
GigaScience, 2023, 12, 1–11

DOI: 10.1093/gigascience/giad031

Research

A workflow reproducibility scale for automatic
validation of biological interpretation results

Hirotaka Suetake 1, Tsukasa Fukusato 2, Takeo Igarashi 3 and Tazro Ohta 4,*

1Department of Creative Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-0033, Japan
2Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-0033, Japan
3Department of Creative Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-0033, Japan
4Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Shizuoka, 411-8540, Japan
∗Correspondence address. Tazro Ohta, Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information
and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan. E-mail: t.ohta@dbcls.rois.ac.jp

Abstract

Background: Reproducibility of data analysis workflow is a key issue in the field of bioinformatics. Recent computing technologies,
such as virtualization, have made it possible to reproduce workflow execution with ease. However, the reproducibility of results is
not well discussed; that is, there is no standard way to verify whether the biological interpretation of reproduced results is the same.
Therefore, it still remains a challenge to automatically evaluate the reproducibility of results.

Results: We propose a new metric, a reproducibility scale of workflow execution results, to evaluate the reproducibility of results. This
metric is based on the idea of evaluating the reproducibility of results using biological feature values (e.g., number of reads, mapping
rate, and variant frequency) representing their biological interpretation. We also implemented a prototype system that automatically
evaluates the reproducibility of results using the proposed metric. To demonstrate our approach, we conducted an experiment using
workflows used by researchers in real research projects and the use cases that are frequently encountered in the field of bioinformatics.

Conclusions: Our approach enables automatic evaluation of the reproducibility of results using a fine-grained scale. By introducing
our approach, it is possible to evolve from a binary view of whether the results are superficially identical or not to a more graduated
view. We believe that our approach will contribute to more informed discussion on reproducibility in bioinformatics.

Keywords: workflow, provenance, reproducibility

Background
Bioinformatics is big data science and is considered the most de-
manding domain in terms of data acquisition, storage, distribu-
tion, and analysis [1]. Because the low cost and high through-
put of measurement instruments have made it possible to gener-
ate large amounts of data, large-scale data analysis using a com-
puter is required to extract valuable knowledge from the data [2,
3]. For each data analysis process, such as data transformation,
public database referencing and merging, and statistical process-
ing, much open-source software is developed and released [4]. Re-
searchers typically choose appropriate software for each analysis
process, build a workflow by combining the software, and execute
the workflow in a computing environment [5]. However, it can be
challenging to ensure the reproducibility of data analysis due to
a number of factors, such as a large amount of data, the diversity
of data types and software, and the complexity of the computing
environment [6].

Reproducibility of research is an essential issue in the scientific
community [7, 8]. However, Baker raised the alarm of a “repro-
ducibility crisis” based on survey results that “more than 70% of
researchers have tried and failed to reproduce another scientist’s
experiments, and more than half have failed to reproduce their
own experiments” ([9], p. 452). The key here is the requirement
for research to be considered reproducible. Drummond argued
that replicability and reproducibility are often confused, but they

are different concepts and need to be clearly distinguished [10].
The Association for Computing Machinery (ACM) also attempts
to define the terms repeatability, reproducibility, and replicability (Ta-
ble 1) [11]. While these definitions are in the context of computer-
ized analysis, it should be noted that most existing studies have
focused on whether the execution can be reproduced or not and
have not considered the verification of the results. That is, they
only state that the resulting data are exactly the same as in the
original but do not adequately discuss the verification of whether
the results are reproducible or not. Therefore, the reproducibility
of data analysis can be divided into 2 parts: the execution of the
analysis and the verification of the results. We will focus our dis-
cussion on the second part, verification.

