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Abstract

The manifold scattering transform is a deep feature extractor for data defined on a Riemannian 

manifold. It is one of the first examples of extending convolutional neural network-like operators 

to general manifolds. The initial work on this model focused primarily on its theoretical stability 

and invariance properties but did not provide methods for its numerical implementation except in 

the case of two-dimensional surfaces with predefined meshes. In this work, we present practical 

schemes, based on the theory of diffusion maps, for implementing the manifold scattering 

transform to datasets arising in naturalistic systems, such as single cell genetics, where the data is 

a high-dimensional point cloud modeled as lying on a low-dimensional manifold. We show that 

our methods are effective for signal classification and manifold classification tasks.

1. Introduction

The field of geometric deep learning, (Bronstein et al., 2017) aims to extend the success 

of neural networks and related architectures to data sets with non-Euclidean structure such 

as graphs and manifolds. On graphs, convolution can be defined either through localized 

spatial aggregations or through the spectral decomposition of the graph Laplacian. In recent 

years, researchers have used these notions of convolutions to introduce a plethora of neural 

networks for graph-structured data (Wu et al., 2020). Similarly, on manifolds, convolution 
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can be defined via local patches (Masci et al., 2015), or via the spectral decomposition 

of the Laplace Beltrami operator (Boscaini et al., 2015). However, neural networks for 

high-dimensional manifold-structured data are much less explored, and the vast majority of 

the existing research on manifold neural networks focuses on two-dimensional surfaces.

In this paper, we are motivated by the increasing presence of high-dimensional data sets 

arising in biomedical applications such as single-cell transcriptomics, single-cell proteomics, 

patient data, or neuronal activation data (Tong et al., 2021b; Moon et al., 2018; Wang et 

al., 2020). Emergent high-throughput technologies are able to measure proteins at single-cell 

resolution and present novel opportunities to model and characterize cellular manifolds 

where combinatorial protein expression defines an individual cell’s unique identity and 

function. In such settings, the data is often naturally modelled as a point cloud xi i = 0
N − 1 ⊆ ℝn

lying on a d-dimensional Riemannian manifold M some d ≪ n. The purpose of this paper is 

to present two effective numerical methods, based on the theory of diffusion maps (Coifman 

& Lafon, 2006), for implementing the manifold scattering transform, a model of spectral 

manifold neural networks, for data living on such a point cloud. This is the first work on the 

scattering transform to focus on such point clouds.

The original, Euclidean scattering transform was introduced in Mallat (2010; 2012) as a 

means of improving our mathematical understanding of deep convolutional networks and 

their learned features. Similar to a convolutional neural network (CNN), the scattering 

transform is based on a cascade of convolutional filters and simple pointwise nonlinearities. 

The principle difference between the scattering transform and other deep learning 

architectures is that it does not learn its filters from data. Instead, it uses predesigned 

wavelet filters. As shown in (Mallat, 2012), the resulting network is provably invariant to 

the actions of certain Lie groups, such as the translation group, and is Lipschitz stable to 

diffeomorphisms which are close to translations.

While the initial motivation of Mallat (2012) was to understand CNNs, the scattering 

transform can also be viewed as a multiscale, nonlinear feature extractor. In particular, for 

a given signal of interest, the scattering transform produces a sequence of features called 

scattering moments (or scattering coefficients). Therefore, the methods we will present 

here can be viewed as a method for extracting geometrically informative features from high-

dimensional point cloud data. In addition, similar to the way GNNs can offer embeddings of 

nodes as well as the entire graphs, the manifold scattering transform can offer an embedding 

of points in the cloud as well as the entire point cloud.

Recently, several works have proposed versions of the scattering transform for graphs (Gama 

et al., 2019b; Zou & Lerman, 2019a; Gao et al., 2019) and manifolds (Perlmutter et al., 

2020) using different wavelet constructions. Gao et al. (2019) uses wavelets constructed 

from the lazy random walk matrix P = 1
2 I + W D−1 , where W is the weighted adjacency 

matrix of the graph and D is the corresponding degree matrix, and Gama et al. (2019b) uses 

wavelets constructed from T = D−1/2PD1/2. (The wavelets used in Zou & Lerman (2019a) 

are based off of Hammond et al. (2011) and are substantially different than other wavelets 

discussed here which are based off of Coifman & Maggioni (2006).)
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Here, we present a manifold scattering transform which uses wavelets based on the heat 

semigroup Ht t ≥ 0 on M. The semigroup describes the transition probabilities of a Brownian 

motion on M. Therefore our wavelets have a similar probabilistic interpretation to those 

used in Gao et al. (2019).

