.2. Discussion on datasets

In this research, the proposed algorithm was evaluated using CT
images from the COVID-19 dataset (Zhao et al., 2020a,2020b,2020c).
The 216 patients included in the CT COVID-19 dataset are represented
by 349 CT scans. Patients aged 40 to 84 of both sexes were represented
in the COVID-19 images. To gauge the efficacy of the proposed algo-
rithm, evaluation images from a variety of patients are used. The test
images have names like CT-img1, CT-img2, etc., up to CT-img10. The
selected test images and their corresponding histograms are shown in
Table 16.

7.3. Es-MFO implementation-based image segmentation

The Es-MFO algorithm for image segmentation starts by converting
the original CT image, Im_R, to a grayscale image, IO_G, and generating
histograms for both images. Otsu’s method is then used as the fitness
function to calculate the fitness value. The process begins by setting up
the parameters for ES-MFO and generating a population of N search
agents with Dim dimensions. The best solution is identified from this
population, and the remaining solutions are modified using ES-MFO
operators outlined in Section 4. The best threshold value determines

the optimal solution. Lastly, the most effective thresholds are chosen and
applied to the CT images. The image segmentation process of the pro-
posed method is illustrated in Fig. 9. The steps for developing the pro-
posed ES-MFO algorithm for selecting the best thresholds in CT COVID-
19 images using the Otsu fitness function can be summarized as follows:

1. Convert the original CT image, Im_R, to a grayscale image, IO_G.
2. Generate histograms for both the original image and the gray-

scale image.
3. Set the control parameters for the ES-MFO algorithm.
4. Create a set of N particles, X, each with Dim dimensions.
5. Evaluate each particle in X using Otsu’s fitness function Eq. (31).
6. Sort both the moth and flame matrix based on their fitness values

and update the number of flames using Eq. (8).
7. Update the position and velocity of each particle in X using Eqs.

(6), and 7).
8. Update the role of the moths concerning the corresponding

flames using Eq. (10).
9. To generate a new solution, randomly choose between using Eq.

(13) or the FSM method Eqs. (10), 11, and 12), and then evaluate
the fitness value of the new solution. The best fitness value rep-
resents the optimal solution.

10. Increase the iteration counter by 1 and check if the stop condition
is met. If not, go back to Step 5.

11. Return the best solution containing the best thresholds and apply
them to the CT COVID-19 images.

7.4. Performance measures

To evaluate the effectiveness of Es-MFO in image segmentation,
three metrics are employed: Peak-signal-to-noise ratio (PSNR), Struc-
tural similarity index (SSIM), and Feature similarity index (FSIM). The
definitions of these metrics are as follows:

• PSNR: This measure calculates the dissimilarity between the original
image Iorg and segmented image Is, it is defined by Eq. (36).

PSNR = 20log10

(
255

RMSE

)

(36)

where RMSE is the mean square error calculated using Eq. (37), M and N
denote the number of raw and columns in the image.

RMSE =

̅̅̅
∑N

i=1

∑M

j=1

(
Iorg(i, j) − Is(i, j)

)2

N × M

√
√
√
√
√

(37)

• SSIM: Is calculated using Eq. (38) and this measure obtains the
similarity between the original and the segmented image.

SSIM(I, Is) =

(
2μIμIs

+ k1
)(

2μIμIs
+ k1

)

(
μ2

I + μ2
Is
+ k1

)(
σ2

I + σ2
Is
+ k2

), k1 = 6.5025, k2 = 58.52252

(38)

Fig. 9. Image segmentation process-based Es-MFO algorithm.

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

23

• FSIM: This metric determines how similar two images are based on
their internal characteristics (Sara et al., 2019) defined by Eq.(39)

FSIM =

∑
w∈ΩSL(w)PCm(w)
∑

w∈ΩPCm(w)
(39)

where ω is the entire domain of the image:

SL(w) = SPC(w) × SG(w)

SPC(w) =
2PC1(w) × PC2(w) + T1

PC2
1(w) + PC2

2(w) + T1

SG(w) =
2G1(w) × G2(w) + T1

G2
1(w) + G2

2(w) + T1

(40)

and G is the gradient magnitude (GM) of an image and is defined as:

G =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

G2
x + G2

y

√

(41)

PC(w) =
E(w)

(
∊ +

∑
nAn(w)

) (42)

The value of the vector in w on n is E(w) and An(w) is the local
amplitude of scale n. ∊ is a small number and PCm(w) =

max(PC1(w),PC2(w)).
Note that the high values of PSNR,SSIM, and FSIM demonstrate the

high performance of the algorithm.

7.5. Results and discussions on image segmentation problems

In this subsection, the effectiveness of the Es-MFO based COVID-19
image segmentation method is discussed and evaluated in comparison
to eight metaheuristic algorithms. The PSNR, SSIM, and FSIM are used to
evaluate the outcomes obtained by Es-MFO. This evaluation is carried
out across a range of threshold values (nT h = 2, 3, 4, and 5). All al-
gorithms were tested 30 times per image for a total of 350 iterations with
a population size of 50. Test images of CT scans are shown in Table 17

Table 17
Segmented images and thresholding values achieved by Es-MFO algorithm over the image’s histograms.

(continued on next page)

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

24

Table 17 (continued)

(continued on next page)

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

25

after being segmented by Es-MFO using varying thresholds [nTh = 2, 3,
4, 5]. Positions of the optimally determined thresholds over the histo-
grams of the individual images are also displayed. The average PSNR,
SSIM, and FSIM results are presented in Tables 18–20, respectively.
Higher algorithm values indicate greater precision and efficiency.

In conclusion, the following observations from the experiments
should be noted.

• In terms of PSNR results: Table 18 presents the PSNR values. The
higher the value, the better the quality segmentation. The best values
are highlighted in bold. The proposed Es-MFO algorithm achieved
high PSNR values for some test images. For more details, concerning
CT-img1 and CT-img10 test images, Es-MFO has significant values
for all thresholding levels. For CT-img4, CT-img6, CT-img7, and CT-
img8 test images, Es-MFO has significant values for three thresh-
olding levels. Moreover, for CT-img2 and CT-img3 Es-MFO has sig-
nificant values for two thresholding levels. The SSA and MFO3
algorithms have only four significant values in all test images.
Meanwhile, the PSO and the original MFO algorithms acquired only
two higher PSNR values among all test images. In contrast, the
OMFO and SMFO algorithms have only one higher value. Also, the
SCA algorithm does not produce any best value in either image.

Overall, Es-MFO obtains higher PSNR values than other algorithms
at most threshold levels in all test images.

• In terms of SSIM results: Es-MFO outperforms the original MFO and
all other algorithms as shown in Table 19. The cultivated SSIM values
in the Es-MFO are observed to be better than all algorithms, indi-
cating relevance in all images for most thresholding levels. The other
algorithms have greater SSIM values and are ranked as follows:
OMFO, MFO3, MFO, SSA, SMFO, PSO, and SCA.

• In terms of FSIM results: The average values of the FSIM metrics are
summarized in Table 20.

• This statistic measures and evaluates how well image characteristics
are preserved after processing. Results with the highest segmentation
quality are highlighted in bold. According to Table 20, Es-MFO
performs better than MFO on all test images across the board.
More than that, it outperforms every other algorithm we’ve seen.

7.6. Comparison the proposed Es-MFO with other state-of-the-art methods

In this subsection, we compare our proposed image segmentation
method, which is based on the Es-MFO algorithm, with other state-of-
the-art methods and recent metaheuristic algorithms that have been
applied to the same image segmentation problem using the COVID-19

Table 17 (continued)

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

26

Table 18
Comparison between Es-MFO and all other algorithms according to the PSNR mean values.