Many workflow systems have been developed to improve the ef-
ficiency of building and executing complex data analysis [12–14].
Each system has unique characteristics, but in particular, work-
flow systems can have a syntax for describing the data anal-
ysis, called a workflow language. Large user communities have
been formed around these workflow languages. The Common
Workflow Language (CWL) [15], the Workflow Description Lan-
guage (WDL) [16], Nextflow [17], and Snakemake [18] are typi-
cal examples. These systems also have execution systems that
work with computational frameworks, such as job schedulers,
container runtimes, and package managers. Thus, these work-
flow systems facilitate the execution of data analysis by different

Received: November 2, 2022. Revised: January 26, 2023. Accepted: April 28, 2023
C© The Author(s) 2023. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://orcid.org/0000-0003-2765-0049
http://orcid.org/0000-0002-5090-1443
http://orcid.org/0000-0002-5495-6441
http://orcid.org/0000-0003-3777-5945
mailto:t.ohta@dbcls.rois.ac.jp
http://creativecommons.org/licenses/by/4.0/

2 | GigaScience, 2023, Vol. 12, No. 1

Table 1: Repeatability, reproducibility, and replicability. According to the ACM [11], repeatability is defined as a researcher can reliably
repeat their own computation. Reproducibility is defined as an independent group can obtain the same result using the author’s own
artifacts, and replicability is defined as an independent group can obtain the same result using artifacts that they develop completely
independently.

Term Team Environment Setup (code and data) Result

Repeatability Same Same Same Same
Reproducibility Different Different Same Same
Replicability Different Different Different Same

teams and in different environments through the use of virtual-
ization technology and syntax that abstracts software and com-
putational requirements [19].

The advent and widespread use of workflow systems have fa-
cilitated data analysis reexecution. However, as mentioned ear-
lier, to ensure reproducibility, it is necessary to verify the execu-
tion results, that is, whether the same biological interpretation is
obtained or not. To address this issue, frameworks, such as Re-
search Object Crate (RO-Crate) [20] and CWLProv [21], have been
proposed to generate workflow provenance, a structured archive
that packages workflow-related metadata, such as workflow de-
scriptions, execution parameters, input and output data, tests,
and documentation, in a machine-readable format. This prove-
nance information is distributed on workflow sharing platforms,
such as WorkflowHub [22], Dockstore [23], and nf-core [24]. When
appropriate provenance is provided by the author, a researcher
can use this information to verify new execution results, making
the process reproducible.

However, the process of comparing the provenance and exe-
cution results is often incomplete and inefficient. In automatic
comparison, the checksums of the output files are used; however,
they do not always match. This is because these checksums may
differ depending on the software version, timestamps, heuristic
algorithms, and computing environments (e.g., OS and CPU archi-
tecture) [25]. However, the same biological interpretation may be
obtained even when the output files do not match exactly; for ex-
ample, only the timestamps in the output files may differ. Thus,
a simple comparison using a checksum is incomplete in verify-
ing results. Another method is to have humans semantically in-
terpret the results. However, due to its inefficiency, this method
is not possible when the scale of the data analysis execution
is large. From the above, the verification of results using prove-
nance remains challenging because the current procedure is lim-
ited to incomplete automatic comparison and inefficient manual
checking.

Automation is essential for the verification of practical work-
flows that output many files; however, binary determination by
checking checksums is not sufficient. Thus, it is necessary to in-
troduce a fine-grained scale to determine the degree of repro-
ducibility of the results. Automatic verification of results using
this scale will make verification of workflow reproducibility prac-
tical. In this article, we propose a reproducibility scale of work-
flow execution results based on some discussion and experiments
and a validation method using this scale. We implement a work-
flow execution system that generates a workflow provenance that
contains metadata required for verification. This implementation
is an extension of Sapporo [26] (RRID:SCR_023202), an existing
workflow execution service (WES). Sapporo’s extensibility makes
it compatible with various workflow languages and execution sys-
tems. In addition, we adapt RO-Crate as the workflow provenance
format. We also develop Tonkaz: a command-line tool that veri-
fies the reproducibility of data analysis results by comparing the

workflow provenances. To demonstrate the effectiveness of our
approach, we apply it to workflows used by researchers in real re-
search projects. The full reproducibility of research is still an issue
that has not been fully resolved. Nevertheless, we hope our ap-
proach will contribute to solving this problem by increasing the
resolution of the definition of reproducibility.