In this work, we do not assume that we have global access to the manifold and our data 

does not come pre-equipped with a graph structure. Instead, we construct a weighted graph 

with weighting schemes based on Coifman & Lafon (2006) that aim to ensure that the 

spectral geometry of the graph mimics the spectral geometry of the underlying manifold. 

We then implement discrete approximations of the heat semigroup which are not, in general, 

equivalent to a lazy random walk on a graph.

Our construction improves upon the manifold scattering transform presented in Perlmutter 

et al. (2020) by using a more computationally efficient family of wavelets as well 

as formulating methods for embedding and classifying entire manifolds. The focus of 

Perlmutter et al. (2020) was primarily proposing a theoretical framework for learning 

on manifolds and showing that the manifold scattering transform had similar stability 

and invariance properties to its Euclidean counterpart. Thus, the numerical experiments 

in Perlmutter et al. (2020) were somewhat limited and only focused on two-dimensional 

manifolds with predefined triangular meshes.

The purpose of this paper is to overcome this limitation by presenting effective numerical 

schemes for implementing the manifold scattering transform on arbitrarily high-dimensional 

point clouds. It uses methods inspired by the theory of diffusion maps (Coifman & Lafon, 

2006) to approximate the Laplace Beltrami operator.

To the best of our knowledge, this work is the first to propose deep feature learning 

schemes for any spectral manifold network outside of two-dimensional surfaces. Therefore, 

our work can also be interpreted as a blueprint for how to adapt spectral networks to 

higher-dimensional manifolds. For example, the theory presented in Boscaini et al. (2015) 

uses the Laplace Beltrami operator on two-dimensional surfaces and could in principle be 

extended to general manifolds, but the numerical methods are restricted to two-dimensional 

surfaces in that work. One could use the techniques presented here to extend such methods 

to higher-dimensional settings.

Organization.

The rest of this paper is organized as follows. In Section 2, we will present the definition 

of the manifold scattering transform, and in Section 3, we will present our methods for 

implementing it from point cloud data. In Section 4, we will further discuss related work 

concerning geometric scattering and manifold neural networks. In Section 5, we present 

numerical results on both synthetic and real-world datasets before concluding in Section 6.

Notation.

We let M denote a smooth, compact, connected d-dimensional Riemannian manifold 

without boundary isometrically embedded in ℝn for some n ≥ d. We let L2(M) denote 
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the set of functions f:M ℝ that are square integrable with respect to the Riemannian 

volume dx, and let −Δ denote the (negative) Laplace-Beltrami operator on M. We let φk and 

λk ≥ 0, k ≥ 0, denote the eigenfunctions and eigenvalues of −Δ with −Δφk = λkφk. We will let 

WJf: = W jf j = 0
J ∪ AJf , denote a collection of wavelets constructed from a semigroup of 

operators Ht
t ≥ 0. For 0 ≤ j ≤ j′ ≤ J and 1 ≤ q ≤ Q, we will let Sf[q], Sf[j, q], and Sf j, j′, q

denote zeroth-, first-, and second-order scattering moments.

2. The Manifold Scattering Transform

In this section, we present the manifold scattering transform. Our construction is based upon 

the one presented in (Perlmutter et al., 2020) but with several modifications to increase 

computational efficiency and improve the expressive power of the network. Namely, i) we 

use different wavelets, which can be implemented without the need to diagonalize a matrix 

(as discussed in Section 3.2) and ii) we include q-th order scattering moments to increase the 

discriminative power of our representation.

