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ABSTRACT

Diabetic retinopathy (DR), a leading cause of
preventable blindness, is expected to remain a
growing health burden worldwide. Screening to
detect early sight-threatening lesions of DR can
reduce the burden of vision loss; nevertheless,
the process requires intensive manual labor and
extensive resources to accommodate the
increasing number of patients with diabetes.
Artificial intelligence (AI) has been shown to be
an effective tool which can potentially lower
the burden of screening DR and vision loss. In

this article, we review the use of AI for DR
screening on color retinal photographs in dif-
ferent phases of application, ranging from
development to deployment. Early studies of
machine learning (ML)-based algorithms using
feature extraction to detect DR achieved a high
sensitivity but relatively lower specificity.
Robust sensitivity and specificity were achieved
with the application of deep learning (DL),
although ML is still used in some tasks. Public
datasets were utilized in retrospective valida-
tions of the developmental phases in most
algorithms, which require a large number of
photographs. Large prospective clinical valida-
tion studies led to the approval of DL for
autonomous screening of DR although the
semi-autonomous approach may be preferable
in some real-world settings. There have been
few reports on real-world implementations of
DL for DR screening. It is possible that AI may
improve some real-world indicators for eye care
in DR, such as increased screening uptake and
referral adherence, but this has not been pro-
ven. The challenges in deployment may include
workflow issues, such as mydriasis to lower
ungradable cases; technical issues, such as
integration into electronic health record sys-
tems and integration into existing camera sys-
tems; ethical issues, such as data privacy and
security; acceptance of personnel and patients;
and health-economic issues, such as the need to
conduct health economic evaluations of using
AI in the context of the country. The
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deployment of AI for DR screening should
follow the governance model for AI in health-
care which outlines four main components:
fairness, transparency, trustworthiness, and
accountability.

Keywords: Artificial intelligence; Deep learn-
ing; Deployment; Diabetic retinopathy; Dia-
betic retinopathy screening; Machine learning;
Retinal photographs

Key Summary Points

The robust performance of some
retrospective validation studies of deep
learning (DL) for diabetic retinopathy
(DR) screening on color retinal
photographs has generated enthusiasm
for using artificial intelligence (AI) in
healthcare, not only in ophthalmology.

The steps of applying AI in healthcare,
including DR screening, can be followed
from in silico evaluation, offline
retrospective evaluation, small-scale and
large-scale prospective online evaluation,
and post-market surveillance, comparable
to the preclinical and subsequent phases
of studies on new drugs.

Many factors, other than its diagnostic
performance, should be in consideration
for deployment of AI for DR screening.
These challenges include workflow issues,
such as mydriasis to lower ungradable
cases; technical issues, such as integration
in electronic health record system, ethical
issues, such as data privacy and security,
and acceptance of personnel and patients.

The deployment of AI for DR screening
should follow the governance model for
AI in healthcare which outlines four main
components: fairness, transparency,
trustworthiness, and accountability.

INTRODUCTION

Diabetes mellitus (DM) has been one of the
major global public health problems for many
decades, and the prevalence of DM is expected
to increase continuously in all regions of the
world in the coming decades [1]. The Interna-
tional Diabetes Federation (IDF) has projected
that there will approximately 700 million
patients with diabetes worldwide by 2045 [2].
Diabetic retinopathy (DR), one of the most
common microvascular complications of DM, is
one of the leading causes of preventable blind-
ness, particularly in the working-age popula-
tion. As such DR is expected to remain a
growing burden on healthcare systems world-
wide [3].

Not only is the global prevalence of DM and
DR expected to increase, but concomitantly the
global prevalence of vision-threatening DR
(VTDR), which includes diabetic macular edema
(DME), severe non-proliferative DR (NPDR), and
proliferative DR (PDR), is also projected to
increase. The global number of patients with
VTDR is estimated to increase by 57.0% from
approximately 28.5 million people in 2020 to
approximately 44.8 million people in 2045 [4].
Screening to detect early sight-threatening
lesions of DR for timely monitoring and treat-
ment is an important strategy to reduce the
burden of vision loss and blindness due to DR
[5, 6].