Methods
Reproducibility scale of workflow execution
results
A workflow is a sequence of computational steps that combine
analysis tools according to their inputs and outputs. The first tool
takes input data and passes its output on as input for the next
tool. Thus, the result of the workflow execution is the cumulative
output of each tool or the last tool in the workflow. It should be
noted that the output of a tool includes not only output files but
also execution logs (e.g., standard output and error) and runtime
information (e.g., exit code, start time, and end time). Returning
to the purpose of data analysis here, it is to obtain useful biologi-
cal knowledge from the data. Therefore, it is not sufficient to con-
sider the output files and logs as the only result of the workflow
execution; the biological feature values interpreted from the out-
put files and logs should be considered the result of the workflow
execution.

The format to represent biological features obtained from data
analysis is not standardized and varies depending on the analy-
sis tool. For example, there are summarized formats (tabular and
graph) and formats that express biological features themselves,
such as Sequence Alignment/Map (SAM) and the Variant Call For-
mat (VCF). To interpret and verify the results, the individual ex-
ecuting the workflow visually checks the output graph or uses
a tool to extract a numerical feature value from the file, for ex-
ample, SAMtools [27] (RRID:SCR_002105), to extract mapping
statistics from the SAM format. Because these processes require
domain knowledge, it is ideal that the workflow itself provides a
structured summary and a way to interpret it. However, this de-
pends on the skill and effort of the individual workflow developer,
and the diversity of tools and workflows makes it challenging to
provide them in a standardized way.

Several workflows provide a way to verify reproducibility us-
ing biological feature values. For example, the RNA sequencing
(RNA-seq) workflow [28] distributed by the nf-core project has a
test mode to verify that the workflow is working as expected. In
this mode, the workflow is executed with a small test dataset, and
the biological feature values are compared with the expected val-
ues. The mapping rate, which represents the percentage of reads
that are mapped to the reference genome, is used as a biological
feature value. If the difference between the values is within the
threshold, the workflow is considered to be working as expected.
As a preliminary experiment, we compared the output files with-

https://scicrunch.org/resolver/RRID:SCR_023202
https://scicrunch.org/resolver/RRID:SCR_002105

Workflow reproducibility scale | 3

out using such biological feature values—that is, the checksum
method was used to verify an exact match of a file. As a result,
when we executed the above RNA-seq workflow twice in the same
environment and compared the file output BAM files (the com-
pressed binary version of the SAM files), we found that the check-
sum values were different and the file sizes differed by several
bytes (see the “Results” section for details). It is ideal that the out-
put files are exactly the same, but it is difficult to achieve this
goal because the output files are generated by the analysis tools,
and these tools are not designed to produce the same output all
the time. Therefore, we concluded that it is not sufficient to check
only the exact match of output files to verify the reproducibility
of workflow execution results and that a method using biological
feature values and threshold should also be introduced.

Based on the above discussion and preliminary experiments,
we propose a method to verify the reproducibility of workflow ex-
ecution results using biological feature values and threshold. The
method consists of 2 steps: (i) extracting biological feature values
from the output files and logs and (ii) comparing the extracted bi-
ological feature values with the expected values using threshold
values. A detailed description of each step is provided in the “Gen-
eration of workflow provenance containing biological feature val-
ues” and “Automatic verification of reproducibility” sections. We
also propose a scale to evaluate the reproducibility of workflow
execution results based on the method (Table 2). This allows the
reproducibility of results to be expressed at a higher resolution
than a binary measure of whether the results are the same or not.

