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Abstract
Neuroimaging studies have provided evidence that extensive meditation practice modifies the functional and structural prop-
erties of the human brain, such as large-scale brain region interplay. However, it remains unclear how different meditation 
styles are involved in the modulation of these large-scale brain networks. Here, using machine learning and fMRI functional 
connectivity, we investigated how focused attention and open monitoring meditation styles impact large-scale brain networks. 
Specifically, we trained a classifier to predict the meditation style in two groups of subjects: expert Theravada Buddhist 
monks and novice meditators. We showed that the classifier was able to discriminate the meditation style only in the expert 
group. Additionally, by inspecting the trained classifier, we observed that the Anterior Salience and the Default Mode net-
works were relevant for the classification, in line with their theorized involvement in emotion and self-related regulation in 
meditation. Interestingly, results also highlighted the role of specific couplings between areas crucial for regulating attention 
and self-awareness as well as areas related to processing and integrating somatosensory information. Finally, we observed a 
larger involvement of left inter-hemispheric connections in the classification. In conclusion, our work supports the evidence 
that extensive meditation practice modulates large-scale brain networks, and that the different meditation styles differentially 
affect connections that subserve style-specific functions.

Keywords FMRI · Functional connectivity · Machine learning · Focused attention mediation · Open monitoring 
meditation · Mindfulness

Introduction

The growing interest in exploring the fundamental facets 
of meditation is driven by its beneficial effects on several 
cognitive and psychological processes, in the framework 
of mental and physical health promotion (Lutz et al. 2008; 
Tang et al. 2015).

Meditation practices have been divided into three macro-
families, i.e. attentional, deconstructive and constructive 
(Dahl et al. 2015). Among these families, attentional medi-
tation is known to strengthen the self-regulation of differ-
ent attentional processes, as well as the ability to initiate 
and sustain meta-awareness. The neural underpinnings of 
these cognitive processes have been investigated by further 
disentangling two main styles of attentional meditation: the 
focused attention (FA), in which the core is to narrow the 
attention on a specific endogenous object (e.g. breath sensa-
tions), and the open monitoring (OM), where the attentional 
scope is expanded to detect emotional feelings, thoughts 
and perceptions as they occur (Lutz et al. 2008; Vago and 
Zeidan 2016).

Recent studies demonstrated that both FA and OM medi-
tation styles modulate the activity and connectivity of dif-
ferent brain regions and networks devoted to the regulation 
of attention, self-awareness and self-monitoring, inhibitory 
control, shaping the communication between brain areas 
using EEG (Cahn and Polich 2006; Yordanova et al. 2020), 
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fMRI (De Filippi et al. 2022; Manna et al. 2010) and MEG 
(Calvetti et al. 2021; Marzetti et al. 2014).

Although several studies have focused on how specific med-
itation styles modulate the structural and functional aspects of 
the human brain (Ganesan et al. 2022; Pernet et al. 2021; Tang 
et al. 2015), the gap between the phenomenology of medita-
tion and the underpinning neural mechanisms still needs to be 
filled. Indeed, it is still unclear how different meditation styles 
and extensive practice impact large scale brain networks, and 
their intra- and inter-hemispheric connections.

In this scenario, the ability of decoding approaches, also 
referred as multivariate pattern analysis (MVPA) to detect fine-
grained differences in neurophysiological signals (O’Toole 
et al. 2007) is suited for addressing this issue (Haxby 2012; 
Haynes 2015). Indeed, it has been demonstrated that MVPA 
can be successfully used to discriminate patterns of brain acti-
vation in perceptual and cognitive tasks (Cichy et al. 2014; 
Guidotti et  al.  2020; Kragel and LaBar  2016; Tosoni 
et al. 2016). The same approach has been used by exploiting 
functional connectivity patterns to decode discrete functions 
such as working memory (Syrjälä et al. 2021) or continuous 
variables such as brain maturity or age (Dosenbach et al. 2010; 
Liem et al. 2017). Moreover, MVPA has been applied in mind-
fulness studies to predict age using voxel-based morphometry 
(Luders et al. 2016) and to classify patterns of functional con-
nectivity before and after a body-mind training course (Tang 
et al. 2017). Recently, different signatures of age and expertise 
on patterns of functional connectivity in expert meditators have 
been shown (Guidotti et al. 2021).