The burden of DR disproportionately affects
the poorer countries worldwide [1, 3], with low-
to middle-income countries (LMICs) tending to
have a higher prevalence of DM and DR due to
lower healthcare resources compared to high-
income countries. National screening programs
for DR, in which all patients with DM in a
country are targets, have shown to be an effec-
tive public health intervention to sufficiently
reduce vision loss from DR [7–9]. Nevertheless,
most of the screening programs worldwide are
opportunistic, rather than national or system-
atic. Over the years, these screening programs
have required increasingly intensive manual
labor and extensive resources to accommodate
the increasing number of patients with DM.
Attempts have been made to lower the
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screening burden while at the same time
increase the screening rates. Examples of such
attempts are the teleretinal imaging programs,
which were proven to be cost-effective [9, 10].

Artificial intelligence (AI) algorithms have
recently been shown to be effective tools for
autonomous or assistive screening of DR. These
algorithms can potentially lower the burden
imposed on human personnel and improve
patient access to care. Many retrospective stud-
ies have found that AI algorithms have a robust
performance in terms of diagnostic accuracy of
AI for detecting referable DR (rDR) or VTDR.
However, in comparison, many fewer studies
have been published on the prospective valida-
tion of AI algorithms for DR screening. While
the results of these studies still supported the
high performances of AI for DR screening, their
performances were generally lower, but still
acceptable, compared with the results from
retrospective validation studies. Real-world
studies on AI for DR screening, however, are
rarely found in the literature.

Here, we review the use of AI for DR screen-
ing in these retrospective, prospective, and real-
world studies with a focus on the analysis of AI
on color retinal photographs, which are readily
available, practical, and a ubiquitous tool for
screening. We also reviewed the important
issues of governance and challenges with AI
deployment for those who are considering the
implementation of AI for DR screening in clin-
ical practice.

METHODS

We reviewed AI-based DR screening by search-
ing the Google Scholar, PubMed, Medline, Sco-
pus, and Embase databases for studies published
in English up to 31 October 2022, using these
keywords: ‘‘diabetes,’’ ‘‘DR screening,’’ ‘‘fundus
photographs,’’ ‘‘artificial intelligence,’’ ‘‘auto-
mated DR system,’’ ‘‘machine learning,’’ and
‘‘deep learning’’.

This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors.

RESULTS

Brief Review of AI

Many methods can be used to develop algo-
rithms for automated detection of DR, whether
it is machine learning (ML) or deep learning
(DL). ML is a method in which humans teach
machines to detect specified patterns of features
(feature extraction) in data for a specific task.
This strategy allows the machine to detect only
those features it has been taught. ML-based
algorithms can therefore predict the presence of
levels of DR that it has been taught. In com-
parison, DL is a method of ML in which an
algorithm is engineered to detect the most
predictive features directly from large sets of
data labeled with certain information [11]. DL
functions like a human brain and is based on
artificial neural networks which learn features
directly from data, and its performance increa-
ses with increasing data [12]. Since DL-based
algorithms have no pre-specified patterns to
learn from, there is no justification as to how
the algorithm reaches certain outcomes, which
is referred to as the ‘‘black box’’. Although the
process is unexplainable, and therefore a liabil-
ity, at the same time, this gives AI the ability to
offer new insights into certain diseases and to
identify features that humans previously have
not been able to recognize [13].

Development of AI Algorithms

The first phase in the development of AI algo-
rithms for DR screening from retinal pho-
tographs is to establish a sufficiently large
dataset of photographs of patients with DM,
with each photograph marked for the severity
of DR and the presence of DME. Then, approx-
imately 80% of the data (photographs with
labels) may be used to develop the DL algo-
rithms, with 20% kept for evaluation of the
algorithms. This phase is called the ‘‘in silico
evaluation’’ or ‘‘internal validation,’’ and is
comparable to the preclinical development
program for new drugs. The algorithms are then
validated with new datasets of retinal pho-
tographs of patients with DM. This phase is
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sometimes called the ‘‘external validation’’ or
‘‘offline validation’’, and is unique for AI devel-
opment since drug development programs do
not include this phase. After this validation, the
algorithms may be validated prospectively in
the ‘‘early live clinical prospective validation’’
phase, which is comparable to phase 1 and
phase 2 studies for small-scale safety and effi-
cacy evaluation in drug development programs.
The next phase for AI is the ‘‘comparative
prospective evaluation’’ phase, which is com-
parable with phase 3 studies in drug develop-
ment programs. The last post-market
surveillance phase is similar for both AI algo-
rithms and drug development programs [14].

