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A B S T R A C T   

The COVID-19 is one of the most significant obstacles that humanity is now facing. The use of computed to-
mography (CT) images is one method that can be utilized to recognize COVID-19 in early stage. In this study, an 
upgraded variant of Moth flame optimization algorithm (Es-MFO) is presented by considering a nonlinear self- 
adaptive parameter and a mathematical principle based on the Fibonacci approach method to achieve a higher 
level of accuracy in the classification of COVID-19 CT images. The proposed Es-MFO algorithm is evaluated using 
nineteen different basic benchmark functions, thirty and fifty dimensional IEEE CEC’2017 test functions, and 
compared the proficiency with a variety of other fundamental optimization techniques as well as MFO variants. 
Moreover, the suggested Es-MFO algorithm’s robustness and durability has been evaluated with tests including 
the Friedman rank test and the Wilcoxon rank test, as well as a convergence analysis and a diversity analysis. 
Furthermore, the proposed Es-MFO algorithm resolves three CEC2020 engineering design problems to examine 
the problem-solving ability of the proposed method. The proposed Es-MFO algorithm is then used to solve the 
COVID-19 CT image segmentation problem using multi-level thresholding with the help of Otsu’s method. 
Comparison results of the suggested Es-MFO with basic and MFO variants proved the superiority of the newly 
developed algorithm.   

1. Introduction 

COVID-19 is a highly contagious and severe disease that has spread 
rapidly across the world (Ferrer, 2020). The disease has caused 
numerous deaths and respiratory complications, including COVID-19 
pneumonia, acute respiratory distress syndrome (ARDS), and acute 
respiratory failure. The World Health Organization (WHO) declared the 
outbreak a global pandemic on March 11, 2020 (Sohrabi et al., 2020), 
stressing the need for a global effort to combat the disease and reduce its 
impact on healthcare systems. One of the challenges in managing 
COVID-19 is the need for quick and accurate diagnostic technologies. 
The real-time polymerase chain reaction (PCR) test is commonly used to 
measure gene expression. However, it can produce false-negative re-
sults, is invasive, and takes a long time to diagnose. Chest computed 
tomography (CT) is another critical diagnostic tool for COVID-19. CT 
scans can guide the diagnosis and track the progression of the disease, 
making it a valuable technique for treating COVID-19-related lung 

disease (Harmon et al., 2020). Preliminary studies have shown that 
chest CT is highly sensitive in detecting lung disease associated with 
COVID-19. 

In various computer vision applications, including medical and 
geographical imaging, autonomous target recognition, and robotic 
vision, image segmentation is considered a critical and fundamental step 
in analyzing and interpreting captured images (Houssein et al., 2022). 
Medical imaging methods play a crucial role in diagnosing and treating 
severe illnesses and patient care. These techniques aid doctors in iden-
tifying, treating, and detecting life-threatening diseases at an early 
stage. Chest CT images contain a wealth of information, but manual 
processing is prone to errors. Therefore, numerous algorithms have been 
developed to assist in identifying and diagnosing COVID-19. Image 
segmentation is a practical approach that has been employed to improve 
the COVID-19 detection process (Ilhan et al., 2023; Qi et al., 2022). 
Image segmentation techniques have gained significant interest due to 
their versatile applications as a pre-processing phase in image 
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processing. Particularly, in designing computer-aided diagnosis systems, 
image segmentation is a vital stage and is considered a crucial step in 
image processing. There are various ways to segment an image into 
distinct parts, and the most popular method is called thresholding seg-
mentation. Thresholding segmentation, one of several popular seg-
mentation algorithms, uses a thresholding value to separate a picture 
into many regions that are visually similar in terms of texture, colour, 
brightness, contrast, and size (s) (Houssein, Emam, & Ali, 2021a). The 
thresholding technique is widely used because it is simple to apply, re-
quires minimal storage space, and is quick to execute. It includes two 
types of segmentation: bilevel and multilevel (Emam et al., 2023). 
Applying the bi-level threshold to an image produces two equally sized 
halves, one each for the foreground and background. Images in practical 
contexts unfortunately have more than two classes, hence multilevel 
thresholding is required. Multilevel thresholding methods are a type of 
image segmentation technique that divide an image into more than two 
regions based on the histogram of pixel intensities. This approach is 
useful when there are multiple objects or features in an image that need 
to be separated. However, choosing the right threshold values is essen-
tial to obtain accurate segmentation results. It is a critical task because 
the number of possible thresholds for an image is enormous, and 
selecting the optimal values requires careful consideration. Multilevel 
thresholding is a common technique used for image segmentation, 
especially for grayscale images like CT scans. It is particularly useful 
when there are distinct regions of interest within an image with different 
pixel intensities. COVID-19 CT images typically exhibit multiple regions 
of interest with varying pixel intensities, making the segmentation 
problem a multilevel one. In other words, it is necessary to identify 
multiple thresholds that can accurately distinguish between different 
regions of interest within the image. 

There are two main methods for determining the optimal threshold 
value for image segmentation: Otsu’s method (Otsu, 1979), which 
maximizes between-class variance, and Kapur’s entropy (Kapur et al., 
1985), which maximizes the entropy of the classes. Tsallis entropy (Tsai, 
1985) is another method that can be used. These approaches are useful 
when only one threshold value is needed. However, these methods have 
significant drawbacks when dealing with multi-level thresholding, 
including long processing times and high complexity. Therefore, multi- 
level thresholding is considered a challenging optimization problem, 
and metaheuristic algorithms have been successfully employed to 
address these issues. 

Overall, research has shown that metaheuristic algorithms are 
effective in solving difficult optimization problems in various fields, 
including bioinformatics, engineering, communication, drug design, 
and feature selection (Houssein et al., 2023). In recent years, it has been 
seen those real-world problems, constrained or unconstrained, linear or 
nonlinear, continuous or discontinuous, can be easily tackled with the 
help of various nature-inspired algorithms (Nama & Saha, 2019). These 
algorithms are prevalent due to their simplicity and user-friendly 
approach and play a significant role in tackling complicated optimiza-
tion issues (Nama & Saha, 2018). Some of these algorithms have been 
developed by considering natural evolution, living and survival systems 
of birds, animals and insects, etc. A few of them are Genetic algorithm 
(GA) (Holland, 1992), Particle swarm optimization (PSO) (Kennedy & 
Eberhart, 1995; Cheng & Prayogo, 2014; Arora & Singh, 2015), Differ-
ential evolution (DE) (Storn & Price, 1997), Butterfly optimization al-
gorithm (BOA; Arora & Singh, 2015), Moth-flame optimization 
algorithm (MFO) (Mirjalili, 2015), whale optimization algorithm (WOA) 
(Mirjalili & Lewis, 2016), Jaya algorithm (Rao, 2016), Sine cosine al-
gorithm (SCA) (Mirjalili, 2016a), Salp swarm algorithm (SSA) (Mirjalili 
et al., 2017). In addition to these old algorithms there are many newer 
ones like arithmetic optimization algorithm (AOA) (Abualigah et al., 
2021; Heidari et al., 2019) 

Furthermore, several excellent algorithms have been developed be-
tween 2020 and 2022, such as weighted meaN oF vectOrs (INFO) 
(Ahmadianfar et al., 2022) is an optimization algorithm developed in 

2022, Ebola Optimization Search Algorithm (EOSA) (Oyelade et al., 
2022), and Dwarf mongoose optimization algorithm (DMO) (Agushaka 
et al., 2022). In 2023, there are some new optimization algorithms such 
as, Rime optimization algorithm (RIME) (Su et al., 2023) and Nutcracker 
optimization algorithm (NOA) (Abdel-Basset et al., 2023). 

Metaheuristic algorithms have both strengths and weaknesses. On 
the positive side, they are versatile and can handle non-linear, higher- 
dimensional, and multimodal situations. They are also straightforward 
to design and implement, even without knowledge of the aims’ de-
rivatives. However, some drawbacks exist, such as the need for a balance 
between exploration and exploitation. This can lead to issues like 
becoming trapped in local optima, slow convergence, and loss of di-
versity. Moreover, no single metaheuristic algorithm is universally 
effective, and researchers worldwide are developing many algorithms, 
hybrids, and modified variants. The development of metaheuristic al-
gorithms depends on their ability to explore and exploit solutions 
effectively. The No Free Lunch theory (Wolpert & Macready, 1997) 
demonstrates that no algorithm can solve all problems optimally. Re-
searchers have proposed two strategies to overcome these limitations: 
modifying existing algorithms or hybridizing multiple metaheuristics. 
Hybridization can enhance optimization performance, but it is essential 
to choose appropriate algorithms. Therefore, selecting algorithms is a 
crucial step; typically, they are chosen based on their performance. One 
way to enhance algorithm performance is to incorporate optimization 
components into the original algorithm. As a result, this encourages us to 
improve the MFO algorithm and apply it to solve the multilevel image 
segmentation problem. 

An efficient algorithm named MFO, which was first developed by 
Mirjalili (Mirjalili, 2015) in 2015, is considered for deep study, and the 
transverse orientation of moths motivates authors for MFO’s design. The 
MFO algorithm has attracted the attention of many researchers. MFO is a 
versatile algorithm with minimal algorithm-specific parameters, making 
it suitable for real-world problems. For example, it has been applied 
successfully to tasks such as parameter estimation for solar modules 
(Sharma et al., 2022), flexible operation modeling (Hou et al., 2022), 
intelligent route planning for multiple UAVs (Ma et al., 2022), deep 
learning (Khan et al., 2022), machine scheduling problems (Mohd Rose 
& Nik Mohamed, 2022), neural network optimization (Ramachandran 
et al., 2021), and many more. The MFO is a promising new population- 
based optimization method. However, it still has room for development 
in areas like accelerating convergence and expanding the scope of its 
search (Khalilpourazari & Khalilpourazary, 2019). In recent years, 
several variants of the Moth-Flame Optimization (MFO) algorithm have 
been proposed to overcome its weaknesses and improve its performance. 
The following is a summary of various modified versions of the MFO 
algorithm. Zhao et al. (2022a) proposed the Multiswarm Improved MFO 
(MIMFO) algorithm that incorporates chaotic and dynamic grouping 
mechanisms to enhance population diversity. They also added linear and 
spiral search strategies and Gaussian mutation to improve search ca-
pabilities and maintain a balance between diversification and intensi-
fication. Similarly, Sahoo, Saha, Nama, and Masdari (2022a) introduced 
a variant of MFO named m-DMFO, which uses a modified dynamic op-
position learning (DOL) strategy to speed up convergence and prevent 
stagnation in local optima. Other approaches include covariance based 
MFO (CCMFO) by Zhao, Fang, Liu, Xu, and Li (2022b) that utilizes 
covariance and Cauchy mutation to upgrade location updates and 
enhance exploration, and multi-operator MFO (MOMFO) by Gu and 
Xiang (2021) that uses various strategies to balance global and local 
search. Moreover, Nadimi-Shahraki, Fatahi, Zamani, Mirjalili, Abuali-
gah, and Abd Elaziz (2021a) developed the Migration-based MFO 
(M− MFO) to balance the exploration–exploitation characteristics of the 
classical MFO by using a random and guided migration operator. Li et al. 
(2021) created the ODSMFO method with the help of the OBL mecha-
nism and DE, as well as a developed local search technique and the death 
mechanism for diversity enhancement. Shan et al. (2021) showed that 
the MFO algorithm might be stabilized using the Double Adaptive 
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Weight Mechanism (WEMFO) and tested it by utilizing it to train Kernel 
Extreme Learning Machines (KELMs). 

Sahoo et al. (2022b) developed the upgraded MFO (EMFO) by 
embedding the mutualism strategy on the basic MFO for a better balance 
between the search processes by enhancing its searching capability. 
Nadimi-Shahraki, Fatahi, Zamani, Mirjalili, and Abualigah (2021b) 
created the improved MFO (I-MFO) that assists in locating trapped 
moths in local optima by defining memory for each moth. While Pelusi 
et al. (2020) proposed the improved MFO (IMFO) by addressing the 
MFO’s weaknesses, such as the rate of convergence and inclusive 
searchability, by introducing a weight component to the suggested IMFO 
to maintain the search balance. 

Kigsirisin and Miyauchi (2021) proposed a solution to handle the 
challenges in unit commitment (UC) using a modified version of the 
MFO algorithm called alternative binary MFO. However, this approach 
suffered from a flaw due to a fixed flame technique that caused the al-
gorithm to become trapped at a local optimum. To address this issue, the 
authors developed four new techniques called BAMFO. These techniques 
were used to develop a plan to repair the UC. Sahoo and Saha (2022c) 
introduced an improved variant of the MFO algorithm that incorporated 
both global and local phases of BOA to strike a balance between diver-
sification and intensification. Meanwhile, Nadimi-Shahraki et al. 
(2021c) proposed a discrete MFO for community discovery by recreating 
its successful tactics. This approach utilized a locus-based adjacency 
formulation of moths and flames to analyze node relationships and 
community organization during startup. An updated movement strategy 
was employed using single-point crossover, two-point crossover, and 
single-point neighbor-based mutation to balance explor-
ation–exploitation. Dabba et al. (2021) developed the mutual informa-
tion maximization-modified moth flame method (MIM-MFA) to address 
gene assortment in microarray data sorting with MIM. Kadry et al. 
(2021) used a modified version of Kapur’s MFO algorithm and his 
threshold image segmentation to eliminate the tumor area from flair and 
T2 clinical MRI slices. The authors used images from the BRAINIX and 
TCIA-GBM benchmark sets to evaluate the suggested approach. Their 
experimental results revealed that the T2 modality was subpar. Sapre 
and Mini (2021) employed the differential MFO (DMFO) to alleviate 
challenges inherent in WSNs with a mobile sink. Dash et al. (2020) in-
tegrated the Jaya-based MFO and the original MFO to minimize the 
impact of FACTS devices on network performance in an IEEE network. 
The two compensators, TCSC and SVC, served as fitness functions for the 
JMFO and MFO algorithms in the IEEE 14 and IEEE 30 bus systems. 

Apinantanakon and Sunat (2017) developed a new variant of the 
MFO algorithm called OMFO to address its drawbacks, such as sluggish 
convergence and mediocre solutions. They employed an opposition- 
based strategy to produce new moths in MFO and subsequently used 
those in the position upgrade process for rapid convergence. Li et al. 
(2018) developed the double-evolutionary learning MFO algorithm 
(DELMFO) by combining two evolutionary learning strategies to create 
high-performance flames and dynamically regulate the hunt for moths. 
Zhao et al. (2020) presented the boosted MFO algorithm, a refined 
version of a population-based method. Both the MFO method and the 
OBL strategy for creating flames were modernized using the mutation 
mechanism and linear quest strategy. For further details on the MFO 
works and their variants, one may refer to the survey work on MFO 
(Sahoo, Saha, & Ezugwu, 2022d). 

In this paper, we suggest a modified form of the MFO algorithm (Es- 
MFO, for short) that uses an upgraded solution strategy to address the 
problems with metaheuristics techniques mentioned above. The pro-
posed Es-MFO is and used to obtain the best solution for determining the 
optimal thresholding that devastates the multi-level thresholding image 
segmentation for CT COVID-19 images. The experimental section of this 
paper is particularly robust, with tests of not just the diversity, effect of 
parameters, statistical analysis, and normal engineering test issues, but 
also comparisons to other popular algorithms. It has also been used to 
solve the segmentation problem in CT images for the COVID-19. The 

following is a brief summary of the main contribution of this paper: 

A crossover operator is employed in MFO algorithm to enhance the 
searching efficacy of the suggested Es-MFO algorithm. 
A mathematical approach-based technique is employed at the end of 
the position update phase of the MFO, which avoids the local optimal 
solutions and improves the convergence speed of the proposed Es- 
MFO algorithm. 
The proposed Es-MFO has been applied to solve IEEE CEC’2017 test 
suite for dimensions 30 and 50 and the results are compared with six 
well-known metaheuristics and three MFO variants. 
Statistical tests like the Friedman rank test and the Wilcoxon signed- 
rank test are also used to measure how well the proposed algorithm 
works. 
To test the proposed problem-solving Es-MFO’s capability, it was 
used to solve three CEC 2020 limited real-world engineering 
problems. 
At the end, Es-MFO has been applied to solve the COVID-19 CT image 
segmentation problem. 

The article is laid out as follows: in Section 2, relevant works on the 
image segmentation issues are given. The MFO method is summarized in 
Section 3. Section 4 demonstrates the proposed Es-MFO algorithm. In 
Section 5, we give the experimental designs, simulation outcomes, sta-
tistical tests, and convergence analyses. Section 6 presents the engi-
neering design challenge, Section 7 presents the COVID-19 CT image 
segmentation problem, and Section 8 discusses the conclusions. 

2. Related works 

Image segmentation methods have recently received much attention 
and are often used as a preprocessing step in various image processing 
applications. Numerous methods are available for solving the image 
segmentation problem, but multilevel thresholding segmentation is 
considered the best. However, traditional techniques need help solving 
the image segmentation problem as the threshold levels increase due to 
time complexity issues. Metaheuristic algorithms have been employed 
to overcome these problems and have proven efficient and useful in the 
relevant literature. Metaheuristic algorithms have been successfully 
used in medical imaging segmentation, including in the segmentation of 
COVID-19 medical imaging. This section provides some state-of-the-art 
techniques for COVID-19 segmentation. Several metaheuristic-based 
multilevel thresholding segmentation methods have been employed to 
detect COVID-19 infections in CT scans. One such approach is the 
Improved Manta Ray Foraging Optimization (MRFO) was created by 
(Houssein, Emam, & Ali, 2021b) by integrating the opposition-based 
learning (OBL) technique in the early phase of the MRFO algorithm to 
increase the population variety in the search space. The suggested al-
gorithm is known by its abbreviation, MRFO-OBL. By using Otsu’s 
approach to address the COVID-19 CT image segmentation problem, the 
effectiveness of the suggested MRFO-OBL algorithm was evaluated. The 
experimental results demonstrated that, in terms of performance metrics 
including the structural similarity index (SSIM), peak signal-to-noise 
ratio (PSNR), consistency, and quality, the suggested MRFO-OBL algo-
rithm outperformed the other optimization algorithms. 

Wang et al., (Wang et al., 2022) proposed a new hybrid algorithm for 
segmenting COVID-19 chest X-ray images by combining the PSO and 
firefly algorithm (FA). Multi-threshold segmentation technique based on 
two-dimensional reciprocal cross-entropy is suggested to solve the 
problem of undefined and zero values of Shannon cross entropy due to 
logarithm operation. The proposed algorithm was evaluated on a dataset 
of 300 chest X-ray images. The results showed that it outperformed 
several state-of-the-art algorithms regarding segmentation accuracy and 
computational time. 

Elaziz et al. (Abd Elaziz et al., 2020) proposed a technique called 
MPAMFO that combines two swarm intelligence algorithms, MPA and 
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MFO, to achieve better results in image segmentation. MPAMFO uses 
MFO as a local search technique to prevent the algorithm from getting 
stuck in local optima. The method was tested on ten gray-scale images 
and thirteen CT images of COVID-19 and outperformed other swarm 
intelligence algorithms regarding segmentation quality. The experi-
mental results showed that MPAMFO is a reliable and effective approach 
for image segmentation and has advantages over existing methods. 