In this study, we analyze fMRI data recorded from two 
groups of subjects, with different levels of meditation expertise, 
while performing both FA and OM meditation styles. Rely-
ing on a connectivity based MVPA approach, we investigate 
whether functional connectomes are predictive of style-specific 
meditation state, and if the meditation expertise can impact the 
decoding accuracy. Finally, the intra- and inter-hemispheric 
large-scale connectivity patterns relevant for the prediction 
are explored. Based on proposed theories and earlier neuroim-
aging findings (Lutz et al. 2015; Manna et al. 2010; Marzetti 
et al. 2014; Raffone et al. 2019), we hypothesize a particular 
involvement of connectivity within and between default mode, 
salience and central executive networks, as well as a prominent 
involvement of connectivity within the left hemisphere.

Materials and Methods

Participants

Our study involved twelve Theravada Buddhist monks 
(males, mean age 37.9 yrs, SD 9.4 yrs, range 25–53 years) 
from the Santacittarama Buddhist Monastery. The par-
ticipants followed a Thai Forest Tradition and practiced 

FA (Samatha) and OM (Vipassana) meditation forms in a 
balanced way, including silent meditation retreats (3 or 4 
months per year). Meditation expertise is measured in years 
since the beginning of meditation practice in the monastic 
context (mean 16.4 yrs, SD 7.7 yrs). A group of ten novice 
meditators (males, mean age 33.0 yrs, SD 4.0 yrs, range 
26–36 years) were also recruited from the local community. 
The subjects included in the novice group practiced both 
styles, 30 minutes each day, for 10 days supervised by an 
expert meditator, before the fMRI acquisition. The partici-
pants gave their written informed consent according to the 
Declaration of Helsinki and the study was approved by the 
Ethical Committee of the University of Chieti-Pescara.

Experimental Procedure

The experiment alternated a block of 6 minutes of FA medi-
tation and a block of 6 minutes of OM meditation. Each 
meditation block was preceded by 3 minutes of non-medi-
tative passive block (Fig. 1A). The subjects performed three 
blocks of FA meditation and three blocks of OM meditation 
for a total duration of 57 minutes.

Each block started with verbal instructions on the media-
tion style to be performed or on resting. For FA meditation, 
the following instruction were given: “gently engage in sus-
taining the focus of your attention on breath sensations, such 
as at the nostrils, noticing with acceptance and tolerance 
any arising distraction, as toward stimuli or thoughts, and 
return gently to focus attention on the breath sensations after 
having noticed the distraction source”. In OM meditation, 
participants were given the following instruction: “observe 
and recognize any experiential or mental content as it arises 
from moment to moment, without restrictions and judgment, 
including breath and body sensations, percepts of external 
stimuli, arising thoughts and feelings”. The instruction for 
Rest was the following: “rest in a relaxed awake state”.

Data Acquisition

Data were acquired by a 1.5 T Siemens Magnetom Vision 
Scanner, BOLD signal images were obtained using a T2*-
weighted echo planar (EPI) sequence with: TR = 4.087 s, 28 
slices and voxel size 4 mm × 4 mm × 4 mm for a total of 860 
functional volumes. A high-resolution T1-weighted whole-
brain image was also acquired at the end of each session 
via a 3D-MPRAGE sequence (sagittal matrix = 256 × 256, 
FOV = 256 mm, slice thickness = 1 mm, no gap, in-plane voxel 
size = 1 mm × 1 mm, flip angle = 12°, TR/TE = 9.7/4.0 ms).