Test Image nTh PSO SCA SSA MFO3 OMFO SMFO MFO Es-MFO

CT-img1 2 15.0052 15.0471 15.0675 15.0674 15.0697 15.0258 15.0675 15.0775
3 16.7621 17.0221 16.9185 16.8067 16.7639 16.8903 16.9613 16.9613
4 18.1970 18.2193 18.5102 18.4917 18.4377 18.3427 18.5002 18.5202
5 20.0481 19.2041 20.0893 20.1073 20.0446 19.8716 20.3419 20.3519

CT-img2 2 14.4777 14.4336 14.4228 14.4184 14.4145 14.4229 14.4228 14.4228
3 16.9225 16.9349 17.0347 16.9544 16.9484 16.8457 17.0347 17.0447
4 18.3257 17.9943 18.3364 18.4511 18.3033 18.2096 18.3344 18.3344
5 19.9959 19.3617 20.7083 20.5428 20.4410 20.6095 20.6474 20.7474

CT-img3 2 14.1268 14.3051 14.3576 14.3085 14.2889 14.2668 14.3576 14.9576
3 16.6705 16.8777 16.8872 16.8953 16.9467 16.8370 16.8898 16.8898
4 18.2682 18.2244 18.2690 18.3615 18.1678 18.2304 18.2664 18.2664
5 19.9811 19.4277 20.3898 20.2233 20.3352 20.1249 20.4186 20.4396

CT-img4 2 14.5523 14.3664 14.3761 14.3734 14.3777 14.3284 14.3712 14.5523
3 16.4688 16.6989 16.7716 16.8183 16.7512 16.7397 16.7656 16.8656
4 18.0119 17.6707 17.9301 17.7573 18.0427 18.0493 17.9271 17.9971
5 19.8405 19.0746 19.9558 19.9678 20.1101 19.8387 19.9691 21.9691

CT-img5 2 13.0420 13.0534 13.0621 13.0546 13.0613 13.0207 13.0621 14.0621
3 13.8594 13.8742 13.9468 13.9396 13.9656 13.9575 13.9456 14.9456
4 15.8259 16.1716 16.3784 16.4974 16.2324 16.0447 16.3784 16.4784
5 16.7226 16.4266 16.7815 16.5415 16.6606 16.1151 16.6599 16.6599

CT-img6 2 13.8286 14.0259 14.0568 14.0293 14.0386 14.0273 14.0568 14.0568
3 15.5513 15.2639 15.2676 15.3385 15.2458 15.3920 15.2676 16.2676
4 16.9693 16.6406 16.9492 16.4845 16.6101 16.7904 16.6072 17.6772
5 18.7863 18.0785 18.7757 18.5796 18.5945 18.8578 18.7791 18.8091

CT-img7 2 12.5174 12.6076 12.6340 12.6003 12.6050 12.6290 12.6340 12.9340
3 13.7789 13.6920 13.8159 13.8216 13.8235 13.8074 13.8142 14.7122
4 15.4501 15.3016 16.1851 16.4913 16.4329 15.7005 16.1115 16.3525
5 16.6744 16.9300 16.8007 16.6797 16.5720 16.8236 16.6925 16.7725

CT-img8 2 14.5820 14.6452 14.6385 14.6486 14.6371 14.6331 14.6385 14.6999
3 18.2476 18.4619 18.5441 18.5309 18.4965 18.4050 18.5384 18.5384
4 20.1282 20.1620 20.5106 20.4251 20.4434 20.2280 20.5043 20.5143
5 21.7129 20.8123 21.9502 21.7486 21.8860 21.7354 21.9239 21.9539

CT-img9 2 13.7146 13.7650 13.7472 13.7659 13.7805 13.7706 13.7472 13.7472
3 16.1144 16.2289 16.1689 16.1939 16.1403 16.3176 16.1862 16.1962
4 18.2480 18.1804 18.7022 18.6980 18.7497 18.6103 18.7131 19.7131
5 19.2710 18.9611 19.6066 19.0297 19.1610 19.4551 19.4612 19.8622

CT-img10 2 14.1456 14.0788 14.0602 14.0826 14.0749 14.0691 14.0602 14.1602
3 15.6114 15.6299 15.5026 15.6898 15.6538 15.5790 15.5176 16.5176
4 17.2005 17.5753 17.6194 17.4701 17.6405 17.3343 17.5715 17.5753
5 18.6476 17.9672 18.9433 18.5777 18.7826 18.8366 18.9396 19.4396

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

27

Table 19
Comparison between Es-MFO and all other algorithms according to the SSIM mean values.

Test Image nTh PSO SCA SSA MFO3 OMFO SMFO MFO Es-MFO

CT-img1 2 0.6264 0.6278 0.6279 0.6283 0.6283 0.6275 0.6279 0.6279
3 0.7004 0.7206 0.7158 0.7096 0.7057 0.7123 0.7184 0.7418
4 0.7727 0.7745 0.7847 0.7835 0.7786 0.7758 0.7846 0.7847
5 0.8201 0.8106 0.8201 0.8225 0.8251 0.8143 0.8319 0.8454

CT-img2 2 0.6518 0.6514 0.6511 0.6512 0.6510 0.6510 0.6511 0.6614
3 0.7549 0.7625 0.7623 0.7618 0.7600 0.7557 0.7623 0.7680
4 0.8003 0.7987 0.8039 0.8012 0.8029 0.7998 0.8038 0.8039
5 0.8469 0.8471 0.8779 0.8634 0.8680 0.8772 0.8794 0.8843

CT-img3 2 0.6476 0.6534 0.6548 0.6535 0.6531 0.6526 0.6548 0.6548
3 0.7643 0.7690 0.7681 0.7695 0.7692 0.7702 0.7681 0.7761
4 0.8016 0.8110 0.8108 0.8118 0.8057 0.8099 0.8107 0.8108
5 0.8580 0.8541 0.8687 0.8612 0.8567 0.8569 0.8620 0.8839

CT-img4 2 0.6428 0.6405 0.6404 0.6409 0.6409 0.6395 0.6402 0.6404
3 0.7530 0.7666 0.7656 0.7676 0.7669 0.7644 0.7657 0.7680
4 0.7951 0.8041 0.8077 0.8036 0.8067 0.8051 0.8076 0.8079
5 0.8553 0.8535 0.8677 0.8603 0.8654 0.8645 0.8755 0.8852

CT-img5 2 0.5158 0.5169 0.5168 0.5172 0.5173 0.5165 0.5168 0.5170
3 0.5300 0.5301 0.5301 0.5304 0.5320 0.5333 0.5301 0.5405
4 0.6573 0.6793 0.6960 0.7027 0.6875 0.6731 0.6960 0.7063
5 0.7046 0.6959 0.7163 0.7019 0.7119 0.6778 0.7125 0.7320

CT-img6 2 0.5715 0.5724 0.5747 0.5729 0.5734 0.5744 0.5747 0.5758
3 0.6822 0.6734 0.6744 0.6740 0.6732 0.6795 0.6744 0.6744
4 0.7499 0.7424 0.7540 0.7221 0.7317 0.7432 0.7300 0.7975
5 0.8318 0.8025 0.8323 0.8220 0.8213 0.8359 0.8325 0.8431

CT-img7 2 0.5031 0.5070 0.5085 0.5065 0.5067 0.5077 0.5085 0.5122
3 0.5905 0.5842 0.5921 0.5926 0.5924 0.5921 0.5920 0.5921
4 0.6953 0.6851 0.7386 0.7523 0.7497 0.7089 0.7341 0.7576
5 0.7476 0.7648 0.7690 0.7626 0.7561 0.7697 0.7657 0.7873

CT-img8 2 0.7373 0.7398 0.7400 0.7398 0.7398 0.7400 0.7400 0.7400
3 0.8539 0.8602 0.8623 0.8622 0.8612 0.8566 0.8621 0.8690
4 0.8836 0.8879 0.8959 0.8929 0.8931 0.8875 0.8962 0.8958
5 0.9092 0.8985 0.9157 0.9110 0.9137 0.9112 0.9153 0.9158

CT-img9 2 0.5624 0.5645 0.5640 0.5644 0.5645 0.5641 0.5640 0.5640
3 0.6277 0.6271 0.6218 0.6242 0.6186 0.6357 0.6231 0.6357
4 0.7423 0.7353 0.7577 0.7582 0.7613 0.7555 0.7592 0.7591
5 0.7841 0.7754 0.7939 0.7689 0.7724 0.7900 0.7890 0.8049

CT-img10 2 0.6088 0.6037 0.6024 0.6040 0.6034 0.6048 0.6024 0.6085
3 0.7067 0.7009 0.6971 0.7032 0.7018 0.7025 0.6976 0.7077
4 0.7819 0.8057 0.8092 0.8005 0.8100 0.7897 0.8065 0.8204
5 0.8391 0.8187 0.8537 0.8374 0.8443 0.8466 0.8537 0.8579

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

28

Table 20
Comparison between Es-MFO and all other algorithms according to the FSIM mean values.