Let M denote a smooth, compact, connected d-dimensional Riemannian manifold without 

boundary isometrically embedded in ℝn. Since M is compact and connected, the (negative) 

Laplace Beltrami operator −Δ has countably many eigenvalues, 0 = λ0 < λ1 ≤ λ2 ≤ … and 

there exists a sequence of eigenfunctions such that −Δφk = λkφi and φk k ≥ 0 forms an 

orthonormal basis for L2(M). Following the lead of works such as Shuman et al. (2013), we 

will interpret the eigenfunctions φk k ≥ 0 as generalized Fourier modes and define the Fourier 

coefficients of f ∈ L2(M) by

f(k): = f, φk L2(M): = ∫
M

f(y)φk(y)dy .

Since φ0, φ1, φ2, … form an orthonormal basis, we have

f(x) = ∑
k ≥ 0

f(k)φk(x) .

In Euclidean space, the convolution of a function f against a filter h is defined by 

integrating f against translations of h. While translations are not well-defined on a general 

manifold, convolution can also be characterized as multiplication in the Fourier domain, i.e., 

f ∗ ℎ(ω) = f(ω)ℎ(ω). Therefore, for f, ℎ ∈ L2(M), we define the convolution of f and h as

f ∗ ℎ(x): = ∑
k ≥ 0

f(k)ℎ(k)φk(x) . (1)

In order to use this notion of spectral convolution to construct a semigroup H t ≥ 0, we let 

g: [0, ∞) [0, ∞) be a nonnegative, decreasing function with g(0) = 1 and g(t) < 1 for all t > 0, 

and let Ht be the operator corresponding to convolution against ∑k ≥ 0 g λk
tφk, i.e.,
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Htf = ∑
k ≥ 0

g λk
tf(k)φk . (2)

By construction, Ht
t ≥ 0 forms a semigroup since HtHs = Ht + s and H0 = Id is the identity 

operator. We note that since the function g is defined independently of M, we may 

reasonably use our network, which is constructed from Ht
t ≥ 0, to compare different 

manifolds. Moreover, it has been observed in Levie et al. (2021) that if g is continuous, 

then Ht is stable to small perturbations of the spectrum of −Δ. We also note that one may 

imitate the proof of Theorem A.1 of (Perlmutter et al., 2020) to verify that the definiton of 

Ht t ≥ 0 does not depend on the choice of eigenbasis φk k ≥ 0.

As our primary example, we will take g(λ) = e−λ, in which case, one may verify that, for 

sufficiently regular functions, uf(x, t) = Htf(x) satisfies the heat equation

∂tuf = − Δxu, u(x, 0) = f(x),

since we may compute

∂tHtf(x) = ∂t ∑
k ≥ 0

e−λktf(k)φk(x) = − ΔxHtf(x) .

Thus, in this case Ht
t ≥ 0 is known as the heat-semigroup.

Given this semigroup, we define the wavelet transform

WJf: = W jf j = 0
J ∪ AJf , (3)

where W 0: = Id − H1, AJ : = H2J
, and for 1 ≤ j ≤ J

W j: = H2j − 1
− H2j

. (4)

These wavelets aim to track changes in the geometry of X across different diffusion time 

scales. Our construction uses a minimal time scale of 1. However, if one wishes to obtain 

wavelets which are sensitive to smaller time scales, they may simply change the spectral 

function g. For example, if we set g(λ) = e−λ and g(λ) = e−λ/2, then the associated operators 

satisfy H1 = H1/2.

We note that this wavelets differ slightly from those considered in Perlmutter et al. (2020). 

For 1 ≤ j ≤ J, the wavelets W j
′ constructed there are given by
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W j
′f(x) = ∑

k ≥ 0
g λk

2j − 1
− g λk

2j
f(k)φk . (5)

By contrast, the wavelets given by (4) satisfy

W jf(x) = ∑
k ≥ 0

g λk
2j − 1

− g λk
2j

f(k)φk .

(Similar relations hold for AJ and W0.) The removal of the square root is to allow for 

efficient numerical implementation. In particular, in Section 3.2, we will show that H1 

can be approximated without computing any eigenvalues or eigenvectors. Therefore, the 

entire wavelet transform can be computed without the need to diagonalize a (possibly large) 

matrix. We note that our wavelets, unlike those presented in Perlmutter et al. (2020), are not 

an isometry. However, one may imitate the proof of Proposition 4.1 of Gama et al. (2019b) 

or Proposition 2.2 of Perlmutter et al. (2019) to verify that our wavelets are a nonexpansive 

frame.