In another study, Houssein et al. (2022) developed a new improved 
equilibrium optimizer (I-EO) with the help of dimension learning 
hunting (DLH) technique. The efficiency of the suggested I-EO was 
tested by IEEE CEC 2020 test problems and COVID − 19 CT image seg-
mentation problem. The obtained experimental results outperform as 
compared to other metaheuristic algorithms. 

Nama (2022) proposed a new population-based optimization algo-
rithm called improved slime mould algorithm (in short QRSMA) by 
adding quasi-reflection-based learning (QRBL) and it’s jumping mech-
anism to improve the population diversity and accelerate the conver-
gence speed, respectively. The author then applied the suggested 
QRSMA to solve the COVID-19 X-ray image segmentation problem. The 
experimental results demonstrated the superiority of the proposed 
QRSMA algorithm among other competitive metaheuristic algorithms. 

Chakraborty and Mali (2021) suggested a modified version of the 
WOA called the Modified WOA algorithm that uses random initialization 
solutions in the search prey stage. A new parameter was developed to 
balance the exploitation and exploration of the algorithm. The algorithm 
was evaluated using three COVID-19 x-ray image segmentation prob-
lems and a few benchmark images. The experimental results demon-
strated that the proposed algorithm outperformed other optimization 
algorithms in terms of several performance indicators. 

Abualigah et al. (2022) proposed an upgraded version of the Ant Lion 
Optimizer (AOA) algorithm named DAOA by incorporating the Differ-
ential Evolution (DE) technique to enhance the local search of the al-
gorithm. The algorithm was evaluated using a COVID-19 CT image 
segmentation problem, and its effectiveness was compared with other 
state-of-the-art algorithms in terms of SSIM and PSNR values. 

Chakraborty et al. (2021) created a morphology-based radiological 
segmentation method for the early identification of probable COVID-19 
patients. The method was evaluated using over 400 different photos, and 
the results showed that the proposed approach outperformed other 
optimization strategies in terms of SSIM, PSNR, and Mean Square Error 
(MSE). 

Liu et al. (2021) proposed an improved version of the Ant Colony 
Optimization (ACO) algorithm called CLACO using Cauchy and greedy 
Leavy mutation. The algorithm was evaluated using Kapur’s entropy to 
solve the COVID-19 X-ray image segmentation problem after testing it 
on IEEE CEC 2014 benchmark functions. 

Qi et al. (2022) used the directional mutation and directional 
crossover operator to create a fresh ACO algorithm. The COVID-19 X-ray 
image segmentation problem and the IEEE CEC 2017 benchmark func-
tions were used by the author to test the suggested technique. By 
examining the experimental findings, the suggested algorithm displays 
more consistent and superior segmentation outcomes than existing 
models at various threshold values. 

Moreover, A few additional studies have been done by scholars with 
the help of several unique meta-heuristic algorithms in (Chakraborty 
et al., 2022a; Houssein et al. 2021c, 2021d, 2021d; Sharma et al., 2021; 
Sharma et al., 2021) to address image segmentation issues. 

The literature review mentioned some weaknesses in the segmenta-
tion of COVID-19 CT images. Metaheuristic techniques used in optimi-
zation problems have certain drawbacks, such as getting stuck in local 
areas, early termination, and requiring better global search capabilities. 
The studies reviewed on multilevel thresholding segmentation have 
shown that it is commonly done with metaheuristic algorithms and that 
the optimal thresholding set depends on the algorithm used. Therefore, 
using a high-performance metaheuristic algorithm can significantly 
improve the results of multilevel segmentation. These motivated us to 

improve the diagnosis of COVID-19 by combining an effective optimi-
zation algorithm with Otsu’s segmentation method for CT COVID-19 
images. 

3. Classical MFO algorithm 

In this Section, Sections 3.1 and 3.2 explain where the MFO algo-
rithm came from and how it works with the help of a mathematical 
formula. 

3.1. Inspiration 

Arthropoda includes moths, which are insects. Research into moths’ 
unique navigation methods has piqued the interest of scientists. As 
shown in Fig. 1, moths use a transverse orientation mechanism to help 
them navigate at night. These moths use moonlight to fly across a hor-
izontal inclination for a long distance in a straight line by keeping a fixed 
tendency toward the moon. The moth moves in a helix path around the 
flame as the distance between it and the flame decreases, increasing 
preference efficiency. As a result of his research into moth behaviour and 
mathematical modeling, Mirjalili created the MFO algorithm in 2015. 

3.2. MFO algorithm 

In MFO, the entire swarm consists of N moths; they are characterized 
as a group of candidate solutions to a specific problem by using a matrix 
as follows: 

X =

⎡

⎢
⎢
⎣

X1
X2
⋮

XN

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

x1,1 x1,2 ⋯ x1,n− 1 x1,n
x2,1 ⋱ ⋯ ⋯ x2,n
⋮ ⋯ ⋱ ⋯ ⋮

xN− 1,1 ⋯ ⋯ ⋱ xN− 1,n
xN,1 xN,2 ⋯ xN, n− 1 xN,n

⎤

⎥
⎥
⎥
⎥
⎦

(1)  

where the position of each moth is considered as a vector 
Xi =

[
xi,1, xi,2,⋯, xi,n

]
, i ∈ {1,2,⋯,N}. 

while ‘n’ denotes variable numbers. The jth dimension of each Xi is 
expressed as scalar xi,j, j ∈ {1,2,⋯, n} in the boundary range 
[
xj min, xj max

]
, where xj minandxj max are the minimum and maximum 

boundary of the jth dimension of each Xi, respectively. 
For i ∈ {1,2,⋯,N}, we suppose that the corresponding fitness value 

of Xi =
[
xi,1, xi,2,⋯, xi,n

]
can be expressed as Fit(Xi), where Fit (*) rep-

resents fitness function candidate solution. Then, the corresponding 
fitness vector of X is represented as follows: 

Fit[X] =

⎡

⎢
⎢
⎣

Fit(X1)

Fit(X2)

⋮
Fit(Xn)

⎤

⎥
⎥
⎦ (2) 

Fig. 1. Transverse orientation of Moth.  
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Each moth can fly toward its corresponding flame so that the flame 
matrix has the same size as the matrix X as follows: 

FM =

⎡

⎢
⎢
⎣

FM1
FM2

⋮
FmN

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

Fm1,1 Fm1,2 ⋯ Fm1,n− 1 Fm1,n
Fm2,1 ⋱ ⋯ ⋯ Fm2,n

⋮ ⋯ ⋱ ⋯ ⋮
FmN− 1,1 ⋯ ⋯ ⋱ FmN− 1,n
FmN,1 FmN,2 ⋯ FmN− 1 FmN,n

⎤

⎥
⎥
⎥
⎥
⎦

(3)  

where FMi is defined as the flame corresponding to the Xi =
[
xi,1, xi,2,⋯, xi,n

]
; n denotes variable number of FMi, N is the number of 

flames. 
Similarly, the fitness of each FMi =

[
Fmi,1, Fmi,2,⋯, Fmi,n

]
; i =

{1,2,⋯,N}, we also assume that its corresponding fitness value can be 
expressed as Fit(FMi), Further, the fitness vector of FMx is as follows: 

Fit[FM] =

⎡

⎢
⎢
⎣

⎡

⎢
⎢
⎣

Fit(FM1)

Fit(FM2)

⋮
Fit(FMN)

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦ (4) 

Moth and flame are two important components of MFO algorithm. 
Suppose that K and k, k ∈ {1,2,⋯,N} indicate the maximum iterative 
number and the current iterative number, respectively. Moth moves 
spirally when it nearer to the flame therefore, author used a logarithmic 
spiral function which is as follows: 

Xk+1
i =

{
δi • ebt • cos(2πt) + FMi(k), i ≤ Flno

δi • ebt • cos(2πt) + FMFlno (k), i ≥ Flno
(5)  

where δi =
⃒
⃒Xk

i − FMi(k)
⃒
⃒, that indicates the distance between ith moth Xi 

and its corresponding flame FMi. Here b is a fixed constant equal one 
used to recognize the spiral flight shape, Flno represents flame number 
that has the ability to decrease the number of flames adaptively through 
the entire iterative process and Fig. 2 represents moths helix manner, t 
be any random number in [a1, 1] and is a1 is a convergence constant 
which linearly decreased from ( − 1) to ( − 2) over the course of iteration 
and mathematically, it can be represented as follows: 

a1 = − 1+ k
(
− 1
K

)

(6)  

t = (a1 − 1) × r+ 1 (7)  

where, r is a random number in [0, 1], 
Current and prior flame positions are gathered and organised by 

global and local fitness in every iteration. Other flames are extinguished, 
and only the best Flno are maintained (Li et al., 2018). The fittest flames 
are the first and last ones. The moths arrived to seize the flames. Moths 

in the same and lower orders invariably take the final flame. The 
following formula is used for the determination of flame number (Flno). 

Flno = round
(

Flmax − k
(Flmax − 1)

K

)

(8)  

where, round can make the number of 
(

Flmax − k (Flmax − 1)
K

)
be rounded to 

its nearest integer and Flmax represents the maximum number of flames. 
Further k and K are represents the current iteration and maximum it-
erations of the population. The more detailed pseudocode of the MFO 
algorithm is presented in Algorithm 1.  

Algorithm 1: Pseudo-code of MFO Algorithm 

Input: Objective function f(X), X = (X1 X2⋯⋯⋯Xd), Number of moths in the 
population (N), dimension (d), Current iteration (Iteration), Maximum iteration 
(maxiter),Flame number (Flno), Lower bound (LB), Upper bound (UB), b = 1 and 
other related parameters are determined. 
for i = 1 : N 

for j = 1 : d 
Generate N organism solutions Xi,j (i = 1, 2, ⋯., N) using following Equation 

X (i, j) = LB(i) + (UB (i) LB(i))*rand(); % rand() is a random number ∈ [0,1]
end for 
end for 
Calculate fitness value f(X)
While Iteration < maxiter + 1 
if Iteration = = 1 
Enter Flno = N in initial population 
else 

Apply Eq. (8) 
end if 
FM = Fitness Function f(X)
if Iteration == 1 
arrange the moths according to FM 
Update Flames 
Iteration = 0 
else 
Sort the moths based on FM from last iteration 

Update the Flames 
end if 

for j = 1 : N 
for k = 1 : d 
Find r and t using Eqs. (6 and 7) 
Update moths position as to their particular flame using Eq. (5) 
end for 
end for 
Iteration = Iteration + 1 
end while 

Output: The best solution with the minimum fitness function value in the ecosystem.  

4. Proposed (Es-MFO) algorithm 

This section presents the proposed Fibonacci search-based MFO al-
gorithm (Es-MFO, in short). The adaptation of non-linear function with 

Fig. 2. Spiral movement around flame.  
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self-adaptive factor is presented in Section 4.1. The improved solution 
quality technique is familiarized in Section 4.2. The two main charac-
teristics of the metaheuristic algorithms include exploration and 
exploitation of the search space and a proper trade-off between them. 
Exploration involves searching the entire region, whereas exploitation is 
characterized as examining promising areas around a potential solution. 
The joint effect of these two characteristics contributes to the algo-
rithm’s ability to prevent local optima stagnation and promote conver-
gence and solution variety. According to the literature, despite of its 
effectiveness, MFO suffers from low solution accuracy, sluggish 
convergence rate, lack of variety, and tendency to fall into local optimal 
solutions, i.e., the algorithm struggles to maintain a suitable balance 
between exploration and exploitation. To overcome the above issues, in 
the present work, an improved MFO, namely Es-MFO, has been pro-
posed by integrating crossover operator and improved solution quality 
technique. The details are discussed in the following subsections. 

4.1. Crossover operator adaption in MFO algorithm 

In MFO, the spiral motion of moths around the flame results explo-
ration and exploitation of the search space. It is easier to understand 
exploration and exploitation when the exponent factor ‘t‘ is used to 
explain it. If the value of ‘t‘ increases, then distance between moth and 
flame increases that means moth will cover larger distance (exploration) 
to reach at flame. Similarly, if ‘t‘ decreases, then distance between moth 
and flame decreases that means moth will cover smaller distance 
(exploitation) to reach at flame. Therefore, either a suitable value of ‘t‘ 
or an effective technique is necessary to handle the trade-off of the al-
gorithm. In addition to the above-mentioned reason, we have added a 
different type of crossover (CR) operator strategy in the position update 
phase to provide an effective balance between the diversification and 
intensification. The following scheme is implemented to create the po-
sition at the next iteration: 

Xk+1
i =

{
CR.δi • ebt • cos(2πt) + Fmi(k), i ≤ Flno

δi • ebt • cos(2πt) + CR.FmN.FM(k), i ≥ Flno
(9)  

where, CR is a non-linear function and defined by CR = 2(0.5 − μ).f ; μ is 
a random number uniformly distributed in [1,N], ‘N’ is number of search 
agents in the population. f = exp( − (12.*(k/K))); K and k, k ∈ {1,2,⋯,

N} indicate the maximum iterative number and the current iterative 
number, respectively and δi =

⃒
⃒XK

i − FMi(k)
⃒
⃒ that indicates the distance 

between ith moth Xi and its corresponding flame FMi, b is a fixed constant 
equal one used to recognize the spiral flight shape, Flno represents flame 
number that has the ability to decrease the number of flames adaptively 
through the entire iterative process t be any random number in [a1,1]
and is a1 is a convergence constant which linearly decreased from − 1 to 
− 2 over the course of iteration and mathematically, it can be repre-
sented as follows: 

t = (a1 − 1).r+1anda1 = − 1+k
(
− 1
K
)
; r is a random number in [0, 1]. 

4.2. Improved solution technique 

An improved solution technique with the aid of the Fibonacci search 
method (FSM) and the average of three random solutions has been 
introduced in the suggested Es-MFO to improve the solution quality, 
avoid local optima stagnation, and accelerate the convergence speed. 

4.3. Fibonacci search method 

The Fibonacci search is the strategy that yields the smallest possible 
interval of uncertainty in which the optimal solution lies, after finite 
number of tests are completed (Pierre, 1986). The Fibonacci search is 
based on the sequence of Fibonacci numbers (Fib), which are shown by 
Eq. (10). 

F0 = 1 = F1,Fk = Fk− 1 +Fk− 2, k = 2, 3, 4,⋯.n (10) 

The FSM is an elimination technique and can also be said as the 

Initial Phase: 

Possible condition in Update Phase:

Case 1:  functional value at ( ) functional value at ( )

Case 2:  functional value at ( ) functional value at ( )

Case 3:  functional value at ( ) functional value at ( )

Where, the symbol represents the deleted area in the search space.

Fig. 3. The search mechanism of FSM.  
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interval reduction method, for solving for getting optimal for non-linear 
optimization problem. The FSM shifts and narrows the search range 
using Fibonacci numbers to obtain the extreme value of functions 
(Ramaprabha, 2012). To improve the balance of the search in the MFO 
algorithm, the proposed Es-MFO method incorporates the Fibonacci 
search method (FSM), which focuses on updating the current best so-
lution obtained during the iterative process. The FSM ensures that the 
solutions are not trapped in local optima and promotes high 
diversification. 

Let for any iteration T, for each moth (Xi,j), i = 1, 2,⋯,N and j = 1,2,
⋯, D, X = (x1, x2, x3,⋯xD) and Y = (y1, y2, y3,⋯yD) are two distinct 
search agents. Take two experimental members xm1 and yn1 from X and 
Y which are calculated as follows: 

xm1 = aj +

(
Fk− 2

Fk

)
(
bj − aj

)
, yn1 = bj −

(
Fk− 2

Fk

)
(
bj − aj

)
(11)  

where aj and bj are lower and upper bounds of ith variable. The range is 
moved to the right if the function’s value at yn1 is greater than that at 

xm1, and to the left if xm1 is greater than that at yn1. The new value xm2 
and yn2 are generated using the Fibonacci search formula as, 

xm2 = aj +

(
Fk− j

Fk− j+2

)
(
bj − aj

)
andyn2 = bj −

(
Fk− j

Fk− j+2

)
(
bj − aj

)
(12)  

where j represents a variable with an initial value 2 in the FSM. If there 
are two functional values that are not equal, then only one of them (xm2 
or yn2 depending on the contracting direction) will be considered a new 
experimental point. If the two function values are equal, then the two 
new experimental points formed are xm2 or yn2; this process is repeated 
until the stopping criterion is met, and a new solution is obtained by 
averaging the last two experimental members in the final iteration. The 
various scenarios that may arise in FSM are depicted in Fig. 3. 

The proposed Es- MFO’s operational process is illustrated Algorithm 
2 and the main Es-MFO steps are summarized below:  

1. Randomly initialize parameters such as the number of populations, 
maximum iteration, and function evaluation. 

Fig. 4. 3D view of few randomly selected unimodal and multimodal functions: (a) Matyas (b) Zakhrov(c) Penalized 1.1 (d) Levy (e) Bohachevsky (f) Alpine and (g) 
Salomon (h)Beale (i) Booth. 
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2. Sort the moth and flame matrices based on fitness value and update 
the number of flames using Eq. (8).  

3. Update a1 and t by Eqs. (6) and (7).  
4. Update moth positions based on the corresponding flame using Eq. 

(9).  
5. To generate a new solution, randomly generate a number between 

0 and 1. If the number is greater than 0.5, use Eq. (13). Otherwise, 
use the Fibonacci search method (FSM) with Eqs. (10), 11, and 12) to 
find the fitness value of the new solution. The best fitness value gives 
the optimum value. 

XNew = e(Xavg/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
fit(xr1)*fit(xr2)*fit(xr3)

√
) (13)    

6. If the stopping criteria are not met, repeat steps 2–5 until the best 
fitness value is obtained.   

Algorithm 2: Pseudo-code of the Es-MFO algorithm. 

Input: Maximum iteration (maxiter), Objective function f(X), X = (X1 X2⋯⋯⋯Xd), 
dimension (D), Initial moth number (N), Flame number (Flno), Lower bound (LB), 
Upper bound (UB), b, Current iteration (Iteration), Maximum iterations, and other 
related parameters are determined. 
fori = 1 : N 

for j = 1 : D 
Generate N organism solutions Xi,j (i = 1, 2, ⋯., N) using following Equation 
X (i, j) = LB(i) + (UB (i) LB(i))*rand(); % rand() is a random number ∈ [0,1]

Find fitness 
end 

end 
While stopping criteria not met 

if Iteration= 1 
Flno = N 

else 
Use Eq. (8) 

end if 
FM = Fitness Function f(X)
if Iteration= 1 

Place the moths in order of FM 
Update the Flames 
Iteration = 0 

else 
Sort the moths based on FM from last iteration 
Update the Flames 

end if 
Reduce the convergence constant 

for j = 1 : N 
for k = 1 : n 

Update a1 ,t and moths position as to their particular flame using Eq. (9)  
end for 

end for 
if p < 0.5 % p is a random number ∈ [0,1]

Find new solution using Eq. (13) 
Check boundary 

else 
Apply Fibonacci approach using Eqs. (10)–(12) and check boundaries 

end if 
Iteration = Iteration + 1 

end while 
Output: The best solution in the ecosystem with the lowest fitness function value.  