Test Image nTh PSO SCA SSA MFO3 OMFO SMFO MFO Es-MFO

CT-img1 2 0.8101 0.8104 0.8100 0.8104 0.8104 0.8107 0.8100 0.8130
3 0.8639 0.8750 0.8740 0.8712 0.8689 0.8716 0.8753 0.8867
4 0.9131 0.9141 0.9241 0.9230 0.9204 0.9166 0.9240 0.9286
5 0.9324 0.9271 0.9385 0.9377 0.9372 0.9343 0.9404 0.9421

CT-img2 2 0.8101 0.8109 0.8108 0.8109 0.8109 0.8109 0.8108 0.8108
3 0.8835 0.8921 0.8919 0.8911 0.8901 0.8867 0.8919 0.8945
4 0.9149 0.9181 0.9251 0.9211 0.9232 0.9205 0.9250 0.9351
5 0.9383 0.9378 0.9539 0.9485 0.9492 0.9533 0.9543 0.9590

CT-img3 2 0.7989 0.8024 0.8031 0.8025 0.8024 0.8029 0.8031 0.8125
3 0.8785 0.8823 0.8817 0.8820 0.8814 0.8827 0.8817 0.8943
4 0.9026 0.9127 0.9134 0.9131 0.9099 0.9106 0.9134 0.9134
5 0.9314 0.9299 0.9413 0.9364 0.9344 0.9342 0.9386 0.9474

CT-img4 2 0.7763 0.7794 0.7789 0.7797 0.7796 0.7793 0.7789 0.7795
3 0.8613 0.8729 0.8727 0.8734 0.8736 0.8695 0.8729 0.8729
4 0.8944 0.9025 0.9060 0.9041 0.9048 0.9025 0.9059 0.9066
5 0.9244 0.9245 0.9345 0.9319 0.9336 0.9323 0.9372 0.9403

CT-img5 2 0.8396 0.8415 0.8416 0.8415 0.8416 0.8411 0.8416 0.8458
3 0.8610 0.8714 0.8778 0.8763 0.8777 0.8741 0.8777 0.8778
4 0.8428 0.8396 0.8384 0.8357 0.8325 0.8455 0.8384 0.8410
5 0.8494 0.8419 0.8558 0.8489 0.8480 0.8551 0.8552 0.8655

CT-img6 2 0.7813 0.7897 0.7910 0.7903 0.7905 0.7909 0.7910 0.7910
3 0.8517 0.8524 0.8536 0.8536 0.8530 0.8528 0.8536 0.8630
4 0.8848 0.8814 0.8903 0.8874 0.8906 0.8908 0.8919 0.8920
5 0.9082 0.9042 0.9189 0.9126 0.9130 0.9157 0.9189 0.9192

CT-img7 2 0.7771 0.7850 0.7861 0.7848 0.7850 0.7849 0.7800 0.7861
3 0.8347 0.8362 0.8429 0.8432 0.8433 0.8407 0.8428 0.8440
4 0.8402 0.8365 0.8266 0.8318 0.8289 0.8356 0.8282 0.8373
5 0.8549 0.8405 0.8483 0.8499 0.8539 0.8507 0.8490 0.8489

CT-img8 2 0.6529 0.6479 0.6483 0.6476 0.6478 0.6500 0.6483 0.6493
3 0.7648 0.7690 0.7711 0.7709 0.7700 0.7677 0.7709 0.7730
4 0.8276 0.8306 0.8414 0.8380 0.8380 0.8332 0.8414 0.8513
5 0.8628 0.8454 0.8689 0.8666 0.8665 0.8665 0.8687 0.8690

CT-img9 2 0.7113 0.7132 0.7128 0.7131 0.7132 0.7130 0.7128 0.7130
3 0.7753 0.7908 0.7941 0.7928 0.7927 0.7852 0.7940 0.8021
4 0.8183 0.8195 0.8282 0.8271 0.8283 0.8267 0.8287 0.8291
5 0.8499 0.8366 0.8629 0.8531 0.8565 0.8605 0.8629 0.8633

CT-img10 2 0.7922 0.8005 0.8002 0.8006 0.8005 0.7960 0.8002 0.8102
3 0.8524 0.8603 0.8591 0.8613 0.8611 0.8587 0.8592 0.8633
4 0.8852 0.8876 0.8899 0.8871 0.8877 0.8889 0.8901 0.8999
5 0.9093 0.8976 0.9212 0.9112 0.9149 0.9159 0.9212 0.9213

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

29

Table 21
Comparison between Es-MFO, MRFO, MRFO-OBL, MPA, RSA, and RUN methods according to the PSNR mean values for nTh = [7, 8, 9, 10].

Test Image nTh MRFO MRFO-OBL MPA RUN RSA Es-MFO

CT-img1 7 22.7883 22.8366 21.4176 22.9134 22.7892 22.9892
8 23.5724 23.6096 22.9087 23.5764 23.6032 23.8832
9 24.4058 24.4777 23.6482 24.3107 24.4052 24.5552
10 25.0747 25.075 24.4046 25.1588 25.0975 25.9575

CT-img2 7 23.3543 23.3691 21.9528 23.3242 23.4015 23.7615
8 24.25 24.2945 23.3681 24.2164 24.2553 25.2553
9 25.2425 25.2675 24.3766 24.9997 25.2257 25.2257
10 25.9906 26.0447 25.3463 25.8697 25.9719 26.9719

CT-img3 7 23.3779 23.3835 21.9165 23.2441 23.3324 23.4024
8 24.2597 24.292 23.3554 24.2523 24.2282 24.2585
9 25.2401 25.2815 24.4217 24.9603 25.2046 25.2346
10 26.0143 26.0406 25.3383 25.8116 26.0096 26.0896

CT-img4 7 23.0455 23.1315 21.5663 22.9767 23.0369 23.0169
8 24.1247 24.1701 23.0272 24.1220 24.0187 24.0787
9 25.2826 25.3379 24.1972 24.9683 25.3512 26.3011
10 26.0265 26.086 25.3168 25.7838 25.0861 26.9861

CT-img5 7 17.6816 17.6923 17.3386 18.1540 17.7089 17.7789
8 18.0973 18.1808 17.7441 19.0159 18.1785 19.1285
9 18.4984 18.6158 17.8638 19.2159 18.6222 18.6322
10 18.9574 19.0474 18.4492 20.4894 19.1864 19.1864

CT-img6 7 21.0786 21.1912 19.3529 21.7825 21.0613 21.0813
8 22.2276 22.2106 20.4640 22.8256 22.2209 22.4809
9 22.9386 23.009 22.6400 24.1204 23.0058 23.2858
10 23.5627 23.686 23.2842 24.9278 23.6631 23.7631

CT-img7 7 19.4133 19.6895 18.4787 19.3341 19.4123 19.4123
8 20.7551 20.702 18.8272 20.7072 20.3942 20.8042
9 21.4188 21.8512 20.3691 21.5553 21.4879 21.5879
10 22.6882 22.9905 20.9665 22.4265 22.6595 22.5595

CT-img8 7 24.0661 24.1512 23.5801 24.8565 24.11 24.21
8 25.4969 25.6688 24.5144 26.1716 25.5404 26.6404
9 27.0617 27.05 25.4224 26.8701 27.1236 27.2236
10 27.9826 27.9897 27.5670 27.7323 27.1206 28.0906