The scattering transform consists of an alternating sequence of wavelet transforms and 

nonlinear activations. As in most papers concerning the scattering transform, we will take 

our nonlinearity to be the pointwise absolute value operator | · |. However, our method can 

easily be adapted to include other activation functions such as sigmoid, ReLU, or leaky 

ReLU.

For 0 ≤ j ≤ J and 1 ≤ q ≤ Q, we define first-order q-th scattering moments by

Sf[j, q]: = ∫
M

W jf(x) qdx = W jf Lq(M)
q ,

and define second-order moments, for 0 ≤ j < j′ ≤ J, by

Sf j, j′, q : = ∫
M

W j′ W jf(x) qdx = W j′ W jf Lq(M)
q .

Zeroth-order moments are defined simply by

Sf[q]: = ∫
M

f(x)
q

dx = ∥ f ∥Lq(M)
q .

We let Sf denote the union of all zeroth-, first-, and second-order moments. If one is 

interested in classifying many signals, fi i = 1
Ns , on a fixed manifold, one may compute Sfi

for each signal and then feed these representations into a classifier such as a support vector 

machine. Alternatively, if one is interested in classifying different manifolds Mj j = 1
NM , one 
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can pick a family of generic functions fi i = 1
Ns  such as randomly chosen Dirac delta functions 

or SHOT descriptors (Tombari et al., 2010). Concatenating the scattering moments of each fi 

gives a representation of each Mj, which can be input to a classifier.

3. Implementing the Manifold Scattering Transform from Pointclouds

In this section, we will present methods for implementing the manifold scattering transform 

on point cloud data. We will let xi i = 1
N − 1 ⊆ ℝn and assume that the xi are sampled from 

a d-dimensional manifold M for some d ≪ n. As alluded to in the introduction, in the 

case, where d = 2, it is common (see e.g. Boscaini et al. (2015)) to approximate M with 

a triangular mesh. However, this method is not appropriate for larger values of d. Our 

methods, on the other hand, are valid for arbitrary values of d.

Our first method relies on first computing an N × N matrix which approximates the 

Laplace Beltrami operator and then computing its eigendecomposition. It is motivated by 

results which provides guarantees for the convergence of the eigenvectors and eigenvalues 

(Cheng & Wu, 2021b). (See also Dunson et al. (2021).) For large values of N, computing 

eigendecompositions is computationally expensive. Therefore we also present a second 

method which does not require the computation of any eigenvectors or eigenvalues. In either 

case, we identify f with the vector xf ∈ ℝN, xf(i) = f xi  and so once Ht has been computed, 

it is then straightforward to implement the wavelet transform described in (3) and (4) and 

then compute the scattering moments.

We let K:M × M ℝ+ ∪ 0  be an affinity kernel and given K, we define an affinity matrix 

W and a diagonal degree matrix D by

W i, j = K xi, xj , and Di, i = ∑
j = 0

N − 1
W i, j . (6)

3.1. Approximating Ht via the Spectrum of the Data-Driven Laplacian

In this section, for ϵ > 0, we define K = Kϵ by

Kϵ x, x′ = ϵ−d/2exp − x − x′ 2
2

ϵ . (7)

We then construct a discrete approximation −Δ by

LN, ϵ = 1
ϵN (D − W ),

where D and W are as in (6). We denote the eigenvectors and eigenvalues of LN, ϵ by λk
N, ϵ

and uk
N, ϵ so that LN, ϵuk

N, ϵ = λk
N, ϵuk

N, ϵ. Using the first κ eigenvectors and eigenvalues of LN, ϵ, 
we define
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HN, κ, ϵ
t : = ∑

k = 0

κ − 1
e−λk

N, ϵtuk
N, ϵ uk

N, ϵ T .