5. Simulation study and discussions 

Section 5.1 provides a high-level overview of the benchmark func-
tions that formed the basis of this investigation. The experimental setup 
for our proposed method is discussed in Section 5.2. In Section 5.3, we 
see how Es-MFO stacks up against other common base algorithms. The 
Sections 5.4, 5.5, and 5.6 show results from statistical analysis, 
convergence performance, complexity and diversity analysis of the 
proposed Es-MFO algorithm, respectively. There is a presentation of 
experimental analysis including statistical and convergence analysis in 
Section 5.7. 

5.1. Benchmark functions 

When it comes to the trustworthiness, verifiability, and effectiveness 
of an algorithm, benchmark functions are indispensable. The selected 
test functions are included in Appendix-1. In order to test the effec-
tiveness of the proposed Es-MFO method, 29 benchmark functions were 
chosen and classified as either unimodal or multimodal. Some chosen 
unimodal and multimodal functions’ three-dimensional structures are 
displayed in Figs. 5 and 6. 

Because each of the unimodal functions (F1-F7) has a unique optimal 
value, they can be used to test the efficiency of an algorithm in 
exploiting data. However, the multimodal functions (F7-F19) are rife 
with local optima, and so can be used to test an algorithm’s ability to 
avoid such solutions. As more dimensions, search areas, and local op-
timum values are added to a multimodal function, its complexity in-
creases. In Fig. 4, we see a three-dimensional representation of randomly 
chosen unimodal and multimodal benchmark functions. 

5.2. Experimental setup 

The proposed algorithm’s source code has been written and imple-
mented in MATLAB R2015a, which has been run on a computer with an 
Intel i5 processor, 8 GB of RAM, and Windows 2010. All algorithms are 
terminated after reaching a maximum of 1000 iterations and a popula-
tion size of 30. Because of the randomness inherent in the proposed and 
compared algorithms, we have run each function 30 times and calcu-
lated the average and standard deviation for each. The results have been 
rounded up to two decimal points to provide smaller statistical errors 
and statistically meaningful output. Table 1 provides the parameters 
used by each compared algorithm. Table 2 compares Es-MFO to some of 
the most popular existing algorithms for data collection and organisa-
tion, including DE, PSO, SCA, JAYA, BOA, and MFO. In Appendix 1, we 
see the precise mathematical expressions for all nineteen of our 
standard-setting functions, complete with their dimensions, variable 
ranges, and optimal values. 

5.3. Discussion on classical benchmark functions 

Simulation results of our proposed Es-MFO have been compared to 
those of 6 (six) other meta-heuristics, including DE, PSO, SCA, JAYA, and 
BOA, on 19 benchmark functions, both unimodal and multimodal. 
Table 2 includes the mean and standard deviation for optimized unim-
odal functions, Es-MFO, and the other six techniques. Table 2 makes 
clear that Es-MFO provided the fewest values when compared to other 
methods. The best outcomes for the functions F1, F3, F4, F6, and F7 are 
produced by the Es-MFO algorithm. It provides the second-best out-
comes for the F2 and F5 functions. Table 2 also shows the investigation 
of functions F8 to F17 under multimodal function optimization. For the 
functions F8, F12, F13, and F17, it is obvious that Es-MFO produces 
better results than other techniques. It provides the second and third- 

Table 1 
The parameters setup of Es-MFO and other algorithms.  

Algorithm Parameters values 

DE Scaling Factor (F) = 0.5 = Crossover probability 
PSO Inertia weight (w) = 0.9 to 0.4, Accelaration coefficient c1 = c2 = 0.2, 

Maximum velocity (Vmax = 4) 
FPA Switching probability (p) ∈ [0, 1], Scaling factor (γ) = 0.01 
BOA Switch probability (p) = 0.8, Sensor modality (c) = 0.01, Power 

exponent (a) = 0.1 to 0.3 
SSA Tworandom numbers (c1andc2) where 0 ≤ c1, c2 ≤ 1 
SCA Random numbers (r2 = rand*2π, r3 = rand*2andr4 = rand) and 

constant a = 2 
MFO Convergence constant t ∈ [ − 1, 1] and parameter ‘r′ decreases linearly 

from ( − 1) to ( − 2), b = 1 
Es-MFO Convergence constant t ∈ [ − 1, 1] and Parameter ‘r′ decreases non- 

linearly from ( − 1)to( − 2),b = 1  
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highest outcomes for functions F9, F10, F15, F18, and F19, and it per-
forms worse than other methods for functions F14 and F16. As a result, it 
can be said that Es-MFO is a better algorithm for optimizing multimodal 
functions than the other six algorithms. 

The percentage of instances in which Es- MFO’s mean performance is 
superior to, comparable to, or inferior to the other six algorithms is 
shown in Table 3. According to Table 3, Es-MFO performs better than 
MFO, DE, PSO, SCA, JAYA, and BOA in 14, 14, 15, 13, and 11 bench-
mark functions, respectively. On 2, 1, 0, 0, 2, and 4 instances, respec-
tively, comparable results can be observed, while poorer values are 
obtained in 3, 4, 4, 4, 4, and 4 benchmark functions. 

5.4. Discussion on statistical and convergence performance for basic 
benchmark problems 

For better performance evaluation, statistical tests have become 
increasingly commonplace in computational methods in recent years 
(Sahoo & Saha, 2022c; Sharma et al., 2022). The most common appli-
cation for them is in an experimental study designed to compare the 

performance of different algorithms. This potentially challenging un-
dertaking is essential for figuring out if a newly proposed solution 
significantly enhances the established solutions for a certain problem. 
Analysis of the suggested Es-MFO algorithm’s efficacy is conducted here 
using Friedman and Wilcoxon signed-rank tests. The strong 

Table 2 
Comparison of Es-MFO with some basic algorithms.  

Sl. No. Performance 
measure 

Es-MFO MFO DE PSO SCA Jaya BOA 

F1 Avrg 
Sdev 

3.42e− 03 1.34e− 02 2.65E− 01 
6.28E− 01 

6.28E− 03 
1.31E− 03 

1.60E− 02 
0 

7.24e− 07 
1.22e− 06 

0 
0 

4.61E− 01 
4.41E− 01 

F2 Avrg 
Sdev 

1.11e− 04 3.44e− 04 1.87 
2.07 

7.49E− 05 
6.97E− 05 

1.24E + 01 
0 

5.29e− 02 
1.03e− 01 

0 
0 

1.61E− 01 
2.24E− 01 

F3 Avrg 
Sdev 

0 
0 

1.11E− 11 
4.27E− 11 

1.14E− 04 
1.11E− 04 

3.47E− 02 
0 

1.71e− 187 
0 

9.45E− 56 
3.01E− 55 

0 
0 

F4 Avrg 
Sdev 

0 
0 

6.81E− 11 
3.72E− 11 

1.16E− 08 
2.73E− 08 

5.82E− 88 
0 

5.71e− 196 
0 

1.45E− 218 
0 

0 
0 

F5 Avrg 
Sdev 

− 1.55e− 02 8.75e− 01 − 3.55E− 03 
3.40E− 04 

− 3.78E− 03 
6.22E− 06 

8.63E− 03 
0 

− 3.79e− 03 
2.35e− 08 

− 3.78E− 03 
2.20E− 09 

− 3.43E− 03 
7.59E− 04 

F6 Avrg 
Sdev 

1.79e− 07 6.95e− 07 1.83E− 01 
2.74E− 01 

2.23E− 02 
2.18E− 02 

8.71E− 02 
0 

5.88e− 03 
1.42e− 02 

3.54E− 02 
4.28E− 02 

1.05E− 01 
1.70E− 01 

F7 Avrg 
Sdev 

0 
0 

7.46E− 98 
4.08E− 97 

9.93E− 15 
3.87E− 14 

6.59E− 01 
0 

2.93e− 03 
1.35e− 02 

1.14E− 110 
4.51E− 112 

0 
0 

F8 Avrg 
Sdev 

0 
0 

0 
0 

0 
0 

3.74E− 07 
0 

8.16e− 02 
1.63e− 01 

0 
0 

0 
0 

F9 Avrg 
Sdev 

8.24e− 01 9.95e− 01 6.35E− 02 
1.02E− 01 

4.08E− 21 
7.56E− 21 

2.07E− 01 
0 

4.39e− 03 
1.40e− 02 

9.30E− 01 
1.01E− 47 

2.55E− 01 
3.11E− 01 

F10 Avrg 
Sdev 

3.68e− 05 2.02e− 04 3.12E− 51 
1.70E− 50 

4.28E− 05 
1.14E− 05 

2.20E− 16 
0 

1.55e− 04 
7.49e− 04 

1.60E− 04 
3.18E− 07 

0 
0 

F11 Avrg 
Sdev 

− 4.91e− 11 3.89e− 11 − 1.12E− 10 
1.32E− 14 

− 1.12E− 10 
9.60E− 14 

− 5.85E− 11 
0 

− 1.14e− 10 
2.53e− 13 

− 1.15E− 10 
1.46E− 25 

− 9.50E− 11 
2.00E− 11 

F12 Avrg 
Sdev 

0 
0 

4.17E− 29 
2.28E− 28 

3.68E− 05 
2.57E− 05 

2.73E− 01 
0 

1.00e− 08 
2.15e− 08 

5.07E− 30 
9.54E− 30 

0 
0 

F13 Avrg 
Sdev 

7.10 1.29e + 01 1.60E + 01 
2.00E + 01 

3 
1.61E− 02 

3.60 
0 

9.93 
2.86 

3 
2.13E− 04 

1.28E + 01 
9.65 

F14 Avrg 
Sdev 

8.30e− 02 2.24e− 01 1.18E− 01 
1.16E− 01 

1.92E− 01 
1.87E− 01 

6.35E− 01 
0 

1.59e− 01 
2.10e− 01 

2.38E− 02 
3.18E− 02 

6.05E− 01 
5.90E− 01 

F15 Avrg 
Sdev 

3.57e− 01 2.79e− 01 2.41 
4.36E− 01 

1.66E + 05 
1.32E + 05 

4.35E + 08 
0 

4.87e− 01 
4.07e− 01 

4.19E− 01 
5.17E− 01 

3 
0 

F16 Avrg 
Sdev 

1.13e− 03 5.01e− 04 1.25E− 03 
1.35E− 03 

1.70E− 03 
9.33E− 04 

1.10E− 01 
0 

5.70e− 04 
4.62e− 04 

3.10E− 02 
2.09E− 05 

5.13E− 03 
3.33E− 03 

F17 Avrg 
Sdev 

0 
0 

0 
0 

6.44E− 05 
9.78E− 05 

7.34E + 01 
0 

1.60e + 00 
8.20e− 01 

0 
0 

1.37E− 04 
7.06E− 04 

F18 Avrg 
Sdev 

1.02 9.63e− 01 2.37E− 01 
2.69E− 02 

3.33E + 01 
2.97E− 01 

1.02E + 01 7.50E− 01 2.17e− 02 
3.70e− 02 

1.87E + 01 
4.07E− 01 

1.92E− 08 
1.25E− 09 

F19 Avrg 
Sdev 

2.90e− 01 2.96e− 01 0 
0 

5.24E + 01 
4.52E− 01 

2.56E + 01 1.35 4.73e− 01 
6.02e− 01 

4.15E + 01 
5.10E− 01 

9.09E− 01 
1.35E− 02  

Table 3 
Evaluation of Es- MFO’s efficiency with other approaches using 19 standard 
benchmark functions.   

MFO DE PSO SCA JAYA BOA 

Superior to 14 14 15 15 16 11 
Similar to 2 1 0 0 2 4 
Inferior to 3 4 4 4 1 4  

Table 4 
Wilcoxon’s test results for proposed Es-MFO.  

Es-MFOvs. Algorithm P-Value R+ R- Winner 

DE  0.000 135 36 Es-MFO 
PSO  0.003 158 32 Es-MFO 
JAYA  <0.001 107 46 Es-MFO 
BOA  0.000 110 40 Es-MFO 
SCA  0.000 140 50 Es-MFO 
MFO  0.004 104 49 Es-MFO  

Table 5 
Friedman’s rank test of proposed Es-MFOwith considered algorithms.  

Method Average 
rank 

Rank P-value 

DE  4.39 6 At the 1% level of significance, Ho is ruled out 
with a P-value of (0.0000.01). At a 1% level of 
significance, the performance of several 
approaches differs significantly from one another. 

PSO  5.79 7 
JAYA  3.42 2 
BOA  4.00 4 
SCA  3.63 3 
MFO  4.08 5 
Es- 

MFO  
2.68 1   
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outperformance of the Es-MFO on the test functions was assessed by 
running the multiple-problem Wilcoxon test and Friedman’s test in SPSS 
simultaneously. 

Table 4 shows the Wilcoxon rank test’s significance level of 5% for 
comparing Es-MFO to the other algorithms studied for a set of 19 

benchmark functions. Results in Table 4 show that Es-MFO is superior to 
its competitors because the R + values are all greater than the R- values. 

The results of the Friedman-Rank test, which are shown in Table 5, 
have a 95% level of confidence, demonstrating that Es-performance 
MFO’s is both significant and compatible with conventional 

Fig. 5. Results of Friedman rank test.  

Fig. 6. Convergence graph of Basic functions.  
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algorithms like MFO, DE, PSO, SCA, JAYA, and BOA for a set of 19 
benchmark functions. 

According to Table 5, the proposed algorithm’s mean level is the 
lowest of all the others, making Es- MFO’s rank the lowest. Therefore, it 
is clear from the results on these benchmarks that the suggested Es-MFO 
has significantly improved space exploitation, convergence speed, and 
numeric performance compared to the traditional rival. In Fig. 5. A 
graphical comparison of mean rank to different advancement algorithms 
is shown. 

5.5. Convergence performance on basic benchmark functions 

Some of the convergence graphs compared with MFO, DE, PSO, SCA, 
JAYA, and BOA for a few benchmark functions, such as F1, F2, F4, F6, 
F7, F10, F14, F15, and F16 have been provided in Fig. 6 in order to 
compare the convergence rate of Es-MFO with other algorithms. These 
figures display the objective function value as well as the function 
evaluation along the horizontal and vertical axes, respectively. Dimen-
sional size 100 was used to illustrate the curves. Comparing ES-MFO to 
other approaches, it converges quickly on the global optima. However, 
due to their tendency to get caught in local optima, other optimization 
methods under comparison have a moderate convergence rate. Due to its 
location in a narrow canyon, convergent to the global optima for F14 
and F16 is challenging for optimization problems. However, this global 
optimum is attained within 100 dimensions by the suggested Es-MFO. As 
a result, the suggested Es-MFO exhibits a high rate of convergence when 
combined with other optimization techniques. 

5.6. Complexity and diversity analysis of the Es-MFO algorithm 

In this section, two efficient analyses such as complexity and di-
versity analysis of the suggested Es-MFO algorithm are discussed and 
presented in Sections 5.6.1 and 5.6.2 respectively. 

5.6.1. Complexity analysis 
To properly evaluate population-based algorithms, it is important to 

consider the quality of the solutions they produce, and the computa-
tional time required to obtain those solutions. The complexity of an 
algorithm can be expressed as a function of its running time or space 
requirements with the input size. This process of determining the for-
mula for the total time required for a successful algorithm execution is 
known as time complexity analysis. The proposed Es-MFO algorithm’s 
computational complexity is analyzed using big-O notation. The 
Complexity of Es-MFO (TEs− MFO ) also depends on initialization of moth 
position (TIMP), evaluation of moth position (TEMP), sorting of moth 
based on fitness (TMf), update of flames (T) and update phase of moth 
position with FSM (tUMFSM). We will denote the maximum number of 
iterations, number of variables, and number of moths as I, D, and N, 
respectively. We will use time complexity for the comparison of both Es- 
MFO and MFO algorithm. 

Complexity of initialization of moth position is TIMP = O (N * D). 
The computation of fitness function for each organism i.e., 

complexity of TEMP = O (D). 
Computational complexity of TMf = O(NLog(N) ). 
Complexity of TFl = O (N ∗ D). 
Complexity of.TUMFSM = O(N*D) + O(Log(N))

Since the original MFO algorithm (Mirjalili, 2015) uses quicksort 

Fig. 7. Diversity analysis of Es-MFO for different benchmark functions.  

S. Kumar Sahoo et al.                                                                                                                                                                                                                         



Expert Systems With Applications 227 (2023) 120367

12

Table 6a 
Experimental outcomes of Es-MFO and basic algorithms on CEC’17 functions for D = 30.  

Func.  Es-MFO BOA JAYA SCA MFO GA BA MFO3 OMFO SMFO 

1 Avrg 6.21 × 1010 6.70 × 1010 6.93 × 1010 6.39 × 1010 6.50 × 1010 4.69 × 1010 1.32 × 1011 6.92 × 1010 6.56 × 1010 6.21 × 1010  

Sdev 1.01 × 1010 5.88 × 109 1.99 × 109 6.80 × 109 9.04 × 109 7.50 × 109 1.47 × 1010 8.65 × 109 8.16 × 109 6.24 × 109  

3 Avrg 1.25 × 105 8.50 × 104 1.58 × 105 1.00 × 105 9.28 × 104 1.71 × 108 5.26 × 107 9.62 × 104 9.42 × 104 8.71 × 104  

Sdev 3.07 × 104 6.92 × 103 2.09 × 104 1.37 × 104 3.67 × 103 2.13 × 108 1.50 × 108 1.45 × 104 3.43 × 103 5.33 × 103  

4 Avrg 1.66 × 104 2.31 × 104 8.47 × 102 1.69 × 104 1.80 × 104 1.88 × 104 3.78 × 104 2.29 × 104 1.88 × 104 1.68 × 104  

Sdev 3.93 × 103 4.26 × 103 1.53 × 102 2.87 × 103 3.90 × 103 3.59 × 103 9.33 × 103 4.67 × 103 4.48 × 103 2.80 × 103  

5 Avrg 8.80 × 102 1.06 × 103 9.75 × 102 9.77 × 102 9.85 × 102 8.41 × 102 1.05 × 103 9.99 × 102 9.86 × 102 9.72 × 102  

Sdev 1.94 × 102 7.96 × 101 1.87 × 101 3.56 × 101 2.59 × 101 3.36 × 101 6.59 × 101 3.48 × 101 2.77 × 101 1.63 × 101  

6 Avrg 6.52 × 102 7.08 × 102 6.96 × 102 6.86 × 102 7.04 × 102 6.87 × 102 6.76 × 102 7.07 × 102 7.05 × 102 7.01 × 102  

Sdev 2.82 × 101 1.20 × 101 2.54 × 100 5.80 × 100 6.12 × 100 5.77 × 100 7.04 × 100 7.93 × 100 8.61 × 100 6.35 × 100  

7 Avrg 1.46 × 103 1.66 × 103 1.63 × 103 1.54 × 103 1.53 × 103 1.58 × 103 2.49 × 103 1.55 × 103 1.55 × 103 1.49 × 103  

Sdev 2.41 × 101 1.16 × 101 2.00 × 101 4.86 × 101 4.97 × 101 3.33 × 101 3.49 × 102 3.78 × 101 4.08 × 101 2.84 × 101  

8 Avrg 1.08 × 103 1.26 × 103 1.05 × 103 1.23 × 103 1.19 × 103 1.29 × 103 1.38 × 103 1.21 × 103 1.20 × 103 1.18 × 103  

Sdev 1.50 × 102 5.59 × 101 1.45 × 101 2.47 × 101 2.45 × 101 2.69 × 101 8.85 × 101 2.98 × 101 2.51 × 101 1.80 × 101  