CT-img9 7 21.7791 21.7893 20.7888 21.8192 21.5192 21.9192
8 22.5405 22.6872 21.8236 22.8955 22.5364 22.9064
9 23.6402 23.7957 22.3841 24.4842 23.5541 24.5541
10 24.7814 25.0439 23.3700 25.5631 24.8784 25.8784

CT-img10 7 20.4594 20.6069 19.5189 21.0905 20.3524 20.9524
8 22.0541 22.1712 20.4965 22.2978 22.2284 22.3259
9 23.0701 23.085 22.8955 23.1557 23.0357 23.6357
10 23.5813 23.6204 23.7143 24.1704 23.1276 24.4256

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

30

CT images dataset. All compared methods use the same objective func-
tion as our proposed method, and we evaluate their performance using
PSNR values for different thresholding numbers. Specifically, Table 21
presents a comparison between our proposed Es-MFO algorithm and
several other methods, including MRFO-OBL (Houssein, Emam, & Ali,
2021b), MRFO (Zhao et al., 2020), RSA (Abualigah et al., 2022), MPA
(Faramarzi et al., 2020), and RUN (Ahmadianfar et al., 2021). Mean-
while, Table 22 compares our proposed Es-MFO (Houssein et al., 2022)
method with the I-EO method for different thresholding numbers. A
higher PSNR value indicates a more effective and reliable algorithm.
Table 22 shows that the Es-MFO algorithm achieves higher PSNR values
than the I-EO algorithm for all the images and all threshold values.

8. Conclusions and future extensions

An upgraded variant of the MFO algorithm, Es-MFO, has been
established and applied to solve nineteen basic benchmark functions,
twenty-nine IEEE CEC 2017 test problems, two engineering design
optimization problems, and COVID-19 CT image segmentation prob-
lems. Few state-of-the-art algorithms and variants of the MFO have been
considered to assess the performance of the proposed Es-MFO algorithm.
Moreover, to check the significance of Es-MFO, it has also been tested
statistically with some of the rank analysis viz., Friedman rank tests and
Wilcoxon ranks tests. Further, diversity analysis of the Es-MFO has been
employed to check the balance between diversification and intensifi-
cation. Moreover, the proposed Es-MFO has been applied on three
CEC2020 real-world constrained engineering design problems and
multilevel threshold image segmentation of COVID-19 CT images. For
these real-world issues, the newly created Es-MFO algorithm out-
performs than other optimization algorithms. From all the evaluation

results, comments and analysis demonstrate that the suggested Es-MFO
has achieved superior results than the other considered algorithms.

In the future, this method can be used with multi- and many-
objective optimization algorithms. The proposed F-MFO algorithm
could also be used to study a variety of real optimization problems, such
as vehicle routing, job shop planning, parameter estimation of fuel cell
problem, combined economic and emission dispatch problem, image
segmentation problem, workflow planning, etc.

CRediT authorship contribution statement

Saroj Kumar Sahoo: Software, Conceptualization, Formal analysis,
Data curation, Writing – original draft. Essam H. Houssein: Supervi-
sion, Methodology, Formal analysis, Visualization, Writing – review &
editing. M. Premkumar: Software, Methodology, Investigation, Visu-
alization. Apu Kumar Saha: Supervision, Conceptualization, Visuali-
zation, Writing – review & editing. Marwa M. Emam: Software,
Conceptualization, Methodology, Formal analysis, Data curation,
Writing – original draft, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Table 22
Comparison between Es-MFO and I-EO according to PSNR mean values for nTh = [2, 3, 4, 5, 10].

Image nTh I-EO ES-MFO Image Th I-EO ES-MFO

CT-img1 2 12.5000 15.0775 CT-img6 2 11.9000 14.0568
3 15.7000 16.9613 3 17.5000 16.2676
4 16.9000 18.5202 4 17.3000 17.6772
5 19.0000 20.3519 5 18.6000 18.8091
10 24.6000 25.9575 10 25.2000 23.7631

CT-img2 2 14.3000 14.4228 CT-img7 2 13.5000 12.934
3 15.9000 17.0447 3 13.9000 14.7122
4 18.9000 18.3344 4 14.5000 16.3525
5 20.3000 20.7474 5 15.3000 16.7725
10 23.5000 26.9719 10 22.2000 22.5595

CT-img3 2 11.1000 14.9576 CT-img8 2 12.6000 14.6999
3 17.1000 16.8898 3 15.7000 18.5384
4 16.8000 18.2664 4 16.7000 20.5143
5 19.9000 20.4396 5 19.0000 21.9539
10 24.6000 26.0896 10 25.2000 28.0906

CT-img4 2 12.0000 14.5523 CT-img9 2 12.6000 13.7472
3 17.5000 16.8656 3 13.8000 16.1962
4 17.0000 17.9971 4 14.9000 19.7131
5 18.6000 21.9691 5 20.8000 19.8622
10 25.1000 26.9861 10 22.0000 25.8784

CT-img5 2 11.8000 14.0621 CT-img10 2 10.8000 14.1602
3 17.4000 14.9456 3 15.8000 16.5176
4 16.9000 16.4784 4 18.4000 17.5753
5 18.5000 16.6599 5 19.1000 19.4396
10 25.2000 19.1864 10 26.1000 24.4256

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

31

Appendix A

Appendix B

Speed reducer design problem

Objective function:
Min.f(x) = 0.7854x2

2x1(14.9334x3 + 3.3333x2
3 − 43.0934) + 0.7854(x4x2

6 + x5x2
7) + 7.477

(
x3

7 +x3
6
)
− 1.508(x2

7 + x2
6)

Such that
h1(x) = − x1x2

2x3 + 27 ≤ 0,
h2(x) = − (1)x2

2x2
3 + 397.5 ≤ 0,

h3(x) = − x2x4
2x3x− 3

4 + 1.93 ≤ 0,
h4(x) = − x2x4

7x3x− 3
5 + 1.93 ≤ 0,

h5(x) = 10x− 3
6

̅̅

16⋅91 × 106 +
(
745x4x− 1

2 x− 1
3
)2

√

− 1100 ≤ 0,

h6(x) = 10x− 3
7

̅̅

157.5 × 106 +
(
745x5x− 1

2 x− 1
3
)2

√

− 850 ≤ 0,
h7(x) = x2x3 − 40 ≤ 0,
h8(x) = − x1x− 1

2 + 5 ≤ 0,
h9(x) = x1x− 1

2 − 12 ≤ 0,
h10(x) = 1.5x6 − x4 + 1.9 ≤ 0,
h11(x) = 1.1x7 − x5 + 1.9 ≤ 0,
2.6 ≤ x1 ≤ 3.6,0.7 ≤ x2 ≤ 0.8,17 ≤ x3 ≤ 28,
2.9 ≤ x6 ≤ 3.9,5 ≤ x7 ≤ 5.5,7.3 ≤ x4,x5 ≤ 8.3.

Table A1
Formulation of 19 benchmark functions.