To motivate this method, we note Theorem 5.4 of (Cheng & Wu, 2021b), which shows that 

if we set ϵ ∼ N−1/(d/2 + 3), assume that data points xi i = 0
N − 1 are sampled i.i.d. uniformly from 

M and certain other mild conditions hold, then there exist scalars αk with αk = 1 + o(1) such 

that

μk − λk
N, ϵ = O N− 1

d/2 + 3 , (8)

uk
N, ϵ − αkvk 2 = O N− 1

d/2 + 3 logN , (9)

for 0 ≤ k ≤ κ − 1 with probability at least 1 − O 1
N9 , where μk are the true eigenvalues 

of the Laplace Beltrami operator −Δ, the vk are vectors obtained by subsampling (and 

renormalizing) its eigenfuctions φk, and the implicit constants depend on both M and κ.

3.2. Approximating H without Eigenvectors

The primary drawbacks of the method of the previous section are that it requires one to 

compute the eigendecomposition of LN, ϵ, and it does not account for the possibility that 

the data is sampled non-uniformly. One method for handling this problem is to use an 

adaptive method which scales the bandwidth of the kernel at each data point (Zelnik-Manor 

& Perona, 2004; Cheng & Wu, 2021a) Here, we let σk(x) denote the distance from x to its 

k-th nearest neighbor and define an adaptive kernel by

Kk − nn x, x′ =
1
2 exp − x − x′ 2

2

σk(x)2 + exp − x − x′ 2
2

σk x′ 2
(10)

Then, letting W and D be as in (6), with K = Kk − nn, we define an approximation of H1 by

HN, ϵ
1 : = D−1W . (11)

We may then approximate H2j
 via matrix multiplication without computing any 

eigenvectors or values. We note that while in principle HN, ϵ
1  is a dense matrix, by 

construction, most of its entries will be small (if k is sufficiently small). Therefore, if one 

desires, they may use a thresholding operator to approximate HN, ϵ
1  by a sparse matrix for 

increase computational efficiency.
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The approximation (11) can be obtained by approximating −Δ with the Markov normalized 

graph Laplacian IN − D−1W  and then setting g(λ) = 1 − λ in (2). We note that this is similar 

to the approximation H1 ≈ D−1/2W D−1/2 proposed in Coifman & Lafon (2006), but we use 

Markov normalization rather than symmetric normalization.

4. Related work

In this section, we summarize related work on geometric scattering as well as neural 

networks defined on manifolds.

4.1. Graph and Manifold Scattering

Several different works (Zou & Lerman, 2019a; Gama et al., 2019b; Gao et al., 2019) 

have introduced different versions of the graph scattering transform using wavelets based 

on Hammond et al. (2011) or Coifman & Maggioni (2006). Zou & Lerman (2019a) and 

Gama et al. (2019b) provided extensive analysis of their networks stability and invariance 

properties. These analyses were later generalized in Gama et al. (2019a) and Perlmutter et 

al. (2019). Gao et al. (2019), on the other hand, focused on empirically demonstrating the 

effectiveness of their network for graph classification tasks.

Several subsequent works have proposed modifications to the graph scattering transform 

for improved performance. Tong et al. (2021a) and Ioannidis et al. (2020) have proposed 

data-driven methods for selecting the scales used in the network. Wenkel et al. (2022) 

incorporated the graph scattering transform incorporated into a hybrid network which also 

featured low-pass filters similar to those used in networks such as (Kipf & Welling, 2016). 

We also note works using the scattering transform for graph generation (Zou & Lerman, 

2019b; Bhaskar et al., 2021), for solving combinatorial optimization problems (Min et al., 

2022), and work which extends the scattering transform to spatio-temporal graphs (Pan et 

al., 2020).

The work most closely related to ours is Perlmutter et al. (2020) which introduced a 

different version of the manifold scattering transform. The focus of this work was primarily 

theoretical, showing that the manifold scattering transform is invariant to the action of the 

isometry group and stable to diffeomorphisms, and the numerical experiments presented 

there are limited to two-dimensional surfaces with triangular meshes. Our work here builds 

upon Perlmutter et al. (2020) by introducing effective numerical methods for implementing 

the manifold scattering transform when the intrinsic dimension of the data is greater than 

two or when one only has access to the function on a point cloud. We also note McEwen et 

al. (2021), which optimized the construction of Perlmutter et al. (2020) for the sphere.

4.2. Manifold Neural Networks

In contrast to graph neural networks, which are very widely studied (see, e.g., Bruna et al. 