9 Avrg 1.25 × 104 1.73 × 104 3.98 × 104 9.73 × 103 1.53 × 104 1.24 × 104 1.79 × 104 1.49 × 104 1.55 × 104 1.33 × 104  

Sdev 1.13 × 104 2.92 × 103 8.57 × 103 9.25 × 102 1.68 × 103 2.11 × 103 7.65 × 103 2.14 × 103 1.50 × 103 1.26 × 103  

10 Avrg 6.83 × 103 7.79 × 103 9.91 × 103 9.31 × 103 9.69 × 103 8.06 × 103 1.34 × 109 9.74 × 103 9.74 × 103 9.30 × 103  

Sdev 7.88 × 102 6.40 × 102 2.19 × 102 6.42 × 102 4.66 × 102 3.16 × 102 3.56 × 103 4.38 × 102 4.82 × 102 3.75 × 102  

11 Avrg 5.31 × 103 7.77 × 103 3.58 × 104 9.57 × 103 1.46 × 104 4.66 × 104 5.84 × 104 1.28 × 104 1.36 × 104 1.01 × 104  

Sdev 1.95 × 103 1.95 × 103 6.58 × 103 2.91 × 103 4.19 × 103 3.71 × 104 3.66 × 104 4.18 × 103 4.08 × 103 1.81 × 103  

12 Avrg 2.31 × 109 1.81 × 1010 1.01 × 109 1.64 × 1010 1.51 × 1010 1.10 × 1010 6.63 × 1010 1.69 × 1010 1.68 × 1010 1.51 × 1010  

Sdev 7.40 × 109 2.58 × 109 4.32 × 108 4.07 × 109 3.20 × 109 1.14 × 109 1.70 × 1010 4.89 × 109 3.58 × 109 2.24 × 109  

13 Avrg 1.04 × 108 1.82 × 1010 2.16 × 108 9.84 × 109 1.33 × 1010 2.34 × 1010 3.31 × 1010 1.91 × 1010 1.52 × 1010 1.24 × 1010  

Sdev 2.24 × 108 4.88 × 109 2.78 × 108 8.00 × 109 4.74 × 109 4.07 × 109 1.45 × 1010 6.91 × 109 6.62 × 109 4.85 × 109  

14 Avrg 1.39 × 106 8.18 × 106 7.05 × 105 9.70 × 105 1.02 × 107 6.95 × 107 1.30 × 108 2.85 × 107 2.53 × 107 9.31 × 106  

Sdev 1.99 × 106 8.85 × 106 3.77 × 105 1.31 × 106 8.01 × 106 3.95 × 107 1.23 × 108 2.82 × 107 2.59 × 107 7.40 × 106  

15 Avrg 8.93 × 108 1.17 × 109 1.02 × 108 3.43 × 108 1.57 × 109 3.16 × 109 6.76 × 109 2.34 × 109 1.77 × 109 9.36 × 108  

Sdev 2.25 × 109 4.63 × 108 6.67 × 107 3.84 × 108 1.26 × 109 1.59 × 109 3.75 × 109 1.59 × 109 1.35 × 109 5.33 × 108  

16 Avrg 3.23 × 103 7.61 × 103 5.95 × 103 5.82 × 103 6.78 × 103 8.45 × 103 8.87 × 103 7.46 × 103 7.15 × 103 6.88 × 103  

Sdev 3.80 × 102 1.88 × 103 2.20 × 102 6.06 × 102 9.69 × 102 2.79 × 103 2.98 × 103 1.61 × 103 1.14 × 103 9.27 × 102  

17 Avrg 2.46 × 103 8.13 × 103 2.76 × 103 6.65 × 103 7.17 × 103 3.02 × 104 1.55 × 104 1.69 × 104 6.24 × 103 6.53 × 103  

Sdev 2.35 × 102 5.55 × 103 1.46 × 102 4.85 × 103 4.79 × 103 4.81 × 104 1.77 × 104 2.12 × 104 4.36 × 103 3.89 × 103  

18 Avrg 1.02 × 107 1.37 × 108 2.12 × 107 6.83 × 106 1.43 × 108 4.68 × 108 2.37 × 108 2.38 × 108 1.72 × 108 9.26 × 107  

Sdev 1.54 × 107 1.03 × 108 1.06 × 107 6.05 × 106 1.05 × 108 2.64 × 108 1.97 × 108 1.69 × 108 1.35 × 108 4.95 × 107  

19 Avrg 1.33 × 109 1.65 × 109 3.05 × 107 4.33 × 108 2.19 × 109 3.19 × 109 3.38 × 109 2.40 × 109 2.10 × 109 1.17 × 109  

Sdev 2.70 × 109 7.45 × 108 3.40 × 107 3.69 × 108 1.15 × 109 1.77 × 109 1.89 × 109 1.05 × 109 1.37 × 109 5.56 × 108  

20 Avrg 2.73 × 103 3.24 × 103 3.90 × 103 3.81 × 103 3.31 × 103 3.29 × 103 4.34 × 103 3.48 × 103 3.44 × 103 3.26 × 103  

Sdev 2.52 × 102 2.50 × 102 1.28 × 102 2.46 × 102 1.84 × 102 1.63 × 102 6.39 × 102 2.01 × 102 1.66 × 102 1.55 × 102  

21 Avrg 2.52 × 103 2.81 × 103 2.05 × 103 2.72 × 103 2.81 × 103 2.74 × 103 3.04 × 103 2.83 × 103 2.79 × 103 2.80 × 103  

Sdev 3.36 × 101 7.08 × 101 1.57 × 101 4.31 × 101 4.44 × 101 4.64 × 101 1.39 × 102 5.80 × 101 3.38 × 101 4.85 × 101  

(continued on next page) 
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algorithm, the computational complexity is O [NI* (D +N)] for the worst 
case. Therefore, the overall complexity of the suggested Es-MFO algo-
rithm for worst case can be approximated as follows: 

TEs− MFO = TIMP +TEMP + TMf + TFl + = O(I *(2ND + D + N2 + Log (N)))

(14) 

So, the time complexity of Es-MFO is greater than MFO algorithm. It 
is true that the complexity of computation has increased, but the in-
crease is negligible considering the enhancement. 

5.6.2. Diversity analysis 
Findings from studies of population variety can aid in the creation of 

an evolutionary algorithm by shedding light on how such a programme 
operates. Optimisation algorithms use a group of people to improve the 
quality of the search areas and speed up the process of locating the 
optimal answers. In most cases, search agents that have found the best 
answers will try to steer you in that direction. This pulls search agents 
further apart, diminishing the benefits of diversity. On the other hand, 
the effect of intensification grows when distance between people 
shrinks. A diversity assessment (Sahoo et al., 2022a) is examined and 
defined as follows to evaluate the shrinking and growing distances be-
tween search agents: 

divj =
1
N
∑N

i=1

⃒
⃒median

(
xj) − xj

i

⃒
⃒ (15)  

div =
1
d
∑d

j=1
divj (16)  

where, N and d represents number of search agents and design variables 
respectively, xj

i is the dimension j of the i’th search agent and median
(
xj)

is the median of dimension j in the whole population, divj is the diversity 
in each dimension and mathematically, it is defined as the distance 

between the j’th dimension of every search agent and the median of that 
dimension. The diversity of whole population (div) is then calculated by 
taking average of every divj. 

Furthermore, with the help of diversity measurement, we can 
calculate the percentage of both exploration and exploitation during 
each iteration using following Equations: 

exploration% =

(
div

divmax

)

× 100 (17)  

exploitation% =

(
|div − divmax|

divmax

)

× 100 (18)  

where divmax is defined as the maximum diversity value in the whole 
optimization process and |div − divmax| is the absolute value between div 
and divmax. The exploration% is the link between the diversity in each 
iteration and the maximum diversity obtained. The exploitation% relates 
to the exploitation level and it is evaluated as the complemental per-
centage to exploration% as the difference between the maximal diversity 
and the current diversity of an iteration is caused by the concentration of 
search agents. ‘ 

Our proposed Es-MFO algorithm was tested on 23 benchmark func-
tions, allowing us to analyse the trade-offs between exploration and 
exploitation. The benchmark functions F1, F2, F3, F6, F7, F10, F14, F15, 
and F18 from Appendix 1 were chosen to ensure a level playing field and 
presented in Fig. 7. The X-axis shows the number of iterations, while the 
Y-axis displays the percentage of both exploration and exploitation. 

5.6.3. Experimental comparisons on CEC 2017 
To evaluate the performance of the novel hybrid Es-MFO algorithm, 

it is tested with high complexity CEC2017 benchmark problems con-
sisting of four parts: (1) Unimodal (f1-f3); (2) Multimodal (f4-f10); (3) 
Hybrid (f11-f20) and (4) composite (f21-30) benchmark problems. Out 
of thirty functions, the second unimodal function (f2) has been discarded 

Table 6a (continued ) 

Func.  Es-MFO BOA JAYA SCA MFO GA BA MFO3 OMFO SMFO 

22 Avrg 6.73 × 103 9.39 × 103 9.91 × 103 9.86 × 103 1.05 × 104 8.41 × 103 1.47 × 104 1.09 × 104 1.05 × 104 9.97 × 103  

Sdev 2.30 × 103 7.84 × 102 1.35 × 103 1.00 × 103 6.94 × 102 2.18 × 103 3.36 × 102 5.72 × 102 5.73 × 102 7.11 × 102  

23 Avrg 2.87 × 103 3.96 × 103 3.99 × 103 3.61 × 103 3.72 × 103 3.59 × 103 1.47 × 104 3.88 × 103 3.78 × 103 3.77 × 103  

Sdev 3.65 × 101 2.08 × 102 4.66 × 101 1.11 × 102 1.41 × 102 1.85 × 102 3.36 × 103 2.13 × 102 1.73 × 102 1.58 × 102  

24 Avrg 3.05 × 103 4.30 × 103 3.96 × 103 3.86 × 103 4.03 × 103 3.81 × 103 4.88 × 103 4.16 × 103 4.22 × 103 4.08 × 103  

Sdev 4.10 × 101 1.44 × 102 2.73 × 102 1.77 × 102 1.96 × 102 1.20 × 102 2.80 × 102 2.45 × 102 2.02 × 102 2.25 × 102  

25 Avrg 6.39 × 103 6.16 × 103 2.96 × 103 4.96 × 103 6.30 × 103 8.40 × 103 1.80 × 104 6.84 × 103 6.29 × 103 5.94 × 103  

Sdev 2.92 × 103 6.24 × 102 2.46 × 101 4.86 × 102 9.06 × 102 1.78 × 103 2.91 × 103 1.03 × 103 7.23 × 102 4.78 × 102  

26 Avrg 7.74 × 103 1.19 × 104 1.36 × 104 1.18 × 104 1.20 × 104 1.34 × 104 1.95 × 104 6.84 × 103 6.29 × 103 5.94 × 103  

Sdev 3.44 × 103 8.02 × 102 4.97 × 103 8.73 × 102 9.52 × 102 2.38 × 103 2.90 × 103 1.03 × 103 7.23 × 102 4.78 × 102  

27 Avrg 3.29 × 103 5.39 × 103 4.39 × 103 3.20 × 103 4.83 × 103 4.55 × 103 3.20 × 103 1.31 × 104 1.23 × 104 1.21 × 104  

Sdev 2.52 × 101 5.13 × 102 7.06 × 103 1.89 × 103 4.45 × 102 3.38 × 102 5.68 × 103 1.25 × 103 8.23 × 102 7.18 × 102  

28 Avrg 7.09 × 103 8.52 × 103 7.30 × 103 3.30 × 103 7.73 × 103 7.49 × 103 3.30 × 103 5.38 × 103 5.15 × 103 5.00 × 103  

Sdev 3.03 × 103 4.33 × 102 6.90 × 103 4.25 × 103 1.01 × 103 5.16 × 102 6.14 × 103 5.82 × 102 4.08 × 102 4.42 × 102  

29 Avrg 4.36 × 103 1.10 × 104 8.33 × 103 6.58 × 103 8.66 × 103 6.98 × 104 9.27 × 104 8.43 × 103 8.23 × 103 7.74 × 103  

Sdev 3.06 × 102 5.37 × 103 3.60 × 102 9.67 × 102 3.13 × 103 5.34 × 104 1.01 × 103 7.84 × 102 8.18 × 102 7.03 × 102  

30 Avrg 3.97 × 106 3.13 × 109 4.39 × 107 2.27 × 109 2.30 × 109 2.75 × 109 5.93 × 109 1.65 × 104 9.81 × 103 9.08 × 103  

Sdev 3.29 × 106 1.08 × 109 3.63 × 107 1.02 × 109 1.08 × 109 6.85 × 108 3.11 × 109 2.70 × 104 3.42 × 103 2.90 × 103  
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Table 6b 
Experimental outcomes of Es-MFO and basic algorithms on CEC’17 functions for D = 50.  

Func.  Es-MFO BOA JAYA SCA MFO GA BA MFO3 OMFO SMFO 

1 Avrg 9.29 × 1010 1.16 × 1011 2.89 × 1010 5.42 × 1010 1.29 × 1011 4.52 × 1010 1.52 × 1011 1.25 × 1011 1.24 × 1011 1.18 × 1011  

Sdev 4.73 × 1010 6.02 × 109 4.51 × 109 9.22 × 109 8.04 × 109 8.37 × 109 1.47 × 109 6.57 × 109 6.83 × 109 6.35 × 109  

3 Avrg 1.96 × 105 1.86 × 105 3.09 × 105 1.80 × 105 3.90 × 105 3.55 × 108 6.26 × 107 3.04 × 105 1.09 × 106 3.85 × 106  

Sdev 3.38 × 104 2.21 × 104 4.57 × 104 2.01 × 104 4.86 × 105 7.05 × 108 1.57 × 107 1.31 × 105 2.41 × 106 1.98 × 107  

4 Avrg 2.83 × 104 4.29 × 104 4.38 × 104 4.13 × 104 4.39 × 104 4.83 × 104 3.68 × 104 4.56 × 104 4.41 × 104 4.12 × 104  

Sdev 2.58 × 104 4.79 × 103 6.46 × 103 5.40 × 103 7.35 × 103 3.06 × 103 9.53 × 103 5.98 × 103 5.71 × 103 4.74 × 103  

5 Avrg 1.19 × 103 1.29 × 103 1.25 × 103 1.25 × 103 1.26 × 103 8.37 × 103 2.05 × 103 1.27 × 103 1.27 × 103 1.23 × 103  

Sdev 1.55 × 102 6.16 × 101 3.20 × 101 3.27 × 101 3.29 × 101 2.72 × 101 6.59 × 101 3.97 × 101 3.17 × 101 2.19 × 101  

6 Avrg 6.84 × 102 7.18 × 102 7.47 × 102 7.08 × 102 7.16 × 102 6.61 × 102 7.76 × 102 7.16 × 102 7.17 × 102 7.15 × 102  

Sdev 3.85 × 101 1.12 × 101 6.00 × 100 6.45 × 100 4.75 × 100 7.59 × 100 7.04 × 100 6.90 × 100 5.45 × 100 4.33 × 100  

7 Avrg 2.06 × 103 2.17 × 103 2.12 × 103 2.17 × 103 2.14 × 103 2.25 × 103 2.55 × 103 2.14 × 103 2.15 × 103 2.07 × 103  

Sdev 2.07 × 102 5.16 × 101 5.55 × 101 4.96 × 101 3.64 × 101 3.11 × 101 3.59 × 102 4.21 × 101 3.68 × 101 3.36 × 101  

8 Avrg 1.51 × 103 1.63 × 103 1.58 × 103 1.59 × 103 1.58 × 103 1.55 × 103 1.58 × 102 1.60 × 103 1.59 × 103 1.55 × 103  

Sdev 1.82 × 102 6.08 × 101 3.23 × 101 3.12 × 101 3.98 × 101 1.91 × 101 8.85 × 101 3.29 × 101 3.56 × 101 3.10 × 101  

9 Avrg 5.55 × 104 4.63 × 104 1.76 × 104 3.99 × 104 4.82 × 104 1.21 × 104 2.39 × 104 4.67 × 104 4.86 × 104 4.32 × 104  

Sdev 2.83 × 104 4.42 × 103 4.41 × 103 3.29 × 103 4.16 × 103 4.55 × 103 7.65 × 103 4.55 × 103 5.12 × 103 2.92 × 103  

10 Avrg 1.21 × 104 1.39 × 104 1.42 × 104 1.53 × 104 1.64 × 104 2.34 × 104 1.34 × 104 1.64 × 104 1.65 × 104 1.60 × 104  

Sdev 1.06 × 103 7.49 × 102 3.72 × 102 4.13 × 102 4.15 × 102 6.80 × 103 3.56 × 103 5.35 × 102 4.96 × 102 3.81 × 102  

11 Avrg 1.72 × 104 2.56 × 104 6.88 × 103 3.16 × 104 2.89 × 104 5.69 × 104 5.88 × 104 2.92 × 104 2.96 × 104 2.57 × 104  

Sdev 5.28 × 103 2.25 × 103 1.43 × 103 2.30 × 103 3.20 × 103 2.60 × 104 3.76 × 103 5.21 × 103 2.50 × 103 2.30 × 103  

12 Avrg 1.47 × 1010 8.76 × 1010 1.09 × 1010 7.74 × 1010 9.32 × 1010 1.09 × 1010 6.69 × 1010 9.11 × 1010 9.72 × 1010 9.01 × 1010  

Sdev 3.53 × 1010 8.77 × 109 2.79 × 109 1.48 × 1010 1.47 × 1010 1.42 × 109 1.70 × 109 1.91 × 1010 1.49 × 1010 1.08 × 1010  

13 Avrg 1.31 × 1010 4.39 × 1010 3.01 × 1010 4.36 × 1010 4.75 × 1010 1.76 × 1010 3.61 × 1010 5.78 × 1010 6.00 × 1010 5.50 × 1010  

Sdev 3.42 × 1010 1.27 × 1010 9.97 × 104 1.54 × 1010 1.19 × 1010 8.71 × 109 1.65 × 1010 1.37 × 1010 1.24 × 1010 1.23 × 1010  

14 Avrg 4.80 × 106 1.84 × 108 1.33 × 108 5.71 × 107 1.32 × 108 6.34 × 107 1.35 × 108 2.10 × 108 1.72 × 108 1.71 × 108  

Sdev 4.95 × 106 1.08 × 108 7.22 × 107 5.98 × 107 6.81 × 107 2.97 × 107 2.23 × 108 1.29 × 108 7.26 × 107 9.32 × 107  

15 Avrg 4.13 × 109 1.10 × 1010 6.92 × 1010 6.09 × 109 1.12 × 1010 3.06 × 109 7.76 × 109 1.23 × 1010 1.30 × 1010 1.09 × 1010  

Sdev 9.02 × 109 2.92 × 109 4.02 × 109 3.72 × 109 4.34 × 109 2.22 × 109 3.78 × 109 5.45 × 109 4.74 × 109 3.94 × 109  

16 Avrg 4.84 × 103 1.15 × 104 8.31 × 103 8.51 × 103 1.05 × 104 8.20 × 103 1.85 × 104 1.12 × 104 1.13 × 104 1.06 × 104  

Sdev 4.92 × 102 1.84 × 103 3.08 × 102 1.64 × 103 1.74 × 103 3.39 × 103 2.98 × 103 2.19 × 103 1.66 × 103 1.18 × 103  

17 Avrg 1.03 × 105 1.64 × 104 4.43 × 104 1.95 × 104 2.96 × 104 1.34 × 104 1.05 × 105 4.06 × 104 4.37 × 104 2.21 × 104  

Sdev 8.81 × 104 1.07 × 104 3.16 × 103 7.03 × 103 2.38 × 104 1.02 × 104 1.87 × 104 3.83 × 104 3.10 × 104 1.11 × 104  

18 Avrg 3.36 × 107 2.44 × 108 8.09 × 107 8.40 × 107 3.16 × 108 9.86 × 108 2.57 × 108 4.03 × 108 3.72 × 108 2.81 × 108  

Sdev 2.14 × 107 9.07 × 107 3.48 × 107 6.66 × 107 1.43 × 108 1.52 × 108 1.98 × 108 2.62 × 108 1.90 × 108 1.39 × 108  

19 Avrg 1.42 × 109 6.13 × 109 7.02 × 109 4.13 × 109 5.61 × 109 4.42 × 109 3.58 × 109 6.57 × 109 6.73 × 109 5.30 × 109  

Sdev 4.28 × 109 1.61 × 109 8.49 × 108 1.46 × 109 1.73 × 109 1.11 × 109 2.89 × 109 2.19 × 109 1.95 × 109 1.39 × 109  

20 Avrg 4.00 × 103 4.37 × 103 4.35 × 103 3.96 × 103 4.61 × 103 4.36 × 103 5.36 × 103 4.68 × 103 4.76 × 103 4.50 × 103  

Sdev 6.95 × 102 3.78 × 102 1.51 × 102 3.59 × 102 2.41 × 102 2.51 × 102 6.39 × 102 2.52 × 102 2.01 × 102 1.68 × 102  

21 Avrg 2.83 × 102 3.33 × 103 2.81 × 103 3.18 × 103 3.30 × 103 2.64 × 103 3.24 × 103 3.33 × 103 3.34 × 103 3.29 × 103  

Sdev 8.09 × 101 9.27 × 101 3.01 × 101 7.66 × 101 8.74 × 101 3.79 × 102 1.59 × 102 8.45 × 101 9.02 × 101 8.20 × 101  

(continued on next page) 
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due to its unstable behavior, as presented in (Awad, Ali, Liang, Qu, & 
Suganthan, 2016a). All algorithms are evaluated on MATLAB 2015(a) 
with D*10000 function evaluation (for stopping criteria), the initial 
number of populations is 30 (thirty) and 30 independent runs have been 
executed for thirty and fifty dimensions. The average (Avrg) and stan-
dard deviation (Sdev) values are recorded for comparison. 