Sl.
no

Functions Formulation of objective functions d Fmin Search
space

Unimodal Benchmark Functions
F1 Beale f(x) = (1.5 − x1 + x1x2)

2
+
(
2.25 − x1 + x1x2

2
)2

+
(
2.625 − x1 + x1x3

2
)2 2 0 [− 100,

100]
F2 Booth f(x) = (2x1 + x2 − 5)2 + (x1 + 2x2 − 7)2 2 0 [− 10, 10]
F3 Matyas f(x) = 0.26

(
x1

2 +x2
2) − 0.48x1x2 2 0 [− 10, 10]

F4 Sumsquare f(x) =
∑D

i=1xi
2 × i 30 0 [− 10, 10]

F5 Zettl f(x) =
(
x − 12 + x − 22 − 2x1

)2
+ 0.25x1

2 − 0.00379 [− 1, 5]

F6 Leon f(x) = 100
(
x2 − x1

3)2 + (1 − x1)
2 2 0 [− 1.2,

1.2]
F7 Zakhrov f(x) =

∑d
j=1xi

2 +
(

0.5
∑d

j=1jxj

)2
+
(

0.5
∑d

j=1jxj

)4 2 0 [− 5, 10]

Multimodal Benchmark Functions
F8 Bohachevsky f(x) = x1

2 + 2x2
2 − 0.3cos(3πx1) − 0.3 2 0 [− 100,

100]
F9 Bohachevsky 3 f(x) = x1

2 + 2x2
2 − 0.3cos(3πx1) − 0.3 2 0 [− 50, 50]

F10 Levy f(x) = sin2(πx1) +
∑D− 1

i=1 (xi − 1)2
[
1+10sin2(πxi + 1)

]
+ (xD − 1)2[1+sin2(2πxD)

]
Where, xi = 1 +

1
4
(xi − 1),

i = 1,2,⋯⋯⋯D

30 0 [− 10, 10]

F11 Michalewicz
f(x) = −

∑D
i=1sin(xi)sin2m(

ixi
2

π), m = 10
10 − 9.66015 [0, π]

F12 Alpine f(x) =
∑D

i=1 |xisin(xi) + 0.1xi| 30 0 [− 10, 10]
F13 Schaffers

f(x) = 0.5 +
sin2 (x1

2 + x2
2) − 0.5

[1 + 0.001(x12 + x22)]
2

2 0 [− 100,
100]

F14 Powersum
f(x) =

∑D
i=1

[(∑D
k=1(xk

i
)− bi

)2
]

30 0 [− 10, 10]

F15 Penalized2 f(x) = 0.1
{

10sin2(πxi)+
∑D− 1

i=1 (xi − 1)2
[1 + 10sin2(3πxi+1) + (xD − 1)2[1 + sin2(2πxD)]]

}
+

∑D
i=1u(xi,5,100, 4)

30 0 [− 50, 50]

F16 Kowalik
f(x) =

∑11
j=1

[

aj −
x1

(
bj

2 + bjx2

)

(bj
2 − bjx3 − x4

⎤

⎦

2 4 0.0003075 [− 5, 5]

F17 Foxholes
f(x) =

[
1

500
+
∑25

j=1
1
j
+
∑D

i=1

(
xi − aij

)6
]− 1 2 3 [− 65, 65]

F18 Inverted cosine
mixture

f(x) = 0.1× 30 −
[
0.1 ×

∑d
j=15πxj −

∑d
j=1xj

2
]

30 [− 1, 1] 0

F19 salomon f(x) = 1 − cos
(

2π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑d

j=1xj2
√)

+ 0.1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑d

j=1xj2
√ 30 [− 100,

100]
0

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

32

Multiple disk clutch break design problem

Objective function:

Minf (x) = π(x2
2 − x2

1)x3(x5 + 1)ρ

Constraints:

h1(x) = − pmax + prz ≤ 0,

h2(x) = przVsr − Vsr,maxpmax ≤ 0,

h3(x) = ΔR+ x1 − x2 ≤ 0,

h4(x) = − Lmax +(x5+1)(x3 + ∂) ≤ 0,

h5(x) = sMs − Mh ≤ 0,

h6(x) = T ≥ 0,

h7(x) = − Vsr,max +Vsr ≤ 0,

h8(x) = T − Tmax ≤ 0,

where,

Mh =
2
3

μx4x5
x3

2 − x3
1

x2
2 − x2

1
N.mm,ω =

Πn
30

rad
s
,A = π(x2

2 − x2
1)mm2

prz =
x4
A N/mm2, Vsr = ΠRsrn

30 mm/s,Rsr = 2
3

x3
2 − x3

1
x2

2x2
1
,T = Izω

Mh+Mf
,

ΔR = 20mm,Lmax = 30mm, μ = 0.6,

Vsr,max = 10
m
s
, ∂ = 0.5mm, s = 1.5,

Tmax = 15s, n = 250rpm, Iz = 55Kg.m2

Tmax = 15s, n = 250rpm, Iz = 55Kg.m2

Ms = 40Nm,Mf = 3Nm, andpmax = 1

Variable range:

60⩽x1⩽80, 90⩽x2⩽110, 1⩽x3⩽3, 0⩽x4⩽1000, 2⩽x5⩽9.

Welded beam design problem

Objective function:
Min.f(x) = 0.04811x3x4{x2 +14} + 1010471x2

1x2

Subject to:
h1(x) = x1 − x4 ≤ 0,
h2(x) = δ(x) − δmax ≤ 0,
h3(x) = P ≤ Pc(x),
h4(x) = τmax ≥ τ(x),
h5(x) = σ(x) − σmax ≤ 0,

where,

τ =

̅̅

τ′ 2
+ τ′′2 + 2τ′ τ′′ x2

2R

√

, τ′

=
P
̅̅̅
2

√
x2x1

, τ′′ =
RM

J
, M = p(

x2

2
+ L)

R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2

2
4

+
(x1 + x3

2

)2
√

, J = 2
x2

2
4

+

⎛

⎝
2

((x1 + x3

2

)) ̅̅̅
2

√
x1x2

⎞

⎠ ,

σ(x) =
6PL
x4x2

3
, δ(x) =

6PL3

Ex2
3x4

, Pc(x) =
4.013Ex3x3

4
6L2

(

1 −
x3

2L

̅̅̅̅̅̅̅
E

4G

√)

,

L = 14in,P = 6000lb,E = 30× 16psi,G = 12× 106psi
σmax = 30,000psi, δmax = 0.25in, τmax = 13600psi,

where,
0.1 ≤ x3,x2 ≤ 10,
0.125 ≤ x1 ≤ 2,
0.1 ≤ x4 ≤ 2.

S. Kumar Sahoo et al.

Expert Systems With Applications 227 (2023) 120367

33

References

Abd Elaziz, M., Ewees, A. A., Yousri, D., Alwerfali, H. S. N., Awad, Q. A., Lu, S., et al.
(2020). An improved marine predators algorithm with fuzzy entropy for multi-level
thresholding: Real world example of COVID-19 CT image segmentation. IEEE Access,
8, 125306–125330.

Abdel-Basset, M., Mohamed, R., Jameel, M., & Abouhawwash, M. (2023). Nutcracker
optimizer: A novel nature-inspired metaheuristic algorithm for global optimization
and engineering design problems. Knowledge-Based Systems, 110248.

Abdollahzadeh, B., Soleimanian Gharehchopogh, F., & Mirjalili, S. (2021). Artificial
gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global
optimization problems. International Journal of Intelligent Systems, 36(10),
5887–5958.

Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The
arithmetic optimization algorithm. Computer Methods in Applied Mechanics and
Engineering, 376, Article 113609.

Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2022). Reptile
search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems
with Applications, 191, Article 116158.

Agushaka, J. O., Ezugwu, A. E., & Abualigah, L. (2022). Dwarf mongoose optimization
algorithm. Computer methods in applied mechanics and engineering, 391, Article
114570.

Ahmadianfar, I., Heidari, A. A., Noshadian, S., Chen, H., & Gandomi, A. H. (2022). INFO:
An efficient optimization algorithm based on weighted mean of vectors. Expert
Systems with Applications, 195, Article 116516.

Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond
the metaphor: An efficient optimization algorithm based on Runge Kutta method.
Expert Systems with Applications, 181, Article 115079.

Apinantanakon, W., & Sunat, K. (2017). Omfo: A new opposition-based moth-flame
optimization algorithm for solving unconstrained optimization problems.
International Conference on Computing and Information Technology, 22–31.

Arora, S., & Singh, S. (2015). Butterfly algorithm with levy flights for global
optimization. 2015 International Conference on Signal Processing, Computing and
Control (ISPCC), 220–224.

Awad, N. H., Ali, M. Z., Suganthan, P. N., & Reynolds, R. G. (2016b). An ensemble
sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014
benchmark problems. In 2016 IEEE congress on evolutionary computation (CEC)
(pp. 2958-2965). IEEE.