(2014); Veličkovič et al. (2018); Hamilton et al. (2017)), there is comparatively little work 

developing neural networks for manifold-structured data. Moreover, unlike our method, 

much of the existing literature is either focused on a specific manifold of interest or is 

limited to two-dimensional surfaces.
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Masci et al. (2015) defines convolution on two-dimensional surfaces via a method based on 

geodesics and local patches. They show that various spectral descriptors such as the heat 

kernel signature (Sun et al., 2009) and wave kernel signature (Aubry et al., 2011) can be 

obtained as special cases of their network. In a different approach, (Schonsheck et al., 2022) 

defined convolution in terms of parallel transport. (Boscaini et al., 2015), on the other hand, 

used spectral methods to define convolution on surfaces via a windowed Fourier transform. 

This work was generalized in (Boscaini et al., 2016) to a network using an anisotropic 

Laplace operator. We note the many of the ideas introduced in Boscaini et al. (2015) and 

Boscaini et al. (2016) could in principle be applied to manifolds of arbitrary dimensions. 

However, their numerical methods rely on triangular meshes. In more theoretical work, 

Wang et al. (2021b;a) also proposed networks constructed via functions of the Laplace 

Beltrami operator and analyzed the networks’ stability properties.

In a much different approach, Chakraborty et al. (2020) proposed extending convolution to 

manifolds via a weighted Fréchet mean. Unlike the work discussed above, this construction 

is not limited to two-dimensional surfaces. It does, however, require that the manifold is 

known in advance. We also note that there have been several papers which have constructed 

neural networks for specific manifolds such as the sphere (Cohen et al., 2018), Grassman 

manifolds (Huang et al., 2018), or the manifold of positive semi-definite n×n matrices 

(Huang & Van Gool, 2017) or for homogeneous spaces (Chakraborty et al., 2018; Kondor & 

Trivedi, 2018).

5. Results

We conduct experiments on synthetic and real-world data. These experiments aim to show 

that i) the manifold scattering transform is effective for learning on two-dimensional 

surfaces, even without a mesh and ii) our method is effective for high-dimensional 

biomedical data1.

5.1. Two-dimensional surfaces without a mesh

When implementing convolutional networks on a two-dimensional surfaces, it is standard, 

e.g., (Boscaini et al., 2015; 2016) to use triangular meshes. In this section, we show that 

mesh-free methods can also work well in this setting. Importantly, we note that we are 

not claiming that mesh-free methods are better for two-dimensional surfaces. Instead, we 

aim to show that these methods can work relatively well thereby justifying their use in 

higher-dimensional settings.

We conduct experiments using both mesh-based and mesh-free methods on a spherical 

version of MNIST and on the FAUST dataset which were previously considered in 

Perlmutter et al. (2020). In both methods, we use the wavelets defined in Section 2 with 

J = 8 and use an RBF kernel SVM with cross-validated hyperparameters as our classifier. 

For the mesh-based methods, we use the same discretization scheme as in Perlmutter et al. 

(2020) and set Q = 1 which was the setting implicitly assumed there. For our mesh-free 

experiments, we use the method discussed in Section 3.1 with Q = 4. We show that the 

1All of our code is available at our GitHub.
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information captured by the higher-order moments can help compensate for the structure lost 

by not using a mesh.

We first study the MNIST dataset projected onto the sphere as visualized in Figure 1. We 

uniformly sampled N points from the unit two-dimensional sphere, and then applied random 

rotations to the MNIST dataset and projected each digit onto the spherical point cloud to 

generate a collection of signals {fi} on the sphere. Table 1 shows that for properly chosen κ, 

the mesh-free method can achieve similar performance to the mesh-based method. As noted 

in Section 3.2, the implied constants in (8) and (9) depend on κ and inspecting the proof in 

Cheng & Wu (2021b) we see that for larger values of κ, more sample points are needed to 

ensure the convergence of the first κ eigenvectors. Thus, we want κ to be large enough to get 

a good approximation of H1, but also not too large.