Publicly Available Datasets for DR

The initial dataset for the development of AI for
DR screening should be sufficiently large so that
the algorithms can achieve robust performance
in the in silico evaluation phase. Then, the
algorithms can further be tuned to be more
precise and generalizable with training data that
is diverse in terms of patients’ demographics
and ethnicity, image acquisition methods, and
image qualities. Most open datasets were
developed under the concept that the lack of
large publicly available datasets to train the DL
models with high-quality images is a reason for
the present barriers in the development and
application of automated DR detection pro-
grams in clinical practices. Public datasets pro-
vide researchers with invaluable information for
use; several of such databases are shown in
Table 1.

The Messidor database was created within
the context of the Messidor project to facilitate
studies on computer-assisted diagnoses of DR
and has been available for public use since 2008.
It includes not only the images but also the
diagnoses of DR severity and risk of macular
edema provided by medical experts; however,
no annotations are provided [15].

DIARETDB0 and DIARETDB1 are public
databases provided by Kauppi et al. [16, 17] with
the purpose of creating a unified framework for
evaluating and comparing automatic DR
detection methods. Images were captured with
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unknown camera settings, which the creators
claim to correspond with practical situations.
Together with images, the datasets include the
‘‘ground truth,’’ which are annotations provided
by four medical professionals who are experts in
medical education and ophthalmology. These
four experts marked retinal areas containing
microaneurysms, hemorrhages, and exudates in
the images [16, 17]. The annotations ensure
that the extracted DR findings are at the same
location as those marked by the experts. The
DIARETDB datasets were used for the develop-
ment of an AI algorithm for automated seg-
mentation and detection of retinal
hemorrhages in retinal photographs [18].

EyePACS is a telescreening program that
collects retinal photographs frommany primary
care clinics within the context of the EyePACS
telescreening program for DR. This dataset
comprises retinal photographs from both
mydriatic and non-mydriatic conditions. DR
severity grading for this dataset is provided
based on the reading by trained graders.

The Asia–Pacific Teleophthalmology Society
(APTOS) 2019 Challenge is another database. It
is available at the APTOS 2019 Blindness
Detection website, where retinal photographs
were collected by the Aravind Eye Hospital in
India. The images were gathered under different
conditions and clinical environments and later
labeled by trained ophthalmologists. Another
public dataset from India is the IDRiD dataset
from an ophthalmology clinic in Nanded. In
addition to including data on DR severity and
presence of DME, this dataset also provides
annotations on DR lesions and the optic disc
[19].

China’s public dataset, the DDR, provides
three types of annotations, including image-
level DR grading annotations, pixel-level
annotations, and bounding-box annotations of
lesions associated with DR, all labeled by oph-
thalmologists [20].

Retrospective Validation Studies from ML
to DL

Table 2 summarizes selected studies on the ret-
rospective validation of available AI models for

DR screening. It is evident that the early studies
using ML in the earlier versions (Retinalyze,
Retmaker, EyeArt v1.2, and IDP in the period
2003–2015) could achieve high sensitivity, from
91.0% to 96.7%, but their specificities were rel-
atively lower, from 51.7 to 71.6%. It was when
DL was applied to IDX-DR X2.1 (new version of
IDP; see Table 2) in 2016 that the retrospective
validation for screening of rDR by IDX-DR could
achieve robust sensitivity and specificity [21].

In the era of ML, prior to DL, three ML
algorithms for DR screening, iGradingM, EyeArt
v1.2, and RetMarker, were validated in one
study in [ 20,000 patients with DM in the
National Health System (NHS) Diabetic Eye
Screening Programme (DESP) in the UK. The
investigators found that iGradingM classified
the photographs as either having retinopathy or
ungradable, which limited further analysis. The
authors reported the comparable sensitivity of
EyeArt and Retmarker to be 93.8% and 85.0%
for detecting rDR, and 99.6% and 97.9% for
detecting PDR. The sensitivity and false-positive
rates for EyeArt were not affected by ethnicity,
gender, nor camera type, but the values did
decline with increasing patient age, whereas the
performance of Retmarker was affected by
patient age, ethnicity, and camera type [22].