Awad, N., Ali, M., Liang, J., Qu, B., & Suganthan, P. (2016a). Problem definitions and
evaluation criteria for the CEC 2017 special session and competition on single
objective real-parameter numerical optimization (pp. 1–34). Nanyang Technological
University, Jordan University of Science and Technology and Zhengzhou University,
Singapore and Zhenzhou, Tech. Rep 201611.

Awad, N. H., Ali, M. Z., Suganthan, P. N., Liang, J. J., & Qu, B. Y. (2017). Problem
definitions and evaluation criteria for the CEC2017. Special Session and Competition
on Single Objective Real-Parameter Numerical. Optimization.

Azizi, M., Talatahari, S., & Gandomi, A. H. (2023). Fire hawk optimizer: A novel
metaheuristic algorithm. Artificial Intelligence Review, 56(1), 287–363.

Chakraborty, S., & Mali, K. (2021). A morphology-based radiological image
segmentation approach for efficient screening of COVID-19. Biomedical Signal
Processing and Control, 69, Article 102800.

Chakraborty, S., Saha, A. K., Nama, S., & Debnath, S. (2021). COVID-19 X-ray image
segmentation by modified whale optimization algorithm with population reduction.
Computers in Biology and Medicine, 139, Article 104984.

Chakraborty, S., Sharma, S., Saha, A. K., & Saha, A. (2022a). A novel improved whale
optimization algorithm to solve numerical optimization and real-world applications.
Artificial Intelligence Review, 1–112.

Chakraborty, S., Saha, A. K., Sharma, S., Sahoo, S. K., & Pal, G. (2022b). Comparative
performance analysis of differential evolution variants on engineering design
problems. Journal of Bionic Engineering, 19(4), 1140–1160.

Chen, C. L., Wang, X., Yu, H., Wang, M., & Chen, H. (2021). Dealing with multi-modality
using synthesis of Moth-flame optimizer with sine cosine mechanisms. Mathematics
and Computers in Simulation, 188, 291–318.

Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: A survey of the state of the art. Computer methods in
applied mechanics and engineering, 191(11–12), 1245–1287.

Dabba, A., Tari, A., Meftali, S., & Mokhtari, R. (2021). Gene selection and classification of
microarray data method based on mutual information and moth flame algorithm.
Expert Systems with Applications, 166, Article 114012.

Dash, S. P., Subhashini, K. R., & Satapathy, J. K. (2020). Optimal location and parametric
settings of FACTS devices based on JAYA blended moth flame optimization for
transmission loss minimization in power systems. Microsystem Technologies, 26(5),
1543–1552.

Elsakaan, A. A., El-Sehiemy, R. A., Kaddah, S. S., & Elsaid, M. I. (2018). An enhanced
moth-flame optimizer for solving non-smooth economic dispatch problems with
emissions. Energy, 157, 1063–1078.

Emam, M. M., Houssein, E. H., & Ghoniem, R. M. (2023). A modified reptile search
algorithm for global optimization and image segmentation: Case study brain MRI
images. Computers in Biology and Medicine, 152, Article 106404.

Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine Predators
Algorithm: A nature-inspired metaheuristic. Expert systems with applications, 152,
Article 113377.

Ferrer, R. (2020). COVID-19 Pandemic: The greatest challenge in the history of critical
care. Medicina intensiva, 44(6), 323.

Glasbey, C. A. (1993). An analysis of histogram-based thresholding algorithms. CVGIP:
Graphical models and image processing, 55, 532–537.

Gu, W., & Xiang, G. (2021). Improved moth flame optimization with multioperator for
solving real-world optimization problems. 2021 IEEE 5th Advanced Information
Technology. Electronic and Automation Control Conference (IAEAC), 5, 2459–2462.
https://doi.org/10.1109/IAEAC50856.2021.9390876

Gurrola-Ramos, J., Hernàndez-Aguirre, A., & Dalmau-Cedeño, O. (2020, July).
COLSHADE for real-world single-objective constrained optimization problems. In
2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.

Ilhan, A., Alpan, K., Sekeroglu, B., & Abiyev, R. (2023). COVID-19 Lung CT image
segmentation using localization and enhancement methods with U-Net. Procedia
Computer Science, 218, 1660–1667.

Harmon, S. A., Sanford, T. H., Xu, S., Turkbey, E. B., Roth, H., Xu, Z., et al. (2020).
Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using
multinational datasets. NatureCommunications, 11(1), 4080.

Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris
hawks optimization: Algorithm and applications. Future generation computer systems,
97, 849–872.

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–73.
Hou, G., Gong, L., Hu, B., Su, H., Huang, T., Huang, C., et al. (2022). Application of fast

adaptive moth-flame optimization in flexible operation modeling for supercritical
unit. Energy, 239, Article 121843.

Houssein, E. H., Emam, M. M., & Ali, A. A. (2021a). An efficient multilevel thresholding
segmentation method for thermography breast cancer imaging based on improved
chimp optimization algorithm. Expert Systems with Applications, 185, Article 115651.

Houssein, Essam H., Bahaa El-din Helmy, Diego Oliva, Ahmed A. Elngar, and Hassan
Shaban. “A novel black widow optimization algorithm for multilevel thresholding
image segmentation.” Expert Systems with Applications 167 (2021e): 114159.

Houssein, E. H., Helmy, B.-D., Oliva, D., Pradeep Jangir, M., Premkumar, A. A., & Elngar,
and Hassan Shaban. (2022). An efficient multi-thresholding based COVID-19 CT
images segmentation approach using an improved equilibrium optimizer. Biomedical
Signal Processing and Control, 73, Article 103401.

Houssein, E. H., Hussain, K., Abualigah, L., Elaziz, M. A., Alomoush, W., Dhiman, G.,
et al. (2021c). An improved opposition-based marine predators algorithm for global
optimization and multilevel thresholding image segmentation. Knowledge-Based
Systems, 229, Article 107348.

Houssein, E. H., Emam, M. M., & Ali, A. A. (2021b). Improved manta ray foraging
optimization for multi-level thresholding using COVID-19 CT images. Neural
Computing and Applications, 33(24), 16899–16919.

Houssein, E. H., Oliva, D., Çelik, E., Emam, M. M., & Ghoniem, R. M. (2023). Boosted
sooty tern optimization algorithm for global optimization and feature selection.
Expert Systems with Applications, 213, Article 119015.

Kadry, S., Rajinikanth, V., Raja, N., Jude Hemanth, D., Hannon, N., & Raj, A. N. J.
(2021). Evaluation of brain tumor using brain MRI with modified-moth-flame
algorithm and Kapur’s thresholding: A study. Evolutionary Intelligence, 14(2),
1053–1063.

Kapur, J. N., Sahoo, P. K., & Wong, A. K. (1985). A new method for gray-level picture
thresholding using the entropy of the histogram. Computer vision, graphics, and image
processing, 29, 273–285.

Kennedy, J., Eberhart, R. (1995) Particle swarm optimization. In: Proceedings of
ICNN’95—international conference on neural networks, 4:1942–1948.

Khalilpourazari, S., & Khalilpourazary, S. (2019). An efficient hybrid algorithm based on
Water Cycle and Moth-Flame Optimization algorithms for solving numerical and
constrained engineering optimization problems. Soft Computing, 23(5), 1699–1722.

Khan, M. A., Arshad, H., Damaševičius, R., Alqahtani, A., Alsubai, S., Binbusayyis, A.,
Nam, Y., & Kang, B.-G. (2022). Human Gait Analysis: A Sequential Framework of
Lightweight Deep Learning and Improved Moth-Flame Optimization Algorithm.
Computational Intelligence and Neuroscience, 2022.

Kigsirisin, S., & Miyauchi, H. (2021). Short-term operational scheduling of unit
commitment using binary alternative moth-flame optimization. IEEE Access, 9,
12267–12281.

Kumar, A., Wu, G., Ali, M. Z., Mallipeddi, R., Suganthan, P. N., & Das, S. (2020a). A test-
suite of non-convex constrained optimization problems from the real-world and
some baseline results. Swarm and Evolutionary Computation, 56, Article 100693.