Preprocessing

Preprocessing of fMRI was carried out using the same approach 
used in our previous papers (Guidotti et  al. 2021; Manna 
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et al. 2010): the first five volumes were dropped, then motion 
and temporal correction was applied. Data were then filtered 
using a high-pass filter of two cycles per time course and then a 
linear detrend was applied. We did not include spatial and tem-
poral smoothing since it affects connectivity patterns (Alakörkkö 
et al. 2017). The standard preprocessing was performed using 
Brain Voyager QX 1.7 software (Brain Innovation, Netherlands).

Then, we segmented anatomical images into grey matter, 
white matter, and cerebrospinal fluid (CS) using the FSL 
FAST algorithm (Zhang et al. 2001). White-matter and CSF 
average timecourses were regressed out from the fMRI sig-
nal, together with movement parameters. The residual was 
filtered (0.009–0.08 Hz) and finally scrubbed by removing 
the volumes with a Framewise Displacement (FD) index 
greater than 0.5 (Power et al. 2012).

Regions of Interest (ROI)

To investigate the role of brain networks in distinguishing 
between FA and OM meditation styles, we adopted the func-
tional ROIs parcellation introduced in (Shirer et al. 2012) 
consisting in a set of ROIs that broadly covers a large part 
of the cerebral cortex using a functional subdivision. The 
authors extracted 90 ROIs from 14 networks obtained with 
ICA from resting state fMRI data: Visuospatial, High, and 
Primary Visual, left, and right Executive Control, posterior, 
and anterior Salience, dorsal, and ventral Default Mode, 
Sensorimotor, Basal Ganglia, Language, Auditory, and 
Precuneus networks. The selected ROI list is presented in 
Table S1.

Functional Connectivity Analysis

The average ROI time course was extracted and Pearson's 
correlation coefficient between time courses was computed 
from the ROIs obtained for each subject, independently for 
each meditation modality, and for each experimental block. 
Then, Fisher's z-transformation was applied and a square 
correlation matrix for each block was obtained.

Decoding Analysis

Values in the upper triangle of the correlation matrix were 
used as features to feed the classifier (Fig. 1B). Specifically, 
we extracted the feature set for each participant, block, and 
meditation style. Therefore, our dataset for classification 
was composed of six correlation matrices per participant 
divided in two classes, for a total of 36 samples for experts 
(3 matrices by 12 participants) and 30 samples (3 matrices 
by 10 participants) for novices.

An ANOVA-based feature selection (Pereira et al. 2009) 
was applied to reduce the dataset dimensionality, since the 
ratio between the number of samples and features was very 
large. We selected the 200 highest F-score ranked features.

We performed model selection by means of cross-valida-
tion. The dataset was then split into two parts: 75% of samples 
were used as a training set and the remaining 25% as testing 
set. This procedure was repeated 200 times, by shuffling sam-
ples in the training set to provide a good estimator of the pre-
diction error. Feature selection was only applied to the training 

Fig. 1  Experimental paradigm and analysis schema. Panel A the 
experimental procedure consisted of a block paradigm in which 6 
min. FA meditation, 6 min. OM meditation intermixed with a 3 min. 
non-meditative resting state were repeated three times. Panel B the 
analysis pipeline consists in extracting the average time course of 
the preprocessed BOLD signal (see "Materials and Methods" sec-
tion) from 90 ROIs, and in computing the pairwise Pearson correla-
tion matrix between the extracted time courses; then, the correlation 

matrix is used for training a Support Vector Machine (SVM) and pre-
dicting the meditation style. Before training, an ANOVA-based fea-
ture selection is performed. The dataset is randomly split 200 times 
into two parts: 75% of the subjects are used for training and 25% for 
testing. Finally, accuracy is calculated to assess the model perfor-
mance and the importance of features is evaluated by extracting the 
frequency of selection of a feature and by inspecting the weights of 
the model
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set for each repetition, in order to avoid biasing of the predic-
tion error (Pereira et al. 2009).