Retmarker is an automated DR screening
algorithm using ML that was developed in Por-
tugal. This ML system extracts features, such as
the presence of microaneurysms, and provides
an output as disease or no disease. It also pro-
vides a co-registration component which com-
bines images from two visits and compares
them at the same location of the retina using
the retinal vascular tree as landmarks; this
allows the ML algorithm to be able to provide
microaneurysm turnover rates [23]. The algo-
rithm can be applied in the treatment of clini-
cally significant macular edema (CSME) with
intravitreal injections of ranibizumab by
demonstrating a decrease in the absolute num-
ber of microaneurysms after the treatment [24].
Retmarker was found to be able to lower the
grading burden by 48.8% in the DR screening
program in Portugal [25].

Retinalyze is another ML-based algorithm
using feature extraction to detect DR. The sen-
sitivity and specificity of this algorithm for
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detecting DR or no DR was found to be
approximately 95% and 71%, respectively, for
validation under mydriasis [26] in populations
of patients with DM from the Welsh Commu-
nity DR study in the UK [27] and Steno Diabetes
Center in Denmark [28].

IDx-DR (Digital Diagnostics, Coralville, IA,
USA) was initially developed at the University of
Iowa as an ML algorithm and given the name of
the Iowa Detection Program (IDP). The later
version of IDP, IDx-DR, became a combination
of convolutional neural networks (CNN) and
DL enhancement. The model detects different
types of DR lesions and assesses image quality
and imageability ratings. Validation of the IDP
on the Messidor-2 dataset, which includes
Caucasian populations, achieved a sensitivity of
96.8% and specificity of 59.4% in detecting rDR
[29]. The IDP was later validated on a popula-
tion from the Nakuru Study in Kenya and
achieved a comparable sensitivity of 91.0% and
specificity of 69.9%, implying that race might
not affect its performance [30]. IDx-DR X2.1,
the newer version, which is enhanced by DL
components, was validated on the same Messi-
dor-2 dataset but achieved the higher sensitivity
of 96.8% and higher specificity of 87.0% for
rDR, and a sensitivity of 100.0% and a speci-
ficity of 90.8% for VTDR [21].

ARDA (Automated Retinal Disease Assess-
ment) is a DL algorithm developed by Verily
Life Sciences LLC (South San Francisco, CA,
USA). This algorithm was developed using
datasets of approximately 130,000 retinal pho-
tographs of patients with DM from the USA and
India. The initial validation of this algorithm
was on both the Messidor-2 and EyePACS-1
datasets, with approximately 10,000 pho-
tographs, following which the algorithm was
retrospectively validated on retinal photographs
of patients from the national registry of diabetic
patients in Thailand, which is a distinct dataset.
In this validation, which was a comparison with
human graders, the algorithm demonstrated a
sensitivity of 96.8%, which was higher than
that of the human graders (approx. 74%), while
the specificity was comparable (96–97%) [31].

The Singapore Eye Research Institute and the
National University Singapore developed a DL
system called SELENA? to detect rDR. These

algorithms were developed to have capabilities
to detect a number of other vision-threatening
eye diseases, such as glaucoma and age-related
macular degeneration (AMD) from retinal pho-
tographs. The system was validated from data-
sets of[70,000 photographs from ten countries
and various races. The investigators of
SELENA? proposed two different scenarios of
how AI could be integrated into clinical
screening programs. The first scenario was the
fully automated model, in which there were no
human assistants; a sensitivity of 93.0% and a
specificity of 77.5% was found in detecting
referable cases, including glaucoma and AMD.
The second scenario was a semi-automated
model, in which there were human assistants
working with AI. In this scenario, the specificity
increased to 99.5%, with the sensitivity
remaining relatively similar at 91.3% [32].