Kumar, A., Das, S., & Zelinka, I. (2020b). A modified covariance matrix adaptation
evolution strategy for real-world constrained optimization problems. In Proceedings
of the 2020 Genetic and Evolutionary Computation Conference Companion (pp. 11-
12).

Kumar, A., Das, S., & Zelinka, I. (2020c). A self-adaptive spherical search algorithm for
real-world constrained optimization problems. In Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion (pp. 13-14).

Li, C., Niu, Z., Song, Z., Li, B., Fan, J., & Liu, P. X. (2018). A double evolutionary learning
moth-flame optimization for real-parameter global optimization problems. IEEE
Access, 6, 76700–76727.

Li, Z., Zeng, J., Chen, Y., Ma, G., & Liu, G. (2021). Death mechanism-based moth–flame
optimization with improved flame generation mechanism for global optimization
tasks. Expert Systems with Applications, 183, Article 115436. https://doi.org/
10.1016/j.eswa.2021.115436

Liu, L., Zhao, D., Yu, F., Heidari, A. A., Li, C., Ouyang, J., et al. (2021). Ant colony
optimization with Cauchy and greedy Levy mutations for multilevel COVID 19 X-ray
image segmentation. Computers in Biology and Medicine, 136, Article 104609.

Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic organisms search: A new metaheuristic
optimization algorithm. Computers and Structures, 139, 98–112.

Ma, M., Wu, J., Shi, Y., Yue, L., Yang, C., & Chen, X. (2022). Chaotic random opposition-
based learning and cauchy mutation improved moth-flame optimization algorithm
for intelligent route planning of multiple UAVs. IEEE Access, 10, 49385–49397.

Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm. Knowledge-Based Systems, 89, 228–249.

S. Kumar Sahoo et al.

http://refhub.elsevier.com/S0957-4174(23)00869-2/h0005
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0005
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0005
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0005
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0010
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0010
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0010
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0015
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0015
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0015
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0015
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0020
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0020
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0020
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0025
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0025
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0025
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0035
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0035
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0035
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0040
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0040
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0040
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0045
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0045
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0045
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0050
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0050
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0050
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0070
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0070
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0070
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0075
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0075
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0080
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0080
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0080
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0085
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0085
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0085
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0090
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0090
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0090
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0095
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0095
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0095
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0100
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0100
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0100
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0105
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0105
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0105
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0110
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0110
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0110
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0120
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0120
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0120
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0120
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0130
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0130
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0130
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0135
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0135
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0135
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0140
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0140
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0140
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0145
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0145
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0150
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0150
https://doi.org/10.1109/IAEAC50856.2021.9390876
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0165
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0165
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0165
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0170
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0170
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0170
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0175
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0175
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0175
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0180
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0185
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0185
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0185
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0190
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0190
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0190
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0200
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0200
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0200
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0200
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0205
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0205
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0205
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0205
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0210
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0210
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0210
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0220
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0220
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0220
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0225
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0225
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0225
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0225
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0230
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0230
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0230
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0240
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0240
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0240
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0250
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0250
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0250
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0255
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0255
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0255
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0270
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0270
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0270
https://doi.org/10.1016/j.eswa.2021.115436
https://doi.org/10.1016/j.eswa.2021.115436
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0280
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0280
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0280
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0285
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0285
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0290
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0290
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0290
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0295
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0295

Expert Systems With Applications 227 (2023) 120367

34

Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems.
Knowledge-Based Systems, 96, 120–133.

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in
Engineering Software, 95, 51–67.

Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017).
Salp swarm algorithm: a bio-inspired optimizer for engineering design problems.
Advances in Engineering Software, 114, 163–191.

Mohd Rose, A. N., & Nik Mohamed, N. M. Z. (2022). Hybrid Flow Shop Scheduling with
Energy Consumption in Machine Shop Using Moth Flame Optimization. In Recent
Trends in Mechatronics Towards Industry 4.0 (pp. 77–86). Springer.

Nadimi-Shahraki, M. H., Fatahi, A., Zamani, H., Mirjalili, S., & Abualigah, L. (2021b). An
improved moth-flame optimization algorithm with adaptation mechanism to solve
numerical and mechanical engineering problems. Entropy, 23(12), 1637.

Nadimi-Shahraki, M. H., Fatahi, A., Zamani, H., Mirjalili, S., Abualigah, L., & Abd
Elaziz, M. (2021a). Migration-based moth-flame optimization algorithm. Processes, 9
(12), 2276.

Nadimi-Shahraki, M. H., Moeini, E., Taghian, S., & Mirjalili, S. (2021c). DMFO-CD: A
discrete moth-flame optimization algorithm for community detection. Algorithms, 14
(11), 314.

Nama, S. (2022). A novel improved SMA with quasi reflection operator: Performance
analysis, application to the image segmentation problem of Covid-19 chest X-ray
images. Applied Soft Computing, 118, Article 108483.

Nama, S., & Saha, A. (2018). An ensemble symbiosis organisms search algorithm and its
application to real world problems. Decision Science Letters, 7(2), 103–118.

Nama, S., & Saha, A. (2019). A novel hybrid backtracking search optimization algorithm
for continuous function optimization. Decision Science Letters, 8(2), 163–174.

Nama, S., Sharma, S., Saha, A. K., & Gandomi, A. H. (2022). A quantum mutation-based
backtracking search algorithm. Artificial Intelligence Review, 1–55.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
transactions on systems, man, and cybernetics, 9, 62–66.

Oyelade, O. N., Ezugwu, A. E. S., Mohamed, T. I., & Abualigah, L. (2022). Ebola
optimization search algorithm: A new nature-inspired metaheuristic optimization
algorithm. IEEE Access, 10, 16150–16177.

Pelusi, D., Mascella, R., Tallini, L., Nayak, J., Naik, B., & Deng, Y. (2020). An Improved
Moth-Flame Optimization algorithm with hybrid search phase. Knowledge-Based
Systems, 191, Article 105277.

Pierre, D. A. (1986). Optimization theory with applications. Courier Corporation.
Qi, A., Zhao, D., Yu, F., Heidari, A. A., Wu, Z., Cai, Z., et al. (2022). Directional mutation

and crossover boosted ant colony optimization with application to COVID-19 X-ray
image segmentation. Computers in Biology and Medicine, 148, Article 105810.

Qin, A. K., & Suganthan, P. N. (2005). Self-adaptive differential evolution algorithm for
numerical optimization. In 2005 IEEE congress on evolutionary computation (Vol. 2,
pp. 1785-1791). IEEE.

Ramachandran, R., Satheesh Kumar, J., Madasamy, B., & Veerasamy, V. (2021). A hybrid
MFO-GHNN tuned self-adaptive FOPID controller for ALFC of renewable energy
integrated hybrid power system. IET Renewable Power Generation, 15(7), 1582–1595.

Ramaprabha, R. (2012). Maximum power point tracking of partially shaded solar PV
system using modified Fibonacci search method with fuzzy controller.

Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained
and unconstrained optimization problems. International Journal of Industrial
Engineering Computations, 7(1), 19–34.

Saha, A. K. (2022). Multi-population-based adaptive sine cosine algorithm with modified
mutualism strategy for global optimization. Knowledge-Based Systems, 251, Article
109326.

Sahoo, S. K., & Saha, A. K. (2022). A hybrid moth flame optimization algorithm for global
optimization. Journal of Bionic Engineering, 19(5), 1522–1543.

Sahoo, S. K., Saha, A. K., Nama, S., & Masdari, M. (2022a). An improved moth flame
optimization algorithm based on modified dynamic opposite learning strategy.
Artificial Intelligence Review.

Sahoo, S. K., Saha, A. K., Sharma, S., Mirjalili, S., & Chakraborty, S. (2022b). An
enhanced moth flame optimization with mutualism scheme for function
optimization. Soft Computing, 26(6), 2855–2882.

Sahoo, S. K., Saha, A. K., Ezugwu, A. E., et al. (2022c). Moth flame optimization: Theory,
modifications, hybridizations, and applications. Arch Computat Methods Eng. https://
doi.org/10.1007/s11831-022-09801-z

Sapre, S., & Mini, S. (2021). A differential moth flame optimization algorithm for mobile
sink trajectory. Peer-to-Peer Networking and Applications, 14(1), 44–57.