5.6.4. Simulation and statistical analysis on basic and MFO variants 
On CEC 2017 test suits, the Es-MFO algorithm is evaluated to nine 

traditional optimization algorithms: BOA, JAYA, SCA, MFO, GA, BA, 
MFO3 (Soliman et al. 2016), OMFO (Elsakaan et al., 2018), and SMFO 
(Chen et al., 2021). The comparison results of Es-MFO and with other 
considered algorithms are presented in Tables 6a and 6b. According to 
Tables 6a and 6b, our proposed Es-MFO algorithm reached more than 
90% top results for all collections of CEC2017 benchmark problems on 
thirty and fifty dimensions when compared to other traditional opti-
mization algorithms, but it only provides 80% best results when 
compared to the JAYA algorithm. Tables 7a and 7b show the number of 
occurrences of superiority, similarity, and inferiority for thirty and fifty 

dimensions, respectively. From Table 7a, we revealed that Es-MFO 
works better than BOA, JAYA, SCA, MFO, GA, BA, MFO3, OMFO, and 
SMFO in 22, 22, 21, 25, 23, 26, 24, 25 and 26 benchmark functions, 

Table 6b (continued ) 

Func.  Es-MFO BOA JAYA SCA MFO GA BA MFO3 OMFO SMFO 

22 Avrg 1.40 × 104 1.58 × 104 1.69 × 104 1.60 × 104 1.80 × 104 8.30 × 104 2.57 × 104 1.81 × 104 1.84 × 104 1.79 × 104  

Sdev 7.50 × 102 9.58 × 102 3.20 × 102 6.25 × 102 5.46 × 102 1.60 × 103 2.36 × 103 6.24 × 102 5.06 × 102 4.89 × 102  

23 Avrg 3.32 × 103 5.03 × 103 3.63 × 103 4.24 × 103 4.79 × 103 3.35 × 103 2.46 × 104 4.90 × 103 4.83 × 103 4.71 × 103  

Sdev 6.26 × 101 2.40 × 102 1.54 × 102 1.65 × 102 2.68 × 102 6.28 × 101 3.66 × 103 2.81 × 102 2.97 × 102 2.56 × 102  

24 Avrg 3.42 × 103 5.73 × 103 4.84 × 103 4.68 × 103 5.28 × 103 5.14 × 103 4.68 5.46 × 103 5.60 × 103 5.52 × 103  

Sdev 6.51 × 101 4.14 × 102 1.81 × 102 3.17 × 102 3.60 × 102 2.15 × 101 2.85 × 103 4.11 × 102 3.66 × 102 2.68 × 102  

25 Avrg 1.46 × 104 1.62 × 104 4.01 × 104 1.55 × 104 1.69 × 104 3.54 × 104 2.20 × 104 1.79 × 104 1.72 × 104 1.62 × 104  

Sdev 6.11 × 103 1.04 × 103 2.35 × 103 1.30 × 103 1.56 × 103 1.06 × 103 2.51 × 103 1.29 × 103 1.23 × 103 1.07 × 103  

26 Avrg 1.50 × 104 1.82 × 104 1.39 × 104 1.84 × 104 1.84 × 104 1.85 × 104 2.15 × 104 1.89 × 104 1.88 × 104 1.79 × 104  

Sdev 5.15 × 103 6.37 × 102 1.68 × 103 8.66 × 102 9.39 × 103 1.97 × 103 1.70 × 103 1.05 × 103 7.05 × 102 7.40 × 102  

27 Avrg 3.87 × 103 8.52 × 103 3.20 × 103 3.20 × 103 7.79 × 103 4.04 × 103 3.25 × 103 7.96 × 103 8.17 × 103 7.94 × 103  

Sdev 1.10 × 102 8.67 × 102 2.99 × 103 1.27 × 103 7.94 × 102 2.32 × 102 5.58 × 103 1.03 × 103 1.05 × 103 8.54 × 102  

28 Avrg 1.43 × 104 1.49 × 104 3.30 × 103 3.30 × 103 1.50 × 104 7.52 × 103 2.30 × 103 1.55 × 104 1.56 × 104 1.46 × 104  

Sdev 6.12 × 103 1.05 × 103 5.41 × 103 1.62 × 103 1.76 × 103 1.13 × 103 6.15 × 103 1.73 × 103 1.58 × 103 1.32 × 103  

29 Avrg 2.32 × 105 2.15 × 105 9.96 × 105 7.97 × 104 1.85 × 105 6.74 × 104 1.27 × 105 2.74 × 105 2.99 × 105 1.24 × 105  

Sdev 1.24 × 106 1.47 × 105 1.24 × 104 1.36 × 105 2.66 × 105 3.68 × 104 1.01 × 104 2.59 × 105 4.66 × 105 1.07 × 105  

30 Avrg 9.97 × 108 9.58 × 109 4.02 × 108 6.17 × 109 9.53 × 109 6.86 × 109 6.13 × 1010 1.15 × 1010 1.10 × 1010 9.27 × 109  

Sdev 4.55 × 109 2.27 × 109 2.44 × 108 1.91 × 109 3.19 × 109 1.36 × 109 4.15 × 109 3.70 × 109 3.08 × 109 2.20 × 109  

Table 7a 
Simulation result for comparison of Es-MFO and basic algorithms for D = 30.   

BOA JAYA SCA MFO GA BA MFO3 OMFO SMFO 

Superior 22 20 21 25 23 26 24 25 26 
Similar 0 0 0 2 1 0 0 0 0 
Inferior 7 9 8 2 5 3 5 4 3  

Table 7b 
Simulation result for comparison of Es-MFO and basic algorithms for D = 50.   

BOA JAYA SCA MFO GA BA MFO3 OMFO SMFO 

Superior 24 23 21 27 22 22 25 26 24 
Similar 0 0 0 0 0 0 0 0 0 
Inferior 5 6 8 2 7 7 4 3 5  

Table 8a 
Friedman’s rank test of Es-MFO and basic algorithms with D = 30.  

Method Mean 
rank 

Rank P-value 

BOA  6.91 9 At the 1% level of significance, Ho is ruled out with 
a P-value of (0.0000.01). At a 1% level of 
significance, the performance of several approaches 
differs significantly from one another. 

JAYA  5.09 4 
SCA  3.59 2 
MFO  5.66 5 
GA  6.07 7 
BA  8.73 10 
MFO3  6.73 8 
OMFO  5.89 6 
SMFO  3.68 3 
Es- 

MFO  
2.66 1  
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respectively, Similar outcomes can be observed in 0, 0, 0, 2, 1, 0, 0, 0 and 
0 instances, respectively, and inferior values are achieved in 7, 7, 8, 4, 6, 
3, 5, 4 and 3 benchmark functions respectively. Again, From Table 7b, 
we observed that Es-MFO outperforms the BOA, JAYA, SCA, MFO, GA, 
BA, MFO3, OMFO, and SMFO in 24, 23, 21, 27, 22, 25, 26 and 24 
benchmark functions, respectively. 

5.6.4.1. Statistical and convergence analysis of Es-MFO on basic and MFO 
variants. To measure the effectiveness of the suggested Es-MFO, the 
Friedman rank test is conducted, and the results are displayed in 
Tables 8a and 8b for thirty and fifty dimensions, respectively. From 
Tables 8a and 8b, it can be concluded that the rank of the Es-MFO is the 
least. The convergence performance of Es-MFO and other considered 
optimization algorithms on the CEC’2017 test suite for dimensions thirty 
and fifty are shown in Figs. 8a and 8b, respectively. For convergence 
analysis, we have considered six different benchmark functions 
randomly out of twenty-nine as all twenty-nine functions significantly 
enlarge the article’s length. In Figs. 8a and 8b, the number of iterations 
and logarithm of best values so far are set on X-axis and Y-axis, 
respectively. In these figures, the suggested Es-MFO algorithm achieved 
fast convergence as compared to the other six basic algorithms and three 
MFO variants as the Es-MFO algorithm worked effectively by keeping a 
good balance between global and local search. 

5.6.4.2. Simulation and statistical analysis on recent optimization algo-
rithms. This subsection experiments on the proposed Es-MFO algorithm 
using CEC 17 functions. It is then compared to six recent algorithms, 
which are Fire Hawk Optimization (FHO) by Azizi et al. (2023), Arith-
metic Optimization Algorithm (AOA) by Abualigah et al. (2021), Arti-
ficial Gorilla Troops Optimizer (GTO) by Abdollahzadeh et al. (2021), 
Multi Population-Based Adaptive Sine Cosine Algorithm (MAMSCA) by 
Saha (2022), Quantum Mutation Based Backtracking Search Algorithm 
(gQR-BSA) by Nama et al. (2022), and mLBOA by Sharma et al. (2022). 
The results of all algorithms are presented in Table 9, displaying the 
mean and standard deviation. 

From Table 9, the proposed Es-MFO algorithm achieved competitive 
results on CEC2017 benchmark problems on thirty dimensions 
compared to GTO, MAMSCA, GQR-BSA, and mLBOA algorithms in most 
of the cases, and it provides more than 80% better results when 
compared to the FHO and AOA. Table 10 shows the number of superi-
ority, similarity, and inferiority occurrences for the anticipated Es-MFO 
compared to FHO, AOA, GTO, MAMSCA, GQR-BSA, and mLBOA. 
Table 10 reveals that Es-MFO works better than FHO, AOA, GTO, 
MAMSCA, gQR-BSA, and mLBOA in 25, 24, 20, 21, 20, and 21 bench-
mark functions, respectively, and low values are achieved in 4, 5, 9, 8, 9 
and 8 benchmark functions, respectively. Further, the Friedman rank 
test is conducted to measure the effectiveness of the suggested Es-MFO, 
and the results are displayed in Table 11. Table 11 shows that the rank of 
the Es-MFO is the least, which shows that the suggested Es-MFO is the 
best algorithm among those considered here. 

5.6.4.3. Run time complexity of the proposed algorithm. This subsection 
evaluates the runtime complexity to confirm the time it takes for the 
algorithm to solve a problem. Using the evaluation procedure described 
in (Awad, Ali, Suganthan, Liang, & Qu, 2017), the complexity of the 
algorithm Es-MFO and its comparative algorithms are assessed in terms 
of run time. First, the code provided below is evaluated for each algo-
rithm to determine the computing time T0. 

for i = 1 to 100000 do  

x = 0.55+ double(i) ; x = x+ x ; x =
x
2
; x = x × x ;

Table 8b 
Friedman’s rank test of Es-MFO and basic algorithms with D = 50.  

Method Average 
rank 

Rank P-value 

BOA  4.69 5 At the 1% level of significance, Ho is ruled out 
with a P-value of (0.0000.01). At a 1% level of 
significance, the performance of several 
approaches differs significantly from one another. 

JAYA  3.43 3 
SCA  3.18 2 
MFO  5.21 7 
GA  3.81 4 
BA  4.88 6 
MFO3  5.81 9 
OMFO  5.51 7 
SMFO  5.65 8 
Es- 

MFO  
2.50 1  

Fig. 8a. Convergence graph of Es-MFO with other algorithms on IEEE CEC 2017 problems for D = 30.  
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x = sqrt (x) ; x = log (x) ; x = exp (x) ; x =
x

(x + 2)

loop 

By using the maximum function evaluation of 200,000 in dimension 
D, T1 demonstrates the amount of time it took to compute the single 
function F18 from the IEEE CEC 2017 test problem set. T2 is the average 
time it takes to run the entire algorithm five times when the same 
function is used, and function evaluation is 200000. Tables 12a to 12f 
represent the pairwise comparisons of the algorithm’s estimated run-
time complexities for dimension 30. Tables 12a to 12f reveal that, except 
for FHO and GTO, the proposed Es-MFO has a shorter run time than all 
of the compared algorithms. 

6. Application on CEC2020 engineering design problems 

Here, we apply the proposed Es-MFO to three CEC2020 real-world 
constrained mechanical design optimization problems (Kumar et al., 
2020a): weight minimization of a speed reducer problem, multiple disk 
clutch break design problem and welded beam design problem. Further, 
the best competitive algorithms of CEC2020 on real-life constrained 
single objective optimization problems such as sCMAgES (Kumar, Das, & 
Zelinka, 2020b), SASS (Kumar, Das, & Zelinka, 2020c) and COLSHADE 
(Gurrola-Ramos et al., 2020) are used for comparison. Appendices 2(a), 
(b) and (c) give the mathematical formulation of each engineering 
design problem, which typically involves many restrictions of varying 
types. When dealing with the restrictions that are utilized to regulate 
these sorts of problems, the death penalty functions (Coello, 2002) 
technique is a frequent and straight-forward method. For all of the 
comparison methods used in the evaluation, the termination conditions 
are specified at 100,000 function evaluations. All of the chosen algo-
rithms’ parameters were maintained as recommended in the corre-
sponding original study. 

6.1. Application 1: Weight minimization of a speed reducer problem 

A firm covering encloses the notches, which function independently 
to reduce or increase speed. The term “speed reducer” is used when this 
device is used to reduce the speed of any other device. Reducers are 
commonly used to reduce speed in turbines and rolling mills. The detail 
descriptions about speed reducer problem are presented in (Sharma 
et al., 2022). 

The algorithm was tested against other competitive algorithms and a 
few MFO variants. and the comparison results of Es-MFO with other 
algorithms in terms of best, mean, and standard deviations (SD) are 
shown in Table 13. We can deduct from Table 13 that the proposed Es- 
MFO algorithm achieves better results than other algorithms in terms of 
best and mean values but in standard deviation case, COLSHADE algo-
rithm is winner outperforms the other three contenders. However, the 
proposed Es-MFO algorithm provides competitive performance for 
speed reducer design problem in terms of best, mean, and standard 
deviation. This problem’s mathematical formulation can be found in 
Appendix 2(a). 

6.2. Application 2: Multiple disk clutch break (MDCB) design problem 

It’s a type of design challenge encountered in mechanical engineer-
ing. The primary goal of this problem is to reduce the total weight of the 
multiple disc clutch brake system. Moreover, the brief details of MDCB 
design problem are presented in (Chakraborty et al., 2022b). 

The mathematical formulation of the MDCB design problem is pre-
sented in Appendix 2(b). The proposed Es-MFO algorithm is used to 
solve the MDCB problem and compared it with different competitive 
optimization algorithms in terms of best, mean, and standard deviation, 
shown in Table 14. From Table 14, we can say that the SASS algorithm 
obtains better performance in all three formats of statistical measures 
viz. best, mean, and standard deviation values as compared to all the 
compared algorithms. Furthermore, the proposed Es-MFO achieves 
more competitive results than other algorithms with slightly deviated 
results than SASS algorithm for MDCB problems. 

Fig. 8b. Convergence graph of Es-MFO with other algorithms on IEEE CEC 2017 problems for D = 50.  
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Table 9 
Experimental outcomes of Es-MFO and recent algorithms on CEC’17 functions for D = 30.  