We then analyzed the dataset using a linear SVM (with 
penalty coefficient C = 1) and we computed the classification 
accuracy to evaluate model performance. All these analyses 
were carried out with the scikit-learn (Pedregosa et al. 2011), 
nilearn (Abraham et al. 2014) and scipy/numpy packages (Vir-
tanen et al. 2020).

Relevant Feature Analysis

The ANOVA-based feature selection procedure extracts the 
connections that will be used to train the classifier; this proce-
dure is repeated for each cross-validation fold.

First, we computed the feature selection probability by 
dividing the selection frequency by the number of cross-val-
idation folds (n = 200), then we averaged the selection prob-
ability for within- and between-network connections, in order 
to understand the contribution of each single network to the 
classification.

The contribution of each connection was then obtained 
by thresholding the feature selection probability; we selected 
only the connections that were selected in all of the cross-
validation folds, thus those having probability equal to 1 of 
being selected.

Finally, we extracted the weights of the classifier only for 
the most selected connections to understand the specific con-
tribution of the connection to each meditation style.

Statistical Analysis

Permutation test was used to assess the statistical significance 
of the decoding accuracy (Nichols and Holmes 2003): condi-
tion labels were shuffled two hundred times (n = 200) and the 
classification algorithm was repeated, including feature selec-
tion and cross-validation, to obtain the null distribution for the 
classification accuracy. The reported p-value is the ratio between 
the number of permutations that outperform the case with no 
permuted labels and the number of permutations. The p-value is 
the probability of observing the reported error by chance using 
the null distribution obtained after permutations. Multiple com-
parisons were assessed using Bonferroni correction.

We used a Mann-Whitney U test to compare the distribution 
of accuracies in the two groups. In addition, we carried out a 
Bayesian hypothesis testing approach to compare the signifi-
cance or the two classifiers with a null (or dummy) classifier 
(Benavoli et al. 2017).

Control Analyses

We performed two control analyses to check whether the 
sample size and the age affected the decoding accuracy in 
the two groups.

In order to check the impact of the limited sample size 
in the decoding accuracy (Cui 2018, Varoquaux 2018), we 
performed a bootstrap analysis on the expert group. In par-
ticular, we resampled (n = 100), without replacement, the 
expert dataset (n. subjects = 12) to the size of the novice (n. 
subjects = 10) and tested how the accuracies are distributed.

The different age of the two groups may introduce a bias 
in the classification accuracy. A possible solution could be 
to regress the age out from the datasets and use the residuals 
for the classification (Bron et al. 2015; Snoek et al. 2019), 
although this procedure may remove some variance related 
to the classification task. We followed this approach and 
performed, in both groups, the same classification analysis 
with a dataset cleaned by the age variable.

Results

Connectivity Patterns Predict Meditation Style 
in Experts Meditators

The classification analysis aimed at decoding the medita-
tion style from functional connectomes in the two groups of 
subjects, novice and expert meditators, separately.

Our results show that the prediction accuracy of the 
meditation style was equal to 65.6% for the expert group 
(p = 0.01; permutation-test, n = 200, avg. accuracy = 41.4%; 
Bonferroni-corrected), and to 54.4% (p = 0.14; permuta-
tion-test, n = 200, average accuracy = 41.03%; Bonferroni-
corrected) for the novice group. We used a Mann-Whitney 
U test to check whether the distribution of cross-validation 
accuracies in the expert group was higher than in the nov-
ice group. The test showed that the accuracies in the expert 
group were significantly higher than those in the novice 
group (U = 25.263e + 3,  n1 =  n2 = 200; p < 0.001 two-sided).

The Bayesian hypothesis test showed that the accuracy 
distribution in the expert dataset was significantly different 
from the null-model (p < 0.001), while in the novice group 
the difference is not significant (p = 0.33).

These findings thus reveal that the large-scale functional 
interactions can be more accurately used to predict the medi-
tation style in expert monks than in the novice group.

We tested whether the age and the sample size seems to 
affect the decoding accuracy.