Sara, U., Akter, M., & Uddin, M. S. (2019). Image quality assessment through fsim, ssim,
mse and psnr—a comparative study. Journal of Computer and Communications, 7,
8–18.

Shan, W., Qiao, Z., Heidari, A. A., Chen, H., Turabieh, H., & Teng, Y. (2021). Double
adaptive weights for stabilization of moth flame optimizer: Balance analysis,
engineering cases, and medical diagnosis. Knowledge-Based Systems, 214, Article
106728. https://doi.org/10.1016/j.knosys.2020.106728

Sharma, A., Sharma, A., Averbukh, M., Rajput, S., Jately, V., Choudhury, S., et al.
(2022a). Improved moth flame optimization algorithm based on opposition-based
learning and Lévy flight distribution for parameter estimation of solar module.
Energy Reports, 8, 6576–6592.

Sharma, S., Chakraborty, S., Saha, A. K., Nama, S., & Sahoo, S. K. (2022b). mLBOA: A
modified butterfly optimization algorithm with lagrange interpolation for global
optimization. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-022-
00175-3

Sharma, S., Saha, A. K., Majumder, A., & Nama, S. (2021). MPBOA-A novel hybrid
butterfly optimization algorithm with symbiosis organisms search for global
optimization and image segmentation. Multimedia Tools and Applications, 80(8),
12035–12076.

Sharma, S., Saha, A. K., Roy, S., Mirjalili, S., & Nama, S. (2022). A mixed sine cosine
butterfly optimization algorithm for global optimization and its application. Cluster
Computing, 1–28.

Sohrabi, C., Alsafi, Z., O’neill, N., Khan, M., Kerwan, A., Al-Jabir, A., & Agha, R. (2020).
World Health Organization declares global emergency: A review of the 2019 novel
coronavirus (COVID 19). International Journal of Surgery, 76, 71–76.

Soliman, G. M. A., Khorshid, M. M. H., &Abou-El-Enien, T. H. M. (2016). modified moth-
flame optimization algorithms for terrorism prediction. 5(7), 12.

Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization, 11(4),
341–359.

Su, H., Zhao, D., Heidari, A. A., Liu, L., Zhang, X., Mafarja, M., et al. (2023). RIME: A
physics-based optimization. Neurocomputing.

Tanabe, R., & Fukunaga, A. (2013, June). Success-history based parameter adaptation for
differential evolution. In 2013 IEEE congress on evolutionary computation (pp.
71–78). IEEE.

Tanabe, R., & Fukunaga, A. S. (2014, July). Improving the search performance of SHADE
using linear population size reduction. In 2014 IEEE congress on evolutionary
computation (CEC) (pp. 1658-1665). IEEE.

Tsai, W.-H. (1985). Moment-preserving thresholding: A new approach. Computer Vision,
Graphics, and Image Processing, 29, 377–393.

Wang, G., Guo, S., Han, L., & Cekderi, A. B. (2022). Two-dimensional reciprocal cross
entropy multi-threshold combined with improved firefly algorithm for lung
parenchyma segmentation of COVID-19 CT image. Biomedical Signal Processing and
Control, 78, Article 103933.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1), 67–82.

Zhao, J., Zhang, Y., He, X., & Xie, P. (2020). Covid-ct-dataset: a ct scan dataset about
covid-19. arXiv preprint arXiv:2003.13865, 490.

Zhao, X., Fang, Y., Liu, L., Li, J., & Xu, M. (2020b). An improved moth-flame
optimization algorithm with orthogonal opposition-based learning and modified
position updating mechanism of moths for global optimization problems. Applied
Intelligence, 50(12), 4434–4458.

Zhao, X., Fang, Y., Liu, L., Xu, M., & Li, Q. (2022b). A covariance-based Moth–flame
optimization algorithm with Cauchy mutation for solving numerical optimization
problems. Applied Soft Computing, 119, Article 108538.

Zhao, X., Fang, Y., Ma, S., & Liu, Z. (2022a). Multi-swarm improved moth–flame
optimization algorithm with chaotic grouping and Gaussian mutation for solving
engineering optimization problems. Expert Systems with Applications, 204, Article
117562.

Zhao, W., Zhang, Z., & Wang, L. (2020c). Manta ray foraging optimization: An effective
bio-inspired optimizer for engineering applications. Engineering Applications of
Artificial Intelligence, 87, Article 103300.

S. Kumar Sahoo et al.

http://refhub.elsevier.com/S0957-4174(23)00869-2/h0300
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0300
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0305
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0305
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0310
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0310
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0310
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0320
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0320
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0320
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0325
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0325
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0325
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0330
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0330
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0330
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0335
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0335
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0335
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0340
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0340
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0345
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0345
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0350
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0350
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0355
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0355
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0360
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0360
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0360
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0365
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0365
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0365
http://refhub.elsevier.com/S0957-4174(23)00869-2/optmrmbKTxz5U
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0370
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0370
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0370
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0380
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0380
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0380
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0390
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0390
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0390
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0395
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0395
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0395
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0400
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0400
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0405
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0405
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0405
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0410
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0410
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0410
https://doi.org/10.1007/s11831-022-09801-z
https://doi.org/10.1007/s11831-022-09801-z
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0420
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0420
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0425
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0425
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0425
https://doi.org/10.1016/j.knosys.2020.106728
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0435
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0435
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0435
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0435
https://doi.org/10.1007/s42235-022-00175-3
https://doi.org/10.1007/s42235-022-00175-3
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0445
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0445
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0445
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0445
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0450
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0450
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0450
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0455
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0455
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0455
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0465
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0465
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0465
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0470
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0470
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0485
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0485
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0490
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0490
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0490
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0490
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0500
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0500
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0515
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0515
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0515
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0515
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0520
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0520
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0520
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0525
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0525
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0525
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0525
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0530
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0530
http://refhub.elsevier.com/S0957-4174(23)00869-2/h0530

	Self-adaptive moth flame optimizer combined with crossover operator and Fibonacci search strategy for COVID-19 CT image seg ...
	1 Introduction
	2 Related works
	3 Classical MFO algorithm
	3.1 Inspiration
	3.2 MFO algorithm

	4 Proposed (Es-MFO) algorithm
	4.1 Crossover operator adaption in MFO algorithm
	4.2 Improved solution technique
	4.3 Fibonacci search method

	5 Simulation study and discussions
	5.1 Benchmark functions
	5.2 Experimental setup
	5.3 Discussion on classical benchmark functions
	5.4 Discussion on statistical and convergence performance for basic benchmark problems
	5.5 Convergence performance on basic benchmark functions
	5.6 Complexity and diversity analysis of the Es-MFO algorithm
	5.6.1 Complexity analysis
	5.6.2 Diversity analysis
	5.6.3 Experimental comparisons on CEC 2017
	5.6.4 Simulation and statistical analysis on basic and MFO variants
	5.6.4.1 Statistical and convergence analysis of Es-MFO on basic and MFO variants
	5.6.4.2 Simulation and statistical analysis on recent optimization algorithms
	5.6.4.3 Run time complexity of the proposed algorithm

	6 Application on CEC2020 engineering design problems
	6.1 Application 1: Weight minimization of a speed reducer problem
	6.2 Application 2: Multiple disk clutch break (MDCB) design problem
	6.3 Application 3: Welded beam design (WBD) problem

	7 Application of Es-MFO for COVID-19 CT image segmentation
	7.1 Definition of multilevel thresholding segmentation
	7.2 Discussion on datasets
	7.3 Es-MFO implementation-based image segmentation
	7.4 Performance measures
	7.5 Results and discussions on image segmentation problems
	7.6 Comparison the proposed Es-MFO with other state-of-the-art methods

	8 Conclusions and future extensions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Appendix A Data availability
	Appendix B Data availability
	Speed reducer design problem
	Multiple disk clutch break design problem
	Welded beam design problem

	References