Func.  Es-MFO FHO AOA GTO MAMSCA gQR-BSA mLBOA 

1 Avrg 6.21 × 1010 5.39 × 1010 4.63 × 1010 3.45 × 103 1.69 × 1010 2.04 × 109 2.55 × 1010  

Sdev 1.01 × 1010 1.37 × 1010 6.37 × 1010 4.53 × 103 5.47 × 109 1.14 × 1010 4.88 × 109  

3 Avrg 1.25 × 105 9.88 × 104 3.05 × 107 3.00 × 102 6.47 × 104 5.59 × 105 1.37 × 105  

Sdev 3.07 × 104 8.08 × 103 1.26 × 108 5.62e− 06 6.52 × 103 8.85 × 103 2.19 × 104  

4 Avrg 1.66 × 104 1.98 × 104 1.89 × 104 4.75 × 104 3.49 × 104 5.50 × 102 3.47 × 103  

Sdev 3.93 × 103 4.65 × 103 2.60 × 104 3.08 × 101 1.28 × 103 2.22 × 101 8.21 × 102  

5 Avrg 8.80 × 102 9.05 × 102 8.81 × 102 9.06 × 102 7.60 × 102 9.22 × 102 7.24 × 102  

Sdev 1.94 × 102 5.29 × 101 2.11 × 102 4.45 × 101 3.87 × 101 3.16 × 101 2.15 × 101  

6 Avrg 6.52 × 102 6.76 × 102 6.95 × 102 6.39 × 102 6.74 × 102 6.65 × 102 6.62 × 102  

Sdev 2.82 × 101 1.17 × 101 4.20 × 101 8.07 8.57 5.64 3.42  

7 Avrg 1.46 × 103 1.56 × 103 2.27 × 103 1.78 × 103 1.54 × 103 9.26 × 103 1.54 × 103  

Sdev 2.41 × 101 5.00 × 101 7.13 × 102 6.65 × 101 6.06 × 101 5.21 × 101 4.91 × 101  

8 Avrg 1.08 × 103 1.16 × 103 1.19 × 103 9.44 × 103 1.42 × 103 9.09 × 103 9.62 × 103  

Sdev 1.50 × 102 2.26 × 101 1.95 × 102 3.04 × 101 2.52 × 101 2.47 × 101 1.66 × 101  

9 Avrg 1.25 × 104 1.34 × 104 1.79 × 104 4.10 × 104 4.65 × 104 2.70 × 104 8.43 × 104  

Sdev 1.13 × 104 1.59 × 103 1.40 × 104 6.91 × 102 1.13 × 103 8.44 × 102 1.13 × 103  

10 Avrg 6.83 × 103 1.01 × 104 6.62 × 103 5.54 × 103 8.07 × 103 4.56 × 103 5.43 × 103  

Sdev 7.88 × 102 6.38 × 102 2.15 × 103 9.36 × 102 6.80 × 102 6.53 × 102 2.89 × 102  

11 Avrg 5.31 × 103 9.45 × 103 1.33 × 104 6.22 × 103 6.46 × 103 6.40 × 103 5.35 × 103  

Sdev 1.95 × 103 1.94 × 103 3.00 × 104 5.03 × 101 1.35 × 103 2.20 × 102 1.33 × 103  

12 Avrg 2.31 × 109 6.62 × 109 3.47 × 109 4.06 × 104 1.47 × 109 4.86 × 106 2.40 × 109  

Sdev 7.40 × 109 4.53 × 109 1.00 × 1010 1.65 × 104 8.21 × 108 3.83 × 106 6.91 × 108  

13 Avrg 1.04 × 108 1.47 × 109 9.72 × 109 1.83 × 104 2.52 × 108 8.88 × 108 5.71 × 108  

Sdev 2.24 × 108 1.06 × 109 1.89 × 1010 1.91 × 104 3.57 × 108 3.67 × 105 6.25 × 107  

14 Avrg 1.39 × 106 3.37 × 106 4.73 × 106 1.87 × 106 6.52 × 106 6.79 × 106 1.49 × 106  

Sdev 1.99 × 106 1.83 × 106 1.58 × 107 2.75 × 102 7.07 × 105 8.96 × 104 1.14 × 105  

15 Avrg 8.93 × 108 5.10 × 108 1.89 × 109 7.07 × 103 8.77 × 106 9.19 × 103 1.42 × 105  

Sdev 2.25 × 109 6.83 × 108 4.35 × 109 8.47 × 103 2.47 × 107 9.05 × 103 4.10 × 104  

16 Avrg 3.23 × 103 5.41 × 103 5.15 × 103 3.83 × 103 3.46 × 103 3.81 × 103 3.94 × 103  

Sdev 3.80 × 102 5.96 × 102 3.41 × 103 2.62 × 102 3.68 × 102 2.96 × 102 2.23 × 102  

17 Avrg 2.46 × 103 3.37 × 103 7.27 × 103 2.56 × 103 2.74 × 103 2.75 × 103 2.65 × 103  

Sdev 2.35 × 102 2.16 × 102 1.39 × 104 2.92 × 102 2.44 × 102 1.74 × 102 1.39 × 102  

18 Avrg 1.02 × 107 6.83 × 107 1.00 × 108 1.44 × 107 2.74 × 107 3.98 × 107 1.38 × 106  

Sdev 1.54 × 107 7.81 × 107 3.39 × 108 1.14 × 104 4.73 × 106 6.45 × 105 7.87 × 105  

19 Avrg 1.33 × 109 3.00 × 108 7.45 × 108 4.56 × 103 2.42 × 107 8.03 × 103 7.89 × 105  

Sdev 2.70 × 109 1.88 × 108 2.14 × 109 2.76 × 103 4.79 × 107 1.02 × 104 4.86 × 105  

20 Avrg 2.73 × 103 3.13 × 103 2.98 × 103 2.94 × 103 2.86 × 103 3.88 × 103 3.46 × 103  

Sdev 2.52 × 102 1.15 × 102 4.95 × 102 2.05 × 102 1.15 × 102 2.05 × 102 9.80 × 101  

21 Avrg 2.52 × 103 2.65 × 103 2.68 × 103 2.83 × 103 2.54 × 103 2.51 × 103 2.59 × 103  

Sdev 3.36 × 101 4.52 × 101 1.92 × 102 6.03 × 101 3.65 × 101 2.79 × 101 4.73 × 101  

(continued on next page) 

S. Kumar Sahoo et al.                                                                                                                                                                                                                         



Expert Systems With Applications 227 (2023) 120367

19

6.3. Application 3: Welded beam design (WBD) problem 

The problem of WBD problem is a structural design issue, which has 
been solved by many researchers. The WB ’s mathematical representa-
tion is shown in Appendix 2(c) respectively. From Appendix- 2 (c), it is 
clear that the beam has seven constraints, and four variables and detail 

description are presented in (Sharma et al., 2022). The aim of this issue 
is to maximize WB’s total cost with respect to the constraints of bending 
stress, shear stress, end deflection, and overhang load, respectively. 

Table 9 (continued ) 

Func.  Es-MFO FHO AOA GTO MAMSCA gQR-BSA mLBOA 

22 Avrg 6.73 × 103 8.59 × 103 7.82 × 103 7.80 × 103 7.51 × 103 6.91 × 103 7.57 × 103  

Sdev 2.30 × 103 1.21 × 103 2.68 × 103 1.38 × 103 1.87 × 103 1.35 × 103 4.21 × 102  

23 Avrg 2.87 × 103 3.42 × 103 3.12 × 103 2.97 × 103 3.07 × 103 3.11 × 103 3.15 × 103  

Sdev 3.65 × 101 1.53 × 102 1.97 × 102 8.95 × 101 5.64 × 101 5.47 × 101 5.25 × 101  

24 Avrg 3.05 × 103 3.37 × 103 3.31 × 103 3.42 × 103 3.26 × 103 3.95 × 103 3.40 × 103  

Sdev 4.10 × 101 1.52 × 102 2.64 × 102 8.34 × 101 2.03 × 102 3.33 × 101 7.77 × 101  

25 Avrg 6.39 × 103 7.10 × 103 8.77 × 103 2.90 × 103 3.51 × 103 2.95 × 103 3.48 × 103  

Sdev 2.92 × 103 6.07 × 102 8.19 × 103 1.38 × 101 1.79 × 102 2.04 × 101 1.72 × 102  

26 Avrg 7.74 × 103 1.02 × 104 1.05 × 104 5.31 × 103 7.26 × 104 7.84 × 103 7.29 × 104  

Sdev 3.44 × 103 1.50 × 103 4.57 × 103 1.55 × 103 7.63 × 102 1.13 × 103 5.86 × 102  

27 Avrg 3.29 × 103 3.95 × 103 4.10 × 103 3.30 × 103 3.54 × 103 4.13 × 103 3.63 × 103  

Sdev 2.52 × 101 3.52 × 102 8.67 × 102 7.90 × 101 1.78 × 102 2.64 × 101 7.74 × 101  

28 Avrg 7.09 × 103 7.10 × 103 6.97 × 103 3.17 × 103 4.54 × 103 3.33 × 103 4.17 × 103  

Sdev 3.03 × 103 9.09 × 102 5.00 × 103 5.13 × 101 3.55 × 102 3.78 × 101 1.96 × 102  

29 Avrg 4.36 × 103 6.60 × 103 3.01 × 104 4.19 × 103 4.60 × 103 4.77 × 103 4.44 × 103  

Sdev 3.06 × 102 1.16 × 103 6.63 × 104 3.84 × 102 3.47 × 102 2.54 × 102 2.26 × 102  

30 Avrg 3.97 × 106 6.67 × 108 1.31 × 109 9.67 × 103 4.57 × 107 8.84 × 104 6.67 × 106  

Sdev 3.29 × 106 4.50 × 108 2.80 × 109 3.60 × 103 2.76 × 107 1.13 × 105 3.83 × 106  

Table 10 
Simulation result for comparison of Es-MFO and basic algorithms for D = 30.   

FHO AOA GTO MAMSCA gQR-BSA mLBOA 

Superior 25 24 20 21 20 21 
Similar 0 0 0 0 0 0 
Inferior 4 5 9 8 9 8  

Table 11 
Friedman’s rank test of Es-MFO and basic algorithms with D = 30.  

Method Mean 
rank 

Rank P-value 

FHO  5.28 6 At the 1% level of significance, Ho is ruled out 
with a P-value of (0.0000.01). At a 1% level of 
significance, the performance of several 
approaches differs significantly from one another.  

AOA  5.60 7 
GTO  3.05 2 
MAMSCA  3.78 3 
gQR-BSA  3.90 5 
mLBOA  3.85 4 
Es-MFO  2.62 1  

Table 12a 
Time complexity according to CEC 2017 benchmark Es-MFO vs FHO.  

Dimension T0 T1 Es-MFO FHO    

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0 

D = 30  0.06  1.64  97.99  1605.83  45.52  731.33  

Table 12b 
Time complexity according to CEC 2017 benchmark Es-MFO vs AOA.  

Dimension T0 T1 Es-MFO AOA    

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0 

D = 30  0.06  1.64  97.99  1605.83  616.73  10215.5  

Table 12c 
Time complexity according to CEC 2017 benchmark Es-MFO vs GTO.  

Dimension T0 T1 Es-MFO GTO    

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0 

D = 30  0.06  1.64  97.99  1605.83  14.99  222.5  

Table 12d 
Time complexity according to CEC 2017 benchmark Es-MFO vs MAMSCA.  

Dimension T0 T1 Es-MFO MAMSCA    

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0 

D = 30  0.06  1.64  97.99  1605.83  237.21  3926.66  

Table 12e 
Time complexity according to CEC 2017 benchmark Es-MFO vs gQR-BSA.  

Dimension T0 T1 Es-MFO gQR-BSA    

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0 

D = 30  0.06  1.64  97.99  1605.83  103.90  1704.33  
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The suggested Es-MFO algorithm is used to solve WBD problem, and 
its performance is measured with three best performing algorithms of 
CEC2020 real-world constraint single objective optimization problems 
with few other traditional optimization algorithms. Table 15 represents 
the comparison performance of the proposed Es-MFO algorithm with 
other algorithms. From Table 15, it can be clearly visible that the pro-
posed algorithm provides better results than all other optimization al-
gorithms in terms of ‘best’ value but in case of mean and standard 
deviation measures, SASS algorithm is winner. In addition to overall 
performance, the suggested Es-MFO algorithms achieve a very 
competitive result as compared to other algorithms in all formats of 
statistical measures for WB design problem. 

7. Application of Es-MFO for COVID-19 CT image segmentation 

This section examines the performance of Es-MFO in solving real- 
world problems by using it to determine the best thresholds for seg-
menting CT COVID-19 images. Image segmentation methods have 
recently gained a lot of attention and can be used as a preprocessing 
phase in various image-processing applications. Selecting suitable 
threshold values is crucial because image quality depends heavily on 
them. As a result, multi-level thresholding is considered an optimization 
problem, and metaheuristic algorithms are often used to solve similar 
problems by maximizing specific research criteria. The proposed Es- 
MFO algorithm uses Otsu’s method as an objective function to deter-
mine the optimal thresholds in COVID-19 CT images. 

The section is structured as follows: Section 7.1 presents the objec-
tive function. Section 7.2 presents the data set description used in the 
experiments. The development of the proposed Es-MFO for image 
segmentation-based Otsu objective function is discussed in Section 7.3. 
The evaluation criteria used in the comparison are provided in Section 
7.4. Section 7.5 reported the results in terms of PSNR, SSIM, and Feature 
similarity index (FSIM) based on applying Otsu’s method. Finally, Sec-
tion 7.6 provides a Comparison the proposed Es-MFO with other state- 
of-the-art methods also some recent metaheuristic algorithms. 

7.1. Definition of multilevel thresholding segmentation 

In this subsection, we will discuss the multi-level thresholding image 
segmentation problem. Let’s assume that the input image is represented 
by I’, which consists of R + 1 groups. The main objective of any method 
for multi-level thresholding is to identify the R thresholds {thk, R = 1, 2, 
R} required to segment I’ into sub-groups (CR, R = 1, 2, …, R). The 
procedure for determining these thresholds is described in Eq. (19) 

C0 = I ′ ij , 0⩽I ′ ij⩽t1 − 1,
C1 = I ′

ij , t1⩽I ′ ij⩽t2 − 1,
......

CR = I ′

ij , tR⩽I ′ ij⩽L′

− 1

(19)  

where tR denotes the threshold values. I′ij is the gray level for the image. 
L′ represents the total number of grey levels in the images. 

Therefore, the challenge of multi-level thresholding can be framed as 
a task of maximizing the selection of optimum thresholds, stated as: 

t*1, t*2, t
*
3, ....., t

*
R = argmaxt1 ,...,tR Fitt(t1, ....., tR) (20)  

We utilized Otsu’s (Otsu, 1979) method as the objective function Fitt to 
be maximized. The rationale behind selecting Otsu’s method is its 
extensive usage in solving multi-level thresholding problems in image 
segmentation. 

The definition of the fitness function Fitt is as follows: 

Fitt =
∑R

i=0
ωi(μi − μ1)

2
, (21) 

Table 12f 
Time complexity according to CEC 2017 benchmark Es-MFO vs mLBOA.  

Dimension T0 T1 Es-MFO mLBOA    

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0 

D = 30  0.06  1.64  97.99  1605.83  610.67  10150.5  

Table 13 
Comparison performance of Es-MFO with other algorithms for speed reducer 
design problem.  

Algorithm Best SD Mean 

Es-MFO 2.84376e þ
03 

1.2100e + 01 2.84101e þ
03 

MFO 2.91160e +
03 

9.5184e + 01 2.91201e +
03 

SaDE (Qin & Suganthan, 
2005) 

2.99442e +
03 

3.5420e + 01 2.99442e +
03 

SHADE (Tanabe & Fukunaga, 
2013) 

2.99442e +
03 

1.78130e + 01 2.99442e +
03 

LSHADE (Tanabe & 
Fukunaga, 2014) 

2.99442e +
03 

2.6940e− 10 2.99442e +
03 

LSHADE− EpSin (Awad et al., 
2016b) 

2.99442e +
03 

8.92779e + 01 3.01072e +
03 

COLSHADE 2.99441e +
03 

4.64001e− 13 2.99441e +
03 

SASS 2.99442e +
03 

5.91000e− 09 2.99442e +
03 

sCMAgES 2.99442e +
03 

7.66000e− 12 2.99442e +
03 

EMFO (Sahoo & Saha et al., 
2022b) 

2.92009e +
03 

1.85201e + 01 2.92201e +
03 

SMFO 2.87602e +
03 

1.86154e + 01 2.88041e +
03 

LMFO 2.92341e +
03 

1.17113e + 01 2.92102e +
03  

Table 14 
Comparison performance of Es-MFO with other algorithms for MDCB design 
problem.  

Algorithm Best SD Mean 

Es-MFO 2.35242e− 01 5.25110e− 03 2.38142e− 01 
MFO 3.36241e− 01 1.67142e− 01 5.93342e− 01 
SaDE 23.5340 2.31150e− 16 23.5242 
SHADE 25.5411 4.51150e− 16 23.5242 
LSHADE 23.5681 2.31150e− 16 23.5242 
LSHADE− EpSin 23.5900 3.60150e− 16 2.35242 
COLSHADE 2.35242e− 01 2.35242e− 01 2.35242e− 01 
SASS 2.35241e¡01 1.35014e− 17 2.35241e¡01 
sCMAgES 2.35242e− 01 1.40143e− 16 2.35242e− 01 
EMFO 2.60451e− 01 2.62412e− 01 2.62452e− 01 
SMFO 2.87602e + 03 2.88101e + 03 2.88101e + 03 
LMFO 2.60301e− 01 5.05291e− 03 2.67461e− 01  

Table 15 
Comparison performance of Es-MFO with other algorithms for WB design 
problem.  

Algorithm Best SD Mean 

Es-MFO  1.6609 1.88201e− 01  1.69502 
MFO  1.84282 1.12850e− 01  1.96201 
SaDE  1.77141 1.652101e− 14  1.77141 
SHADE  1.72213 3.12840e− 12  1.72213 
LSHADE  1.74415 3.45310e− 13  1.74415 
LSHADE− EpSin  1.74631 1.54123e− 02  1.74631 
SASS  1.67022 7.72000E¡14  1.67021 
COLSHADE  1.67010 1.69200e− 02  1.69632 
sCMAgES  1.67022 1.57000e− 13  1.67022 
EMFO  1.75315 8.43031e− 02  1.82407 
LMFO  1.82420 4.91302e− 02  1.89784  
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ωi =
∑ti+1 − 1

j=ti

Phj, (22)  

μi =
∑ti+1 − 1

j=tj

i
Phj

ωj
, (23)  

Phj =
hi

Np
(24) 

This subsection describes the mathematical model of the Otsu 
method (Otsu, 1979), which is a thresholding method based on the 
maximum variance between classes. The segmentation process depends 
on the image histogram (Glasbey, 1993). The histogram is passed to the 
Otsu’s method, selecting the best thresholding values to divide the 
image into various classes. This technique assumes the Lv intensity levels 
of the image, and the probability is obtained by Eq. (25). It can be used 
for RGB images where Otsu is applied to each layer individually. 

hj =
hj

Np
,
∑Pn

j=1
Phj = 1 (25)  

where j is an intensity level in (0 ≤ j ≤ Lv − 1) and Pn is the total number 
of pixels. hj is the number of intensity frequencies j in the image denoted 
by the histogram. In a probability distribution Phj, the histogram is 
normalized. The classes for bi-level segmentation are computed based 
on the probability distribution as follows: 

C1 =
Ph1

ω0(th)
,⋯,

Phth

ω0(th)
andC2 =

Phc
th+1

ω1(th)
,⋯,

PhLv

ω1(th)
(26)  

where ω0(th) and ω1(th) are probabilities distributions for C1 and C2 that 
is defined by Eq. (27). 

ω0(th) =
∑th

j=1
Phj andω1(th) =

∑Lv

th+1
Phj (27) 

It is essential to calculate the mean levels μ0 and μ1 that describe the 
classes by Eq. (28). After those operators have been determined, the 

Table 16 
COVID-19 CT image and their corresponding histograms.  
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Otsu between-class σ2
B is computed by Eq. (29). 

μ0 =
∑th

j=1

iPhj

ω0(th)
and μ1 =

∑Lv

j=th+1

Phj

ω1(th)
(28)  

σ2
B = σ1 + σ2 (29) 

Notice that σ1 and σ2 in Eq. (29) are the variances of C1 and C2 that 
identified as follows: 

σ1 = ω0
(
μ0 + μy

)2 andσ2 = ω1
(
μ1 + μy

)2 (30)  

where μy = ω0μ0 + ω1μ1. Based on the values σ1 and σ2, Eq. (30) il-
lustrates the objective function. As a result, the optimization problem is 
simplified to determining the intensity level that maximizes Eq. (31). 