The bootstrapping analysis, used to check the effect of 
the sample size, showed that the average accuracy of the 
resampled expert dataset was equal to 63.1% (p = 0.02 Bon-
ferroni-corrected). By comparing the bootstrapped accuracy 
distribution with the original values, we found that novice 
accuracy was at the 4-th percentile, while it was at 58-th 
percentile for the experts. These results suggested that the 
difference in the sample size has no effect on the accuracies.
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Control analysis for the age confirmed previous findings. 
Specifically, we significantly decoded the meditation form 
in experts (avg. accuracy = 62.9%, p = 0.02 Bonferroni-cor-
rected) while the accuracy was not significant in the novice 
group (accuracy = 53.7%, p = 0.1 Bonferroni-corrected). 
Although the decoding accuracy slightly decreased for both 
groups, the age does not seem to play a role in the accuracy 
difference.

Salience and Default Mode Networks are the Most 
Relevant for Meditation Style Decoding

In order to understand which brain networks, as described 
in (Shirer et al. 2012), play a crucial role in the decoding of 
meditation styles, we inspected the feature set used by the 
expert meditators classification model.

We calculated the frequency of a selected feature by 
evaluating the number of times that a single feature was 
used for classification, and we obtained a selection prob-
ability matrix by dividing the frequency of each feature 
by the number of cross-validation folds (n = 200). We then 
extracted the network selection probability by averaging 
the probabilities of the between- and within-network con-
nectivities, thus it indicates the probability that a node 
belonging to that particular network is selected. We 
checked the F-statistics of the relevant features and we 

found that all the reported variables had a statistically sig-
nificant difference between the two conditions (min: F(1, 
52) = 4.493; p = 0.038). Moreover, we compared the distri-
bution of the weights in the cross-validation fold by testing 
whether the negative and positive distributions were sta-
tistically different from zero, using a 1-sample t-test. We 
found that all the relevant features were significantly dif-
ferent from 0 (dof = 199, p < 0.001; Bonferroni-corrected)

In Fig. 2A, the barplot shows the ten networks with 
the highest probability of being selected for the classifica-
tion. The results highlight that both the Anterior Salience 
network and the dorsal Default Mode network (DMN) are 
the most relevant networks involved in the discrimination 
between meditation styles in the expert group (Fig. 2A), 
while the right Executive Central (RECN) and sensori-
motor networks are less prone to predict the meditation 
style. Moreover, by disentangling the within- and between-
network contributions, we observed that the Language net-
work plays an important role as shown in Fig. 2B. This 
network, indeed, shows within-network interactions as 
well as interactions with the ventral DMN and the primary 
visual network, crucial for the meditation style decoding. 
Our findings also show a relevant coupling between the 
anterior and the posterior Salience network and Basal Gan-
glia and the anterior Salience network.

Fig. 2  Relevant networks for meditation style decoding. The contri-
bution of a network is measured as the average selection probability 
of both between- and within- network connections. Panel A) The bar 
plot shows the relevance of the ten most important networks. Panel B) 
The plot illustrates the between- and within- network relevance. Each 

square represents the relevance of the between- and within-network 
connections calculated as the average selection probability. List of 
abbreviations: DMN - Default Mode Network; LECN - left Executive 
Central Network; RECN - right Executive Central Network
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Specific Connections Subserve Different Meditation 
Styles

To investigate the contribution of each meditation-specific 
inter-areal connection, we thresholded the selection prob-
ability matrix, and then we extracted the weights of the most 
probable features averaged across cross-validation folds.

We separated the connections with positive weights, spe-
cific to FA meditation (Fig. 3A), from those with negative 
weights specific to OM meditation (Fig. 3B). Line thickness 
and color hue indicate the weight magnitude.