Next, we consider the FAUST dataset, a collection of surfaces corresponding to scans of ten 

people in ten different poses (Bogo et al., 2014) as shown in Figure 2. As in Perlmutter et 

al. (2020), we use 352 SHOT descriptors (Tombari et al., 2010) as our signals. We used the 

first κ = 80 eigenvectors and eigenvalues of the approximate Laplace-Beltrami operator of 

each point cloud to generate scattering moments. We achieved 95% classification accuracy 

for the task of classifying different poses. This matches the accuracy obtained with meshes 

in Perlmutter et al. (2020).

5.2. Single-cell datasets

In this section, we present two experiments leveraging the inherent manifold structure in 

single-cell data to show the utility of manifold scattering in describing and classifying 

biological data. In these experiments, single-cell protein measurements on immune cells 

obtained from either melanoma or SARS-COV2 (COVID) patients are featurized using the 

log-transformed L1-normalized protein expression feature data of the cell. This leads to one 

point in high-dimensional space corresponding to each cell, and we model the set of points 

corresponding to a given patient as lying on a manifold representing the immunological 

state of that patient. In this context, it is not reasonable to assume that data are sampled 

uniformly from the underlying manifold M so we use the method presented in Section 3.2 

to approximate Ht.

For both experiments, we set k = 3, use third-order scattering moments with J = 8 and 

Q = 4, reduce dimensions of scattering features with PCA, and use the top 10 principle 

components for classification with a decision tree. As a baseline comparison, we perform 

K-means clustering on all cells and predict patient outcomes based on cluster proportions.

We first consider data from Ptacek et al. (2021). In this dataset, 11,862 T lymphocytes from 

core tissue sections were taken from 54 patients diagnosed with various stages of melanoma 

and 30 proteins were measured per cell. Thus, our dataset consists of 54 manifolds, 

embedded in 30-dimensional space with 11,862 points per manifold. All patients received 

checkpoint blockade immunotherapy, which licenses patient T cells to kill tumor cells. Our 

goal is to characterize the immune status of patients prior to treatment and to predict which 

patients will respond well. In our experiments, we first computed a representation of each 

patient via either K-means cluster proportions, with K = 3 based on expected T cell subsets 
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(killer, helper, regulatory), then calculated scattering moments for protein expression feature 

signals projected onto the cell-cell graph. We achieved 46% accuracy with clustering and 

82% accuracy with scattering.

We next analyze 148 blood samples from COVID patients and focus on innate immune 

(myeloid) cells, a population that we have previously shown to be predictive of patient 

mortality (Kuchroo et al., 2022). 14 proteins were measured on 1,502,334 total monocytes. 

To accommodate the size of these data, we first perform diffusion condensation (Kuchroo 

et al., 2022) for each patient dataset; we determine the lowest number of steps needed to 

condense data into less than 500 clusters and use those cluster centroids as single points 

in high-dimensional immune state space. Protein expression is averaged across cells in 

each cluster, and diffusion scattering is performed on these feature signals projected onto 

the centroid graph. For K-means we use K = 3 based on expected monocyte subtypes 

(classical, non-classical, intermediate). When used to predict patient mortality, we achieved 

40% accuracy with cluster proportions and 48% accuracy with scattering features.

6. Conclusions

We have presented two efficient numerical methods for implementing the manifold 

scattering transform from point cloud data. Unlike most other methods proposing neural-

network like architectures on manifolds, we do not need advanced knowledge of the 

manifold, do not need to assume that the manifold is two-dimensional, and do not require a 

predefined mesh. We have demonstrated the numerical effectiveness of our method for both 

signal classification and manifold classification tasks.
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Figure 1. 
The MNIST dataset projected onto the sphere.
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Figure 2. 
Wavelets on the FAUST dataset, j = 1, 3, 5 from left to right. Positive values are red, while 

negative values are blue.
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Table 1.

Classification accuracies for spherical MNIST.

DATA TYPE N κ Q ACCURACY

POINT CLOUD 1200 200 4 79%

POINT CLOUD 1200 400 4 88%

POINT CLOUD 1200 642 4 84%

MESH 642 642 1 91%
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Table 2.

Classification accuracies for patient outcome prediction.

DATA SET N M CLUSTERING SCATTERING

MELANOMA 54 46% 82%

COVID 148 40% 48%
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