EyeArt v2.1 (Eyenuk Inc., Los Angeles, CA,
USA) is another DL model developed for
detecting rDR as a fully automated DR screening
system that combines novel morphological
image analysis with DL techniques. The earlier
version of EyeArt, which was ML-based, was
validated on 5084 diabetic patients from Eye-
PACS and on another set of 40,542 images from
an independent EyePACS dataset, achieving a
sensitivity of 90.0% and specificity of 63.2%
[33]. The REVERE 100k study demonstrated that
EyeArt v2.1, which was DL-based, could achieve
a higher sensitivity (91.3%) and higher speci-
ficity (91.1%) that were neither affected by
patient ethnicity, gender, nor camera type in
the validation of photographs of [ 800,000
patients from the routine DR screening protocol
of EyePACS [34].

A DL algorithm in China was developed
from 71,043 de-identified retinal photographs
from a web-based platform, LabelMe (Guangz-
hou, China). The photographs were provided by
36 ophthalmology departments, optometry
clinics, and screening units in China. External
validation of this algorithm was performed
using over 35,000 images from population-
based cohorts of Malaysians, Caucasian Aus-
tralians, and Indigenous Australians. The sensi-
tivity and specificity were found to be 92.5%
and 98.5%, respectively [35].
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A recent study compared the performance of
Retinalyze 1 and 2 and IDx-DR v2.1 for detect-
ing rDR in retinal images captured without
mydriasis in the same group of patients with
DM. Both automated algorithms were able to
analyze most of the images. However, the sen-
sitivities and specificities of Retinalyze (89.7%
and 71.8%, respectively, for version 1; 74.1%
and 93.6%, respectively, for version 2) were
lower than those of IDX-DR (93.3% and 95.5%,
respectively). The investigators noted that
Retinalyze’s ability to annotate images is help-
ful for human verification, but concluded that
the algorithm could not be used for diagnosing
patients without direct clinician oversight [36].

Another retrospective validation study com-
pared seven different DL algorithms for detect-
ing rDR. The investigators found that most of
the algorithms performed no better than
human graders. The sensitivities varied widely
(51.0–85.9%) although high negative predictive
values (82.7–93.7%) were observed. Interest-
ingly, one algorithm was significantly worse
than human graders and would miss up to one
fourth of advanced retinopathy cases (72.4%
sensitivity for PDR), a limitation which could
potentially lead to vision loss [37].

Prospective Validation Studies of DL

One of the first prospective validation studies
on DL for DR screening was the trial for IDX-DR.
This pivotal trial was then submitted for U.S.
Food and Drug Administration (FDA) approval
on the AI model. In this study, in which pho-
tographs of the Early Treatment Diabetic
Retinopathy Study (ETDRS) were used as stan-
dards, IDx-DR was prospectively validated in
primary care units in the USA and found to have
a sensitivity of 87.2% and specificity of 90.7%,
both of which were higher than the pre-speci-
fied superiority endpoints of a sensitivity of
85% and specificity of 82.5% [38]. However,
these diagnostic parameters were lower than
those found in the retrospective validation on
IDX-DR (approx. 97% sensitivity and ap-
prox. 87% specificity) [21]. IDX-DR was then
prospectively validated in the Hoorn Diabetes
Care System in the Netherlands, for detecting

rDR and VTDR based on two DR classification
systems, the International Clinical Diabetic
Retinopathy Severity Scale (ICDR) and EURO-
DIAB. The sensitivity of IDX-DR to detect VTDR
was approximately 60% for both classifications,
but its sensitivity to detect rDR was 91% when
based on the EURODIAB and 68% when based
on the ICDR. This discrepancy may have arisen
from the different scores in different classifica-
tion systems [39].