Both graphs highlight that the contribution of cerebellar 
connections, including those of the left declive areas (Left 
Lobule VI), results to be significant for both FA and OM 
meditation styles (Fig. 3A–B). More in detail, Fig. 3A shows 
the interactions specific for the FA meditation style: the con-
nections between the right and the left supramarginal gyri 
seem to play a relevant role. Importantly, these areas are 
parts of a high-level system used to process somatosensory, 
auditory and visual stimuli (Tomasino et al. 2012), com-
prising the angular gyrus (AngG), and the inferior parietal 
lobule (IPL). Moreover, the right AngG-IPL is coupled 
with the right posterior insula and the left inferior frontal 
gyrus, suggesting the presence of a circuit sharing informa-
tion among these regions. Additionally, our results shows 
that Focused Attention (FA) specific connections include 

the anterior cingulate cortex (ACC), the medial prefrontal 
cortex (mPFC) and the posterior cingulate cortex (Fig. 3A), 
which are involved in attentional control and self-awareness.

The figure shows the normalized feature weights associ-
ated with the meditation style prediction model averaged 
across cross-validation folds. These weights are specific for 
FA (Panel A) and OM (Panel B) meditation styles. Each ROI 
is represented by a circle, whose size is proportional to the 
average of the weights.

Large‑Scale Core Networks Orchestrate Within‑ 
and Between‑Hemispheric Communication 
in Meditation

In order to understand the contribution of the left and right 
hemispheres, we analyzed the distribution of the most rel-
evant intra- and inter-hemispheric connections. In particular, 
we tested whether the left-hemispheric weights were higher 
than the right-hemispheric. Using a Mann-Whitney U test, 
we found that the magnitude of left-hemispheric weights 
was higher than those in the right hemisphere (U = 510.e + 3; 
 n1 = 946,  n2 = 1035, p < 0.05 one-sided).

Figure 4 shows a higher number of relevant intra-hemi-
spheric connections in the left hemisphere with respect to 
the right., although the number of connections in the left-
ward part of the brain was not significant (n = 6, p = 0.055; 

Fig. 3  Meditation-specific weights of the style decoding model
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permutation test), as well as in the rightward part (n = 4; 
p = 0.28; permutation test). Qualitatively, in the left hemi-
sphere, the results show an interplay between the Executive, 
the Salience and the Default Mode networks, while in the 
right hemisphere key nodes of the Auditory, dorsal Default 
Mode and posterior Salience networks are involved. Further-
more, Fig. 4 also shows the contribution of nodes included 
in the frontal lobe in the inter-hemispheric integration of 
information.

Taken together, these findings support the foundational 
theories of the left-dominance of intra-hemispheric con-
nectivities and the involvement of frontal intra-hemispheric 
regions for the integration and processing of information.

Discussion

It is well established that meditation practice effectively 
shapes the communication between brain areas and networks 
thus regulating different cognitive and behavioral processes, 
such as attention, self-monitoring and inhibitory control 
(Cahn and Polich 2006; Lutz et al. 2015; Manna et al. 2010; 
Marzetti et al. 2014).

In this scenario, a reliable tool to decode fine-grained 
connectivity patterns modulated by meditative practice is 
represented by multivariate pattern analysis (MVPA). In 
the present study, by using a machine learning approach, 

we demonstrated how different large-scale functional con-
nectivity patterns underpin different meditation styles. In 
particular, we showed that the prediction accuracy is signifi-
cantly higher in the expert group than in the novice group, 
whose connectivity profiles are not informative about the 
meditative specialization. These findings suggest that the 
expertise in meditation practice shapes and consolidates spe-
cific neural patterns subserving different meditation styles. 
By predicting meditation-style across-subjects, our analysis 
demonstrated the existence of a shared trace of long-term 
meditation practice in brain functional connectivity. Spe-
cifically, this common trace is represented by patterns of 
coupled nodes belonging to different networks relevant for 
the decoding.