Fotsu(th) = Max
(
σ2

B(th)
)
, 0 ≤ th ≤ Lv − 1 (31)  

where σ2
B(th) is the Otsu for a provided th value. Otsu’s approach is used 

for a single layer from an image, which means that it is required to apply 
it for the three layers for color images. The preceding idea of a bilevel 
technique can be changed to accommodate multiple thresholds. The 
fitness function Fotsu( th ) in Eq. (31) can be changed for multiple 
thresholds as the following: 

Fotsu(TH) = Max
(
σ2

B(th)
)
, 0 ≤ thi ≤ Lv − 1, i = [1, 2, 3,⋯,K] (32)  

where TH = [th1, th2,⋯.thk − 1], is a vector containing multiple thresh-
olding and the variances are calculated by Eq. (33). 

σ2
B =

∑k

i=1
σi =

∑k

i=1
ω1
(
μ1 − μy

)2 (33)  

where i denotes the specific class, ωi and μj are the probability of 
occurrence and the mean of a class, respectively. For multiple thresholds 
values are obtained as: 

ωk− 1(th) =
∑Lv

j=thk+1
Phj (34)  

for mean values: 

μk− 1 =
∑Lv

j=thk+1

Phj

ω1(thk)
(35)  

7.2. Discussion on datasets 

In this research, the proposed algorithm was evaluated using CT 
images from the COVID-19 dataset (Zhao et al., 2020a,2020b,2020c). 
The 216 patients included in the CT COVID-19 dataset are represented 
by 349 CT scans. Patients aged 40 to 84 of both sexes were represented 
in the COVID-19 images. To gauge the efficacy of the proposed algo-
rithm, evaluation images from a variety of patients are used. The test 
images have names like CT-img1, CT-img2, etc., up to CT-img10. The 
selected test images and their corresponding histograms are shown in 
Table 16. 

7.3. Es-MFO implementation-based image segmentation 

The Es-MFO algorithm for image segmentation starts by converting 
the original CT image, Im_R, to a grayscale image, IO_G, and generating 
histograms for both images. Otsu’s method is then used as the fitness 
function to calculate the fitness value. The process begins by setting up 
the parameters for ES-MFO and generating a population of N search 
agents with Dim dimensions. The best solution is identified from this 
population, and the remaining solutions are modified using ES-MFO 
operators outlined in Section 4. The best threshold value determines 

the optimal solution. Lastly, the most effective thresholds are chosen and 
applied to the CT images. The image segmentation process of the pro-
posed method is illustrated in Fig. 9. The steps for developing the pro-
posed ES-MFO algorithm for selecting the best thresholds in CT COVID- 
19 images using the Otsu fitness function can be summarized as follows:  

1. Convert the original CT image, Im_R, to a grayscale image, IO_G. 
2. Generate histograms for both the original image and the gray-

scale image.  
3. Set the control parameters for the ES-MFO algorithm.  
4. Create a set of N particles, X, each with Dim dimensions.  
5. Evaluate each particle in X using Otsu’s fitness function Eq. (31).  
6. Sort both the moth and flame matrix based on their fitness values 

and update the number of flames using Eq. (8).  
7. Update the position and velocity of each particle in X using Eqs. 

(6), and 7).  
8. Update the role of the moths concerning the corresponding 

flames using Eq. (10).  
9. To generate a new solution, randomly choose between using Eq. 

(13) or the FSM method Eqs. (10), 11, and 12), and then evaluate 
the fitness value of the new solution. The best fitness value rep-
resents the optimal solution.  

10. Increase the iteration counter by 1 and check if the stop condition 
is met. If not, go back to Step 5.  

11. Return the best solution containing the best thresholds and apply 
them to the CT COVID-19 images. 

7.4. Performance measures 

To evaluate the effectiveness of Es-MFO in image segmentation, 
three metrics are employed: Peak-signal-to-noise ratio (PSNR), Struc-
tural similarity index (SSIM), and Feature similarity index (FSIM). The 
definitions of these metrics are as follows:  

• PSNR: This measure calculates the dissimilarity between the original 
image Iorg and segmented image Is, it is defined by Eq. (36). 

PSNR = 20log10

(
255

RMSE

)

(36)  

where RMSE is the mean square error calculated using Eq. (37), M and N 
denote the number of raw and columns in the image. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

∑M

j=1

(
Iorg(i, j) − Is(i, j)

)2

N × M

√
√
√
√
√

(37)    

• SSIM: Is calculated using Eq. (38) and this measure obtains the 
similarity between the original and the segmented image. 

SSIM(I, Is) =

(
2μIμIs

+ k1
)(

2μIμIs
+ k1

)

(
μ2

I + μ2
Is
+ k1

)(
σ2

I + σ2
Is
+ k2

), k1 = 6.5025, k2 = 58.52252

(38) 

Fig. 9. Image segmentation process-based Es-MFO algorithm.  
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• FSIM: This metric determines how similar two images are based on 
their internal characteristics (Sara et al., 2019) defined by Eq.(39) 

FSIM =

∑
w∈ΩSL(w)PCm(w)
∑

w∈ΩPCm(w)
(39) 

where ω is the entire domain of the image: 

SL(w) = SPC(w) × SG(w)

SPC(w) =
2PC1(w) × PC2(w) + T1

PC2
1(w) + PC2

2(w) + T1

SG(w) =
2G1(w) × G2(w) + T1

G2
1(w) + G2

2(w) + T1

(40) 

and G is the gradient magnitude (GM) of an image and is defined as: 

G =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

G2
x + G2

y

√

(41)  

PC(w) =
E(w)

(
∊ +

∑
nAn(w)

) (42) 

The value of the vector in w on n is E(w) and An(w) is the local 
amplitude of scale n. ∊ is a small number and PCm(w) =

max(PC1(w),PC2(w)). 
Note that the high values of PSNR,SSIM, and FSIM demonstrate the 

high performance of the algorithm. 

7.5. Results and discussions on image segmentation problems 

In this subsection, the effectiveness of the Es-MFO based COVID-19 
image segmentation method is discussed and evaluated in comparison 
to eight metaheuristic algorithms. The PSNR, SSIM, and FSIM are used to 
evaluate the outcomes obtained by Es-MFO. This evaluation is carried 
out across a range of threshold values (nT h = 2, 3, 4, and 5). All al-
gorithms were tested 30 times per image for a total of 350 iterations with 
a population size of 50. Test images of CT scans are shown in Table 17 

Table 17 
Segmented images and thresholding values achieved by Es-MFO algorithm over the image’s histograms.  

(continued on next page) 
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Table 17 (continued ) 

(continued on next page) 
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after being segmented by Es-MFO using varying thresholds [nTh = 2, 3, 
4, 5]. Positions of the optimally determined thresholds over the histo-
grams of the individual images are also displayed. The average PSNR, 
SSIM, and FSIM results are presented in Tables 18–20, respectively. 
Higher algorithm values indicate greater precision and efficiency. 

In conclusion, the following observations from the experiments 
should be noted.  

• In terms of PSNR results: Table 18 presents the PSNR values. The 
higher the value, the better the quality segmentation. The best values 
are highlighted in bold. The proposed Es-MFO algorithm achieved 
high PSNR values for some test images. For more details, concerning 
CT-img1 and CT-img10 test images, Es-MFO has significant values 
for all thresholding levels. For CT-img4, CT-img6, CT-img7, and CT- 
img8 test images, Es-MFO has significant values for three thresh-
olding levels. Moreover, for CT-img2 and CT-img3 Es-MFO has sig-
nificant values for two thresholding levels. The SSA and MFO3 
algorithms have only four significant values in all test images. 
Meanwhile, the PSO and the original MFO algorithms acquired only 
two higher PSNR values among all test images. In contrast, the 
OMFO and SMFO algorithms have only one higher value. Also, the 
SCA algorithm does not produce any best value in either image. 

Overall, Es-MFO obtains higher PSNR values than other algorithms 
at most threshold levels in all test images.  

• In terms of SSIM results: Es-MFO outperforms the original MFO and 
all other algorithms as shown in Table 19. The cultivated SSIM values 
in the Es-MFO are observed to be better than all algorithms, indi-
cating relevance in all images for most thresholding levels. The other 
algorithms have greater SSIM values and are ranked as follows: 
OMFO, MFO3, MFO, SSA, SMFO, PSO, and SCA.  

• In terms of FSIM results: The average values of the FSIM metrics are 
summarized in Table 20.  

• This statistic measures and evaluates how well image characteristics 
are preserved after processing. Results with the highest segmentation 
quality are highlighted in bold. According to Table 20, Es-MFO 
performs better than MFO on all test images across the board. 
More than that, it outperforms every other algorithm we’ve seen. 

7.6. Comparison the proposed Es-MFO with other state-of-the-art methods 

In this subsection, we compare our proposed image segmentation 
method, which is based on the Es-MFO algorithm, with other state-of- 
the-art methods and recent metaheuristic algorithms that have been 
applied to the same image segmentation problem using the COVID-19 

Table 17 (continued ) 
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Table 18 
Comparison between Es-MFO and all other algorithms according to the PSNR mean values.  

Test Image nTh PSO SCA SSA MFO3 OMFO SMFO MFO Es-MFO 

CT-img1 2  15.0052  15.0471  15.0675  15.0674  15.0697  15.0258  15.0675  15.0775 
3  16.7621  17.0221  16.9185  16.8067  16.7639  16.8903  16.9613  16.9613 
4  18.1970  18.2193  18.5102  18.4917  18.4377  18.3427  18.5002  18.5202 
5  20.0481  19.2041  20.0893  20.1073  20.0446  19.8716  20.3419  20.3519  

CT-img2 2  14.4777  14.4336  14.4228  14.4184  14.4145  14.4229  14.4228  14.4228 
3  16.9225  16.9349  17.0347  16.9544  16.9484  16.8457  17.0347  17.0447 
4  18.3257  17.9943  18.3364  18.4511  18.3033  18.2096  18.3344  18.3344 
5  19.9959  19.3617  20.7083  20.5428  20.4410  20.6095  20.6474  20.7474  

CT-img3 2  14.1268  14.3051  14.3576  14.3085  14.2889  14.2668  14.3576  14.9576 
3  16.6705  16.8777  16.8872  16.8953  16.9467  16.8370  16.8898  16.8898 
4  18.2682  18.2244  18.2690  18.3615  18.1678  18.2304  18.2664  18.2664 
5  19.9811  19.4277  20.3898  20.2233  20.3352  20.1249  20.4186  20.4396  

CT-img4 2  14.5523  14.3664  14.3761  14.3734  14.3777  14.3284  14.3712  14.5523 
3  16.4688  16.6989  16.7716  16.8183  16.7512  16.7397  16.7656  16.8656 
4  18.0119  17.6707  17.9301  17.7573  18.0427  18.0493  17.9271  17.9971 
5  19.8405  19.0746  19.9558  19.9678  20.1101  19.8387  19.9691  21.9691  

CT-img5 2  13.0420  13.0534  13.0621  13.0546  13.0613  13.0207  13.0621  14.0621 
3  13.8594  13.8742  13.9468  13.9396  13.9656  13.9575  13.9456  14.9456 
4  15.8259  16.1716  16.3784  16.4974  16.2324  16.0447  16.3784  16.4784 
5  16.7226  16.4266  16.7815  16.5415  16.6606  16.1151  16.6599  16.6599  

CT-img6 2  13.8286  14.0259  14.0568  14.0293  14.0386  14.0273  14.0568  14.0568 
3  15.5513  15.2639  15.2676  15.3385  15.2458  15.3920  15.2676  16.2676 
4  16.9693  16.6406  16.9492  16.4845  16.6101  16.7904  16.6072  17.6772 
5  18.7863  18.0785  18.7757  18.5796  18.5945  18.8578  18.7791  18.8091  

CT-img7 2  12.5174  12.6076  12.6340  12.6003  12.6050  12.6290  12.6340  12.9340 
3  13.7789  13.6920  13.8159  13.8216  13.8235  13.8074  13.8142  14.7122 
4  15.4501  15.3016  16.1851  16.4913  16.4329  15.7005  16.1115  16.3525 
5  16.6744  16.9300  16.8007  16.6797  16.5720  16.8236  16.6925  16.7725  

CT-img8 2  14.5820  14.6452  14.6385  14.6486  14.6371  14.6331  14.6385  14.6999 
3  18.2476  18.4619  18.5441  18.5309  18.4965  18.4050  18.5384  18.5384 
4  20.1282  20.1620  20.5106  20.4251  20.4434  20.2280  20.5043  20.5143 
5  21.7129  20.8123  21.9502  21.7486  21.8860  21.7354  21.9239  21.9539  

CT-img9 2  13.7146  13.7650  13.7472  13.7659  13.7805  13.7706  13.7472  13.7472 
3  16.1144  16.2289  16.1689  16.1939  16.1403  16.3176  16.1862  16.1962 
4  18.2480  18.1804  18.7022  18.6980  18.7497  18.6103  18.7131  19.7131 
5  19.2710  18.9611  19.6066  19.0297  19.1610  19.4551  19.4612  19.8622  

CT-img10 2  14.1456  14.0788  14.0602  14.0826  14.0749  14.0691  14.0602  14.1602 
3  15.6114  15.6299  15.5026  15.6898  15.6538  15.5790  15.5176  16.5176 
4  17.2005  17.5753  17.6194  17.4701  17.6405  17.3343  17.5715  17.5753 
5  18.6476  17.9672  18.9433  18.5777  18.7826  18.8366  18.9396  19.4396  
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Table 19 
Comparison between Es-MFO and all other algorithms according to the SSIM mean values.  

Test Image nTh PSO SCA SSA MFO3 OMFO SMFO MFO Es-MFO 

CT-img1 2  0.6264  0.6278  0.6279  0.6283  0.6283  0.6275  0.6279  0.6279 
3  0.7004  0.7206  0.7158  0.7096  0.7057  0.7123  0.7184  0.7418 
4  0.7727  0.7745  0.7847  0.7835  0.7786  0.7758  0.7846  0.7847 
5  0.8201  0.8106  0.8201  0.8225  0.8251  0.8143  0.8319  0.8454  

CT-img2 2  0.6518  0.6514  0.6511  0.6512  0.6510  0.6510  0.6511  0.6614 
3  0.7549  0.7625  0.7623  0.7618  0.7600  0.7557  0.7623  0.7680 
4  0.8003  0.7987  0.8039  0.8012  0.8029  0.7998  0.8038  0.8039 
5  0.8469  0.8471  0.8779  0.8634  0.8680  0.8772  0.8794  0.8843  

CT-img3 2  0.6476  0.6534  0.6548  0.6535  0.6531  0.6526  0.6548  0.6548 
3  0.7643  0.7690  0.7681  0.7695  0.7692  0.7702  0.7681  0.7761 
4  0.8016  0.8110  0.8108  0.8118  0.8057  0.8099  0.8107  0.8108 
5  0.8580  0.8541  0.8687  0.8612  0.8567  0.8569  0.8620  0.8839  

CT-img4 2  0.6428  0.6405  0.6404  0.6409  0.6409  0.6395  0.6402  0.6404 
3  0.7530  0.7666  0.7656  0.7676  0.7669  0.7644  0.7657  0.7680 
4  0.7951  0.8041  0.8077  0.8036  0.8067  0.8051  0.8076  0.8079 
5  0.8553  0.8535  0.8677  0.8603  0.8654  0.8645  0.8755  0.8852  

CT-img5 2  0.5158  0.5169  0.5168  0.5172  0.5173  0.5165  0.5168  0.5170 
3  0.5300  0.5301  0.5301  0.5304  0.5320  0.5333  0.5301  0.5405 
4  0.6573  0.6793  0.6960  0.7027  0.6875  0.6731  0.6960  0.7063 
5  0.7046  0.6959  0.7163  0.7019  0.7119  0.6778  0.7125  0.7320  

CT-img6 2  0.5715  0.5724  0.5747  0.5729  0.5734  0.5744  0.5747  0.5758 
3  0.6822  0.6734  0.6744  0.6740  0.6732  0.6795  0.6744  0.6744 
4  0.7499  0.7424  0.7540  0.7221  0.7317  0.7432  0.7300  0.7975 
5  0.8318  0.8025  0.8323  0.8220  0.8213  0.8359  0.8325  0.8431  

CT-img7 2  0.5031  0.5070  0.5085  0.5065  0.5067  0.5077  0.5085  0.5122 
3  0.5905  0.5842  0.5921  0.5926  0.5924  0.5921  0.5920  0.5921 
4  0.6953  0.6851  0.7386  0.7523  0.7497  0.7089  0.7341  0.7576 
5  0.7476  0.7648  0.7690  0.7626  0.7561  0.7697  0.7657  0.7873  

CT-img8 2  0.7373  0.7398  0.7400  0.7398  0.7398  0.7400  0.7400  0.7400 
3  0.8539  0.8602  0.8623  0.8622  0.8612  0.8566  0.8621  0.8690 
4  0.8836  0.8879  0.8959  0.8929  0.8931  0.8875  0.8962  0.8958 
5  0.9092  0.8985  0.9157  0.9110  0.9137  0.9112  0.9153  0.9158  

CT-img9 2  0.5624  0.5645  0.5640  0.5644  0.5645  0.5641  0.5640  0.5640 
3  0.6277  0.6271  0.6218  0.6242  0.6186  0.6357  0.6231  0.6357 
4  0.7423  0.7353  0.7577  0.7582  0.7613  0.7555  0.7592  0.7591 
5  0.7841  0.7754  0.7939  0.7689  0.7724  0.7900  0.7890  0.8049  

CT-img10 2  0.6088  0.6037  0.6024  0.6040  0.6034  0.6048  0.6024  0.6085 
3  0.7067  0.7009  0.6971  0.7032  0.7018  0.7025  0.6976  0.7077 
4  0.7819  0.8057  0.8092  0.8005  0.8100  0.7897  0.8065  0.8204 
5  0.8391  0.8187  0.8537  0.8374  0.8443  0.8466  0.8537  0.8579  
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Table 20 
Comparison between Es-MFO and all other algorithms according to the FSIM mean values.  