There have been a few prospective validation
studies on EyeArt, another autonomous AI
model approved by the U.S. FDA for DR
screening. A large prospective validation study
was conducted in[30,000 patients in the NHS
DESP in the UK using EyeArt v2.1 with DL
incorporation. In the combined manual grading
with EyeArt, this system achieved a sensitivity
of 95.7% and a specificity of 54.0% for triaging
rDR [40]. Another prospective study validated
EyeArt in multiple primary care centers in the
USA for the detection of more-than-mild DR
(mtmDR) and VTDR; the referral rate in this
study was found to be 31.3%. In the comparison
on 2-field non-dilated retinal photographs with
the standard dilated 4-wide-field stereoscopic
photographs as standards, the investigators in
this study found that 12.5% of images were
classified as ungradable; however, this preva-
lence dropped to 2.7% under the dilate-if-nee-
ded protocol. Although imageability increased
with pupillary dilation, EyeArt achieved similar
sensitivities and specificities for detecting both
mtmDR (95.5% sensitivity and 85.3% speci-
ficity) and VTDR (95.2% sensitivity and 89.5%
specificity) in both the non-dilated and dilate-
if-needed protocol [41].

In the prospective validation of SELENA? in
diabetic patients who attended the mobile
screening in Zambia, upon grading 4504 ima-
ges, the DL achieved a sensitivity of 92.3% and
99.4% for rDR and VTDR, respectively. This
algorithm, which was developed in Singapore,
showed excellent generalizability for patients
from different races in both the retrospective
and prospective validations [42].

Another prospective validation study was
conducted for ARDA in the existing workflow of
nine primary care centers in Thailand’s national
DR screening program. ARDA was still able to
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achieve 91.4% sensitivity and 95.4% specificity
for detecting VTDR. This prospective study
applied a semi-automated approach using local
retinal specialists to overread the results of DL.
Various fundus cameras were used according to
routine practice in the primary care sites; DL
performance across the different camera models
was not affected [43].

Prospective studies have been carried out on
ML-based Retmarker to analyze microaneurysm
turnover rates on retinal photographs as a bio-
marker of DR progression. The investigators
found that higher microaneurysm turnover at
the macula correlated with earlier development
of CSME [44, 45]. Changes in microaneurysms
in patients with mild NPDR in the first year
were observed to be associated with the devel-
opment of VTDR over 5 years [46].

The DL algorithm developed by Li et al. in
China, which was previously trained with ima-
ges collected from the Chinese dataset and later
validated on populations of Indigenous Aus-
tralians and Caucasians in Australia, was
prospectively evaluated in Aboriginal Medical
Services of Australian Healthcare settings. A
sensitivity of 96.9% and specificity of 87.7% was
found for detecting rDR in this population. In
addition to the performance of the DL algo-
rithm, this study also investigated the experi-
ence and acceptance of automated screening
from patients, clinicians, and organizational
stakeholders involved and found high accep-
tance for AI [47].

Another DL for automated DR screening,
Voxel Cloud, was validated in [ 150 diabetes
centers in a screening program in China after
training with private retinal image database
comprising [ 140,000 images and tested on
both public and private datasets (one of them
being the APTOS 2019 Blindness Detection
dataset). This algorithm was able to achieve a
sensitivity of 83.3% and a specificity of 92.5%
for detecting rDR from 31,498 images [48].

AI Analysis on Smartphone Photographs

A few studies have been performed on retinal
photographs taken using smartphone cameras
for analysis by AI. These platforms were not

handheld but were smartphones attached to
desktop cameras for use in low-resource set-
tings. All published studies validating AI with
smartphone photography were prospective
since the retinal photographs were captured in
real-time and analyses were made at the point
of care. A pilot study conducted in India used
the Remidio Fundus on Phone (FOP) applica-
tion to capture retinal images after the pupils
were dilated and graded by the offline EyeArt
algorithm. This study achieved a sensitivity and
specificity of 95.8% and 80.2%, respectively, for
any DR, and a sensitivity and specificity of
99.1% and 80.4%, respectively, for VTDR [49].
Another smartphone-based AI for DR screening
also conducted in India also used the Remidio
FOP for image capture but used an offline
automated analysis by Medios AI. The sensitiv-
ity and specificity for detecting rDR of this sys-
tem was 100.0% and 88.4%, respectively [50].
Another study conducted in the USA used Eye-
Art for automated analysis on retinal pho-
tographs retrieved from a smartphone-based
RetinaScope camera; the sensitivity and speci-
ficity for detecting rDR was 77.8% and 71.5%,
respectively [51].