The results highlighted that a crucial role for medita-
tive style classification is played by two networks largely 
described as strongly involved in interoceptive and self-
related processes: the Salience and Default Mode networks 
(Melis et al. 2022; Raffone et al. 2019). Conversely, the 
Executive network, which is classically defined as a core 
system for coordinating attentional processes in the medi-
tating brain (Bauer et al. 2019; Doll et al. 2015), seems to 
be less prone to predict the meditation style. Interestingly, 
also the Language network and the Visual network revealed 
to be important to decode OM and FA meditation styles. 
Conceivably, the role of the former may be related to simple 
verbal labeling of the internal and external perceived stimuli 

Fig. 4  Intra-and inter- hemispheric relevant connections. Red lines represent the left hemisphere connections, while the right hemisphere con-
nections are denoted by blue lines. Finally, the inter-hemispheric connections are depicted by yellow lines
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naturally occurring during OM meditation (Lutz et al. 2008; 
Raffone et al. 2019; Vago and Zeidan 2016), while the role 
of the latter may be related to its importance in regulating 
the attentional resources during meditative visual mental 
imagery (Raffone and Srinivasan 2009).

By inspecting connections relevant for the prediction, we 
found the contribution of the left declive areas (Left Lobule 
VI) of the cerebellum that are common for both FA and 
OM. Indeed, an increase of cerebellum gray matter density 
and volume has been found in long-term meditators (Vester-
gaard-Poulsen et al. 2009), and in novice practitioners after 
a 8-week mindfulness-based training (Hölzel et al. 2011), 
possibly related to the different roles of this area in the regu-
lation of the posture and of the emotional level (Levisohn 
et al., 2000; Park et al. 2018). In addition, the coupling of 
left declive with the right supramarginal gyrus, revealed by 
our analysis, might be related to the meditators ability of 
being empathetic and compassionate (Lippelt et al. 2014; 
Lutz et al. 2008), given the role of the right supramarginal 
areas in empathy regulation (Silani et al. 2013).

Our results showed that Open Monitoring (OM) spe-
cific connections involve the angular gyrus (AngG), and 
the inferior parietal lobule (IPL), two regions that are sup-
posed to process somatosensory, auditory and visual stimuli 
(Numssen et al. 2021; Seghier 2013). In addition, the right 
AngG-IPL is coupled with the right posterior insula and 
the left inferior frontal gyrus, suggesting the presence of 
a circuitry used to process and label the current emotional 
status (Seghier 2013).

Focused Attention (FA) specific connections, instead, 
include nodes that are involved in attentional control and 
self-awareness, as the frontal eye field (FEF), the ante-
rior cingulate cortex (ACC), the medial prefrontal cortex 
(mPFC) and the posterior cingulate cortex (PCC). In par-
ticular, the ACC is known to have a strong relevance in the 
self-regulation of attention and conflict monitoring (Posner 
and Rothbart 2007; Van Veen et al. 2009) and has been 
demonstrated to increase its activity during FA meditation 
in experienced meditators rather than in novices (Zhang 
et al. 2021).

In addition, the modulation of PCC connections, due to 
extensive meditation, is well established (Brewer and Gar-
rison 2014; Marzetti et al. 2014; Zhang et al. 2021), due to 
its role in potentially switching between mind-wandering 
and focused attention.

In line with previous findings (Manna et al. 2010; Mar-
zetti et al. 2014), our results also showed a left hemispheric 
dominance (Fig. 4); indeed the interplay between the left 
Salience, Default Mode and Executive networks supports 
the notion that meditation-related mechanisms are used to 

improve a rapid regulation and integration of information 
from different systems (Raffone et al. 2019). Instead, right 
connections, which involve the Auditory, the dorsal Default 
Mode and the posterior Salience networks, may be relevant 
for accumulating or integrating interoceptive and emotional 
information, subsequently labeled by the Language network 
during OM style ((Bud) Craig 2009).

In addition, we also showed that relevant inter-hemi-
spheric connections include those with nodes in the fron-
tal lobe, a region that showed a structural change in expert 
mediators as reported in previous studies (Luders et al. 2011; 
Tang et al. 2012).

Overall, our results suggest that style-specific connectiv-
ity fingerprints emerge from extensive meditative practice. 
This shared trace is characterized by patterns of both within- 
and between- left dominant connectivity networks which are 
modulated by meditation-specific cognitive and behavioral 
processes.
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