Test Image nTh PSO SCA SSA MFO3 OMFO SMFO MFO Es-MFO 

CT-img1 2  0.8101  0.8104  0.8100  0.8104  0.8104  0.8107  0.8100  0.8130 
3  0.8639  0.8750  0.8740  0.8712  0.8689  0.8716  0.8753  0.8867 
4  0.9131  0.9141  0.9241  0.9230  0.9204  0.9166  0.9240  0.9286 
5  0.9324  0.9271  0.9385  0.9377  0.9372  0.9343  0.9404  0.9421  

CT-img2 2  0.8101  0.8109  0.8108  0.8109  0.8109  0.8109  0.8108  0.8108 
3  0.8835  0.8921  0.8919  0.8911  0.8901  0.8867  0.8919  0.8945 
4  0.9149  0.9181  0.9251  0.9211  0.9232  0.9205  0.9250  0.9351 
5  0.9383  0.9378  0.9539  0.9485  0.9492  0.9533  0.9543  0.9590  

CT-img3 2  0.7989  0.8024  0.8031  0.8025  0.8024  0.8029  0.8031  0.8125 
3  0.8785  0.8823  0.8817  0.8820  0.8814  0.8827  0.8817  0.8943 
4  0.9026  0.9127  0.9134  0.9131  0.9099  0.9106  0.9134  0.9134 
5  0.9314  0.9299  0.9413  0.9364  0.9344  0.9342  0.9386  0.9474  

CT-img4 2  0.7763  0.7794  0.7789  0.7797  0.7796  0.7793  0.7789  0.7795 
3  0.8613  0.8729  0.8727  0.8734  0.8736  0.8695  0.8729  0.8729 
4  0.8944  0.9025  0.9060  0.9041  0.9048  0.9025  0.9059  0.9066 
5  0.9244  0.9245  0.9345  0.9319  0.9336  0.9323  0.9372  0.9403  

CT-img5 2  0.8396  0.8415  0.8416  0.8415  0.8416  0.8411  0.8416  0.8458 
3  0.8610  0.8714  0.8778  0.8763  0.8777  0.8741  0.8777  0.8778 
4  0.8428  0.8396  0.8384  0.8357  0.8325  0.8455  0.8384  0.8410 
5  0.8494  0.8419  0.8558  0.8489  0.8480  0.8551  0.8552  0.8655  

CT-img6 2  0.7813  0.7897  0.7910  0.7903  0.7905  0.7909  0.7910  0.7910 
3  0.8517  0.8524  0.8536  0.8536  0.8530  0.8528  0.8536  0.8630 
4  0.8848  0.8814  0.8903  0.8874  0.8906  0.8908  0.8919  0.8920 
5  0.9082  0.9042  0.9189  0.9126  0.9130  0.9157  0.9189  0.9192  

CT-img7 2  0.7771  0.7850  0.7861  0.7848  0.7850  0.7849  0.7800  0.7861 
3  0.8347  0.8362  0.8429  0.8432  0.8433  0.8407  0.8428  0.8440 
4  0.8402  0.8365  0.8266  0.8318  0.8289  0.8356  0.8282  0.8373 
5  0.8549  0.8405  0.8483  0.8499  0.8539  0.8507  0.8490  0.8489  

CT-img8 2  0.6529  0.6479  0.6483  0.6476  0.6478  0.6500  0.6483  0.6493 
3  0.7648  0.7690  0.7711  0.7709  0.7700  0.7677  0.7709  0.7730 
4  0.8276  0.8306  0.8414  0.8380  0.8380  0.8332  0.8414  0.8513 
5  0.8628  0.8454  0.8689  0.8666  0.8665  0.8665  0.8687  0.8690  

CT-img9 2  0.7113  0.7132  0.7128  0.7131  0.7132  0.7130  0.7128  0.7130 
3  0.7753  0.7908  0.7941  0.7928  0.7927  0.7852  0.7940  0.8021 
4  0.8183  0.8195  0.8282  0.8271  0.8283  0.8267  0.8287  0.8291 
5  0.8499  0.8366  0.8629  0.8531  0.8565  0.8605  0.8629  0.8633  

CT-img10 2  0.7922  0.8005  0.8002  0.8006  0.8005  0.7960  0.8002  0.8102 
3  0.8524  0.8603  0.8591  0.8613  0.8611  0.8587  0.8592  0.8633 
4  0.8852  0.8876  0.8899  0.8871  0.8877  0.8889  0.8901  0.8999 
5  0.9093  0.8976  0.9212  0.9112  0.9149  0.9159  0.9212  0.9213  
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Table 21 
Comparison between Es-MFO, MRFO, MRFO-OBL, MPA, RSA, and RUN methods according to the PSNR mean values for nTh = [7, 8, 9, 10].  

Test Image nTh MRFO MRFO-OBL MPA RUN RSA Es-MFO 

CT-img1 7  22.7883  22.8366  21.4176  22.9134  22.7892  22.9892  
8  23.5724  23.6096  22.9087  23.5764  23.6032  23.8832  
9  24.4058  24.4777  23.6482  24.3107  24.4052  24.5552  
10  25.0747  25.075  24.4046  25.1588  25.0975  25.9575  

CT-img2 7  23.3543  23.3691  21.9528  23.3242  23.4015  23.7615  
8  24.25  24.2945  23.3681  24.2164  24.2553  25.2553  
9  25.2425  25.2675  24.3766  24.9997  25.2257  25.2257  
10  25.9906  26.0447  25.3463  25.8697  25.9719  26.9719  

CT-img3 7  23.3779  23.3835  21.9165  23.2441  23.3324  23.4024  
8  24.2597  24.292  23.3554  24.2523  24.2282  24.2585  
9  25.2401  25.2815  24.4217  24.9603  25.2046  25.2346  
10  26.0143  26.0406  25.3383  25.8116  26.0096  26.0896  

CT-img4 7  23.0455  23.1315  21.5663  22.9767  23.0369  23.0169  
8  24.1247  24.1701  23.0272  24.1220  24.0187  24.0787  
9  25.2826  25.3379  24.1972  24.9683  25.3512  26.3011  
10  26.0265  26.086  25.3168  25.7838  25.0861  26.9861  

CT-img5 7  17.6816  17.6923  17.3386  18.1540  17.7089  17.7789  
8  18.0973  18.1808  17.7441  19.0159  18.1785  19.1285  
9  18.4984  18.6158  17.8638  19.2159  18.6222  18.6322  
10  18.9574  19.0474  18.4492  20.4894  19.1864  19.1864  

CT-img6 7  21.0786  21.1912  19.3529  21.7825  21.0613  21.0813  
8  22.2276  22.2106  20.4640  22.8256  22.2209  22.4809  
9  22.9386  23.009  22.6400  24.1204  23.0058  23.2858  
10  23.5627  23.686  23.2842  24.9278  23.6631  23.7631  

CT-img7 7  19.4133  19.6895  18.4787  19.3341  19.4123  19.4123  
8  20.7551  20.702  18.8272  20.7072  20.3942  20.8042  
9  21.4188  21.8512  20.3691  21.5553  21.4879  21.5879  
10  22.6882  22.9905  20.9665  22.4265  22.6595  22.5595  

CT-img8 7  24.0661  24.1512  23.5801  24.8565  24.11  24.21  
8  25.4969  25.6688  24.5144  26.1716  25.5404  26.6404  
9  27.0617  27.05  25.4224  26.8701  27.1236  27.2236  
10  27.9826  27.9897  27.5670  27.7323  27.1206  28.0906  

CT-img9 7  21.7791  21.7893  20.7888  21.8192  21.5192  21.9192  
8  22.5405  22.6872  21.8236  22.8955  22.5364  22.9064  
9  23.6402  23.7957  22.3841  24.4842  23.5541  24.5541  
10  24.7814  25.0439  23.3700  25.5631  24.8784  25.8784  

CT-img10 7  20.4594  20.6069  19.5189  21.0905  20.3524  20.9524  
8  22.0541  22.1712  20.4965  22.2978  22.2284  22.3259  
9  23.0701  23.085  22.8955  23.1557  23.0357  23.6357  
10  23.5813  23.6204  23.7143  24.1704  23.1276  24.4256  
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CT images dataset. All compared methods use the same objective func-
tion as our proposed method, and we evaluate their performance using 
PSNR values for different thresholding numbers. Specifically, Table 21 
presents a comparison between our proposed Es-MFO algorithm and 
several other methods, including MRFO-OBL (Houssein, Emam, & Ali, 
2021b), MRFO (Zhao et al., 2020), RSA (Abualigah et al., 2022), MPA 
(Faramarzi et al., 2020), and RUN (Ahmadianfar et al., 2021). Mean-
while, Table 22 compares our proposed Es-MFO (Houssein et al., 2022) 
method with the I-EO method for different thresholding numbers. A 
higher PSNR value indicates a more effective and reliable algorithm. 
Table 22 shows that the Es-MFO algorithm achieves higher PSNR values 
than the I-EO algorithm for all the images and all threshold values. 

8. Conclusions and future extensions 

An upgraded variant of the MFO algorithm, Es-MFO, has been 
established and applied to solve nineteen basic benchmark functions, 
twenty-nine IEEE CEC 2017 test problems, two engineering design 
optimization problems, and COVID-19 CT image segmentation prob-
lems. Few state-of-the-art algorithms and variants of the MFO have been 
considered to assess the performance of the proposed Es-MFO algorithm. 
Moreover, to check the significance of Es-MFO, it has also been tested 
statistically with some of the rank analysis viz., Friedman rank tests and 
Wilcoxon ranks tests. Further, diversity analysis of the Es-MFO has been 
employed to check the balance between diversification and intensifi-
cation. Moreover, the proposed Es-MFO has been applied on three 
CEC2020 real-world constrained engineering design problems and 
multilevel threshold image segmentation of COVID-19 CT images. For 
these real-world issues, the newly created Es-MFO algorithm out-
performs than other optimization algorithms. From all the evaluation 

results, comments and analysis demonstrate that the suggested Es-MFO 
has achieved superior results than the other considered algorithms. 

In the future, this method can be used with multi- and many- 
objective optimization algorithms. The proposed F-MFO algorithm 
could also be used to study a variety of real optimization problems, such 
as vehicle routing, job shop planning, parameter estimation of fuel cell 
problem, combined economic and emission dispatch problem, image 
segmentation problem, workflow planning, etc. 
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Table 22 
Comparison between Es-MFO and I-EO according to PSNR mean values for nTh = [2, 3, 4, 5, 10].  

Image nTh I-EO ES-MFO Image Th I-EO ES-MFO 

CT-img1 2  12.5000  15.0775 CT-img6 2  11.9000  14.0568  
3  15.7000  16.9613  3  17.5000  16.2676  
4  16.9000  18.5202  4  17.3000  17.6772  
5  19.0000  20.3519  5  18.6000  18.8091  
10  24.6000  25.9575  10  25.2000  23.7631  

CT-img2 2  14.3000  14.4228 CT-img7 2  13.5000  12.934  
3  15.9000  17.0447  3  13.9000  14.7122  
4  18.9000  18.3344  4  14.5000  16.3525  
5  20.3000  20.7474  5  15.3000  16.7725  
10  23.5000  26.9719  10  22.2000  22.5595  

CT-img3 2  11.1000  14.9576 CT-img8 2  12.6000  14.6999  
3  17.1000  16.8898  3  15.7000  18.5384  
4  16.8000  18.2664  4  16.7000  20.5143  
5  19.9000  20.4396  5  19.0000  21.9539  
10  24.6000  26.0896  10  25.2000  28.0906  

CT-img4 2  12.0000  14.5523 CT-img9 2  12.6000  13.7472  
3  17.5000  16.8656  3  13.8000  16.1962  
4  17.0000  17.9971  4  14.9000  19.7131  
5  18.6000  21.9691  5  20.8000  19.8622  
10  25.1000  26.9861  10  22.0000  25.8784  

CT-img5 2  11.8000  14.0621 CT-img10 2  10.8000  14.1602  
3  17.4000  14.9456  3  15.8000  16.5176  
4  16.9000  16.4784  4  18.4000  17.5753  
5  18.5000  16.6599  5  19.1000  19.4396  
10  25.2000  19.1864  10  26.1000  24.4256  
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Appendix A  

Appendix B 

Speed reducer design problem  

Objective function: 
Min.f(x) = 0.7854x2

2x1(14.9334x3 + 3.3333x2
3 − 43.0934) + 0.7854(x4x2

6 + x5x2
7) + 7.477

(
x3

7 +x3
6
)
− 1.508(x2

7 + x2
6)

Such that 
h1(x) = − x1x2

2x3 + 27 ≤ 0,
h2(x) = − (1)x2

2x2
3 + 397.5 ≤ 0,

h3(x) = − x2x4
2x3x− 3

4 + 1.93 ≤ 0,
h4(x) = − x2x4

7x3x− 3
5 + 1.93 ≤ 0,

h5(x) = 10x− 3
6

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

16⋅91 × 106 +
(
745x4x− 1

2 x− 1
3
)2

√

− 1100 ≤ 0,

h6(x) = 10x− 3
7

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

157.5 × 106 +
(
745x5x− 1

2 x− 1
3
)2

√

− 850 ≤ 0,
h7(x) = x2x3 − 40 ≤ 0,
h8(x) = − x1x− 1

2 + 5 ≤ 0,
h9(x) = x1x− 1

2 − 12 ≤ 0,
h10(x) = 1.5x6 − x4 + 1.9 ≤ 0,
h11(x) = 1.1x7 − x5 + 1.9 ≤ 0,
2.6 ≤ x1 ≤ 3.6,0.7 ≤ x2 ≤ 0.8,17 ≤ x3 ≤ 28,
2.9 ≤ x6 ≤ 3.9,5 ≤ x7 ≤ 5.5,7.3 ≤ x4,x5 ≤ 8.3.

Table A1 
Formulation of 19 benchmark functions.  

Sl. 
no 

Functions Formulation of objective functions d Fmin Search 
space 

Unimodal Benchmark Functions 
F1 Beale f(x) = (1.5 − x1 + x1x2)

2
+
(
2.25 − x1 + x1x2

2
)2

+
(
2.625 − x1 + x1x3

2
)2 2 0 [− 100, 

100] 
F2 Booth f(x) = (2x1 + x2 − 5)2 + (x1 + 2x2 − 7)2 2 0 [− 10, 10] 
F3 Matyas f(x) = 0.26

(
x1

2 +x2
2) − 0.48x1x2 2 0 [− 10, 10] 

F4 Sumsquare f(x) =
∑D

i=1xi
2 × i 30 0 [− 10, 10] 

F5 Zettl f(x) =
(
x − 12 + x − 22 − 2x1

)2
+ 0.25x1 

2 − 0.00379 [− 1, 5] 

F6 Leon f(x) = 100
(
x2 − x1

3)2 + (1 − x1)
2 2 0 [− 1.2, 

1.2] 
F7 Zakhrov f(x) =

∑d
j=1xi

2 +
(

0.5
∑d

j=1jxj

)2
+
(

0.5
∑d

j=1jxj

)4 2 0 [− 5, 10]   

Multimodal Benchmark Functions 
F8 Bohachevsky f(x) = x1

2 + 2x2
2 − 0.3cos(3πx1) − 0.3 2 0 [− 100, 

100] 
F9 Bohachevsky 3 f(x) = x1

2 + 2x2
2 − 0.3cos(3πx1) − 0.3 2 0 [− 50, 50] 

F10 Levy f(x) = sin2(πx1) +
∑D− 1

i=1 (xi − 1)2
[
1+10sin2(πxi + 1)

]
+ (xD − 1)2[1+sin2(2πxD)

]
Where, xi = 1 +

1
4
(xi − 1),

i = 1,2,⋯⋯⋯D 

30 0 [− 10, 10] 

F11 Michalewicz 
f(x) = −

∑D
i=1sin(xi)sin2m(

ixi
2

π ), m = 10 
10 − 9.66015 [0, π] 

F12 Alpine f(x) =
∑D

i=1 |xisin(xi) + 0.1xi| 30 0 [− 10, 10] 
F13 Schaffers 

f(x) = 0.5 +
sin2 ( x1

2 + x2
2) − 0.5

[1 + 0.001(x12 + x22) ]
2 

2 0 [− 100, 
100] 

F14 Powersum 
f(x) =

∑D
i=1

[(∑D
k=1(xk

i
)− bi

)2
]

30 0 [− 10, 10] 

F15 Penalized2 f(x) = 0.1
{

10sin2(πxi)+
∑D− 1

i=1 (xi − 1)2
[1 + 10sin2(3πxi+1) + (xD − 1)2[1 + sin2(2πxD)]]

}
+

∑D
i=1u(xi,5,100, 4)

30 0 [− 50, 50] 

F16 Kowalik 
f(x) =

∑11
j=1

[

aj −
x1

(
bj

2 + bjx2

)

(bj
2 − bjx3 − x4

⎤

⎦

2 4 0.0003075 [− 5, 5] 

F17 Foxholes 
f(x) =

[
1

500
+
∑25

j=1
1
j
+
∑D

i=1

(
xi − aij

)6
]− 1 2 3 [− 65, 65] 

F18 Inverted cosine 
mixture 

f(x) = 0.1× 30 −
[
0.1 ×

∑d
j=15πxj −

∑d
j=1xj

2
]

30 [− 1, 1] 0 

F19 salomon f(x) = 1 − cos
(

2π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑d

j=1xj2
√ )

+ 0.1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑d

j=1xj2
√ 30 [− 100, 

100] 
0  
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Multiple disk clutch break design problem 

Objective function: 

Minf (x) = π(x2
2 − x2

1)x3(x5 + 1)ρ 

Constraints: 

h1(x) = − pmax + prz ≤ 0,

h2(x) = przVsr − Vsr,maxpmax ≤ 0,

h3(x) = ΔR+ x1 − x2 ≤ 0,

h4(x) = − Lmax +(x5+1)(x3 + ∂) ≤ 0,

h5(x) = sMs − Mh ≤ 0,

h6(x) = T ≥ 0,

h7(x) = − Vsr,max +Vsr ≤ 0,

h8(x) = T − Tmax ≤ 0,

where, 

Mh =
2
3

μx4x5
x3

2 − x3
1

x2
2 − x2

1
N.mm,ω =

Πn
30

rad
s
,A = π(x2

2 − x2
1)mm2 

prz =
x4
A N/mm2, Vsr = ΠRsrn

30 mm/s,Rsr = 2
3

x3
2 − x3

1
x2

2x2
1
,T = Izω

Mh+Mf
,

ΔR = 20mm,Lmax = 30mm, μ = 0.6,

Vsr,max = 10
m
s
, ∂ = 0.5mm, s = 1.5,

Tmax = 15s, n = 250rpm, Iz = 55Kg.m2  

Tmax = 15s, n = 250rpm, Iz = 55Kg.m2  

Ms = 40Nm,Mf = 3Nm, andpmax = 1 

Variable range: 

60⩽x1⩽80, 90⩽x2⩽110, 1⩽x3⩽3, 0⩽x4⩽1000, 2⩽x5⩽9.

Welded beam design problem  

Objective function: 
Min.f(x) = 0.04811x3x4{x2 +14} + 1010471x2

1x2 

Subject to: 
h1(x) = x1 − x4 ≤ 0, 
h2(x) = δ(x) − δmax ≤ 0,
h3(x) = P ≤ Pc(x),
h4(x) = τmax ≥ τ(x),
h5(x) = σ(x) − σmax ≤ 0,

where, 

τ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

τ′ 2
+ τ′′2 + 2τ′ τ′′ x2

2R

√

, τ′

=
P
̅̅̅
2

√
x2x1

, τ′′ =
RM

J
, M = p(

x2

2
+ L)

R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2

2
4

+
(x1 + x3

2

)2
√

, J = 2
x2

2
4

+

⎛

⎝
2

((x1 + x3

2

)) ̅̅̅
2

√
x1x2

⎞

⎠ ,

σ(x) =
6PL
x4x2

3
, δ(x) =

6PL3

Ex2
3x4

, Pc(x) =
4.013Ex3x3

4
6L2

(

1 −
x3

2L

̅̅̅̅̅̅̅
E

4G

√ )

,

L = 14in,P = 6000lb,E = 30× 16psi,G = 12× 106psi 
σmax = 30,000psi, δmax = 0.25in, τmax = 13600psi,

where, 
0.1 ≤ x3,x2 ≤ 10,
0.125 ≤ x1 ≤ 2,
0.1 ≤ x4 ≤ 2.
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