In summary, for these retrospective and
prospective studies, including the studies on
retinal photographs from smartphones pre-
sented in Tables 2 and 3, numerous algorithms
have been developed and validated, both ret-
rospectively and prospectively, with differences
in approach, dataset, camera, images, or the
level of DR in detection. The overall perfor-
mances of AI was high, although performances
were generally lower in some prospective vali-
dation studies.

Different Types of Retinal Photographs

Of all the retinal imaging modalities, color
retinal photographs acquired from conven-
tional retinal cameras using simple flash camera
technology are ubiquitous and practical for
screening DR in primary care settings, particu-
larly in remote or underserved areas. Another
type of retinal camera which is gaining in pop-
ularity recently uses white light-emitting diodes
(LED) combined with confocal scanning laser
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technology and enhanced color fidelity [52].
These white LED cameras provide color retinal
photographs which differ in appearance from
those obtained with conventional cameras. The
differences between the photographs obtained
from these two types of cameras appear to be
the image viewing angle (45� for the conven-
tional cameras and 60� for the LED cameras),
the image resolutions, and color discrimina-
tions [52].

In one study, EyeArt V.2.1.0 was used to
analyze retinal photographs obtained from both
conventional cameras and the white LED cam-
eras in 1257 patients with DM from the UK NHS
DESP. The authors found that the diagnostic
accuracy of detecting any retinopathy and PDR
from the photographs obtained from both
cameras was similar at 92.3% sensitivity and
100.0% specificity using human grading as the
standard [53]. In the published article, it was
not clear whether EyeART applied the same
algorithm for the analysis of photographs from
both cameras, and the authors stated that Eye-
ART was not optimized for photographs from
the LED cameras and also that reference pat-
terns might not be properly recognized.
Wongchaisuwat et al. performed a study in
which they had to apply separate DL algo-
rithms, one for the conventional photographs
and another for the photographs from white
LED cameras, to prospectively validate DL on
photographs from both cameras for DR screen-
ing. These investigators achieved a sensitivity of
82% and 89%, and specificity of 92% and 84%,
for conventional and LED photographs,
respectively, to detect rDR using retinal exami-
nation from retinal specialists as the standard
[54].

It would be an ideal situation if an AI model
would be able to analyze the different domains
of retinal photographs from conventional
cameras and white LED cameras and achieve a
robust performance. The effect of different
domains of images on AI performance may be
more pronounced for segmentation of optical
coherence tomography (OCT) images. There
has been an attempt to develop AI models that
can perform well on OCT images from different
domains of different manufacturers [55].

Different Manufacturers of Conventional
Cameras

Although conventional retinal cameras provide
similar photographs with the same viewing
angle, the image resolutions and color discrim-
ination can still differ among cameras from
different manufacturers. A study by Srinivasan
et al. aimed to address this issue on DL for DR
screening. These authors found that the per-
formance of the ARDA algorithm did not
change with the different brands and versions
of retinal camera. This analysis was conducted
on 15,351 retinal photographs captured from
seven different cameras. The sensitivity for
detecting rDR varied slightly from 89.7% to
98.7% whereas the specificity varied from 93.3
to 98.2% [56].

However, for the two AI models which have
been approved by the US FDA for DR screening,
IDX-DR and EyeArt, the approval was based on
the use for Topcon retinal cameras (Topcon
Corp., Tokyo, Japan).

Mydriasis or Non-mydriasis

One of the major problems revealed by
prospective validation studies has been
ungradable photographs, the prevalence of
which increases significantly without mydriasis
[41]. Since AI tends to grade more ungradable
photographs compared to human graders,
screening using AI without mydriasis may result
in significantly more patients with ungradable
grading, many of whom may not have
retinopathy [57]. The drawback of mydriasis is
the long duration of up to 4–6 h caused by
pharmacologic dilation. Another drawback is
the fear of producing angle closure although
this rarely occurs [58]. In a study conducted in
India using the Bosch AI algorithm for DR
screening, the investigators placed patients in a
dark room for 2 min to achieve physiologic
mydriasis before taking retinal photographs.
Approximately 96% of the images had accept-
able quality, and 91.2% sensitivity and 96.9%
specificity were achieved from this prospective
study [59].
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DISCUSSION

Although DL for DR screening using color reti-
nal photographs is at the forefront of studies of
AI in ophthalmology, the majority of studies
published to date were still in silico evaluation
on new methods of applying AI or using AI for
prediction tasks [60]. Reports on real-world
implementation, which are comparable with
phase 4 post-marketing surveillance in clinical
studies on drugs, are scarce.

Challenges in Real-world Implementation

It is generally well accepted based on results
from many prospective studies in various
countries that AI is an effective tool for DR
screening, with a high accuracy in detecting
both rDR and VTDR for implementation in
primary care settings. However, real-world
implementation of AI for screening may not rest
on only its accuracy but rather on the accept-
ability of personnel and patients, including
their view on the integration of AI screening
into existing clinical screening systems as an
improvement step [61]. The indicators demon-
strating that AI can improve healthcare systems
can be the improvement in screening atten-
dance rate, which is the proportion of patients
with DM screened for DR [62] and the
improvement in referral adherence, which is
the proportion of patients detected as referrals
by AI who receive eye care at referral centers.
One study demonstrated that point-of-care
delivery of screening results by AI may improve
this adherence rate [63]. Finally, the indicator of
reducing the rate of visual loss should be the
goal for DR screening whether AI is to be
deployed or not.

The deployment of AI, as either an autono-
mous or semi-autonomous screening, may
affect the cost of DR screening. The cost-saving
from AI may differ from one country to the
other, depending on the healthcare resources. A
study by the NHS DESP found that both the ML
algorithms EyeArt and Retmarker were cost
saving compared to human grading when they
were deployed as semi-autonomous screening
[64]. A threshold analysis testing demonstrated

that the highest cost of the ML models per
patient, before which they became more
expensive than human grading, was £3.82 per
patient for Retmarker and £2.71 per patient for
EyeArt [64]. A cost-minimization analysis from
Singapore also found the semi-autonomous
model to be more cost-saving than autonomous
screening. In this study, the cost of human
grading was US$77 per patient per year, whereas
the autonomous screening was $66 per patient
per year, and the semi-autonomous was $62 per
patient per year [65].

Technical challenges may also have influ-
enced the successful implementation of AI.
Integrating an AI model into the camera system
is an important technical issue when a screen-
ing program requires the use of existing cam-
eras. Integrating AI into DR screening system
with an existing hospital management system
or electronic health record system is another
challenge to ensure sustainability [61].

In the bigger picture, the concept of AI gov-
ernance should be applied in real-world imple-
mentation to ensure equality, privacy, fairness,
inclusiveness, safety and security, robustness,
transparency, explainability, accountability,
and auditability [66]. There has been a propo-
sition on the governance model for AI in
healthcare which outlines four main compo-
nents: fairness, transparency, trustworthiness,
and accountability [67]. For fairness, there
should be Data Governance Panels overseeing
the collection and use of data; the design of AI
models should ensure procedural and distribu-
tive justice. For transparency, there should be
transparency for AI model decision-making and
support for patient and clinician autonomy. For
trustworthiness, educating patients and clini-
cians is important. Informed consent is required
from patients and appropriate, and authorized
use of patient data should be applied. For
accountability, regulation and accountability at
the approval, introduction, and development
phases of AI in healthcare should be followed.
Real-world implementation of AI for DR
screening should undoubtedly follow this
concept.
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CONCLUSION

The breakthrough of AI for DR screening on
color retinal photographs came with the advent
of DL which carried the robustness results on
diagnostic accuracy from in silico evaluation to
off-line validation on various datasets from
different populations. Although in subsequent
phases of evaluation, many prospective valida-
tion studies supported the diagnostic accuracy,
the results were generally lower, although
acceptable for clinical practice. To implement
AI for screening in the real world, many prac-
tical issues are at least as important as diagnostic
accuracy, and they should be taken into high
consideration. These include, for example,
mydriasis, integration into existing camera sys-
tems, integration into electronic health record
systems, and acceptability by patients and pro-
viders. AI for DR screening should follow the
governance of AI in healthcare to ensure fair-
ness, transparency, trustworthiness, and
accountability for all the stakeholders including
policy-makers, healthcare providers, AI devel-
opers, and patients.
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