Generation of workflow provenance containing
biological feature values
To verify the reproducibility of workflow execution results us-
ing biological feature values, it is necessary to package the work-
flow execution results as the workflow provenance in a standard-
ized format. Because there are many workflow languages and ex-
ecution engines, we first abstracted the workflow execution it-
self. Thus, we extended Sapporo, an existing WES implementa-
tion. Sapporo has an API scheme that satisfies the Global Alliance
for Genomics and Health (GA4GH) WES standard [29], enabling
the workflow execution and results acquisition in a standardized
manner. In addition, due to its extensibility, it can execute work-
flows written in various languages, such as CWL, WDL, Nextflow,
and Snakemake. Therefore, by extending Sapporo, workflow exe-
cution written in various languages can be handled in the same
way.

When a workflow is executed in Sapporo, the files related to
the execution are stored in the file system as workflow prove-
nance. This provenance directory contains the workflow defi-
nition files, input files, intermediate files, output files, log files,
execution parameters, runtime information, and so on. Thus,
we converted Sapporo’s provenance into RO-Crate [20], a stan-
dardized format for packaging research objects expressed in
JSON-LD. Because the RO-Crate use case included the pack-
aging of workflow execution results, it was sufficient to map
Sapporo’s provenance to the ontology provided by RO-Crate.
However, for verification, we defined some additional terms
and properties (https://raw.githubusercontent.com/sapporo-we
s/sapporo-service/main/sapporo/ro-terms.csv). For example, we
defined the property “mappedRate” to represent the mapping rate
of the output file, which is a biological feature value used for ver-
ification. In addition, RO-Crate is designed to rely on the local file
system for file location resolution and checksum representation.
However, we prioritized the portability of being able to carry the

provenance in a single file, so we put all the information necessary
for verification, such as checksums, biological feature values, and
contents of files of small size, in the RO-Crate file.

Because the workflow output freely produces a large number of
diverse files, it is impractical to extract biological feature values
for all files. Thus, we used the file extension to determine the file
type and used an appropriate tool to extract the biological fea-
ture values. We used the file types defined in the EDAM ontol-
ogy [30] (RRID:SCR_006620), which are widely used to express
biological interpretations (Table 3). For example, if the file type is
SAM, we used SAMtools to extract the number of reads and the
mapping rate, and if the file type is VCF, we used VCFtools [31]
(RRID:SCR_001235) to extract the number of variants and the
variant frequency. In addition, the number of lines in the file is also
a biological feature value. For example, if the file type is FASTQ, 4
lines represent 1 sequence read. Fig. 1 is an example of a file entity
in RO-Crate, which contains the biological feature values, such as
the statistics obtained from the file, file size, and the number of
lines.

For provenance enrichment and sharing, we integrated Sap-
poro and Yevis [32] (RRID:SRC_023204). Yevis is a system that
builds a workflow registry and also acts as a client for Sapporo.
The workflow metadata file used in Yevis contains not only the
information required to execute the workflow but also the infor-
mation for workflow availability and traceability in workflow shar-
ing, such as author, open-source license, and documentation link.
Thus, by executing the workflow in Sapporo via Yevis, the avail-
ability and traceability of the generated provenance are improved.
In addition, because Yevis’s workflow sharing feature enables the
attachment of generated provenance to shared workflows, the re-
producibility of shared workflows can be verified by other users.

From the above, by executing the workflow with Sapporo and
Yevis (Fig. 2), a workflow provenance containing feature values
representing a biological interpretation is generated as RO-Crate.
This method also applies to workflows written in various lan-
guages and can address a wide range of use cases, such as work-
flow sharing. Therefore, by generating and sharing a provenance
containing biological feature values, it is possible to verify the re-
producibility of the workflow execution results in other users’ en-
vironments.

Automatic verification of reproducibility
We developed Tonkaz to automatically verify the reproducibility
of workflow execution results by comparing the biological feature
values contained in the workflow provenance. One use case of
Tonkaz is to compare the expected result, which is provided by
a workflow developer, and the actual result, which is generated
in the user’s environment (Fig. 2). That is, Tonkaz verifies that the
results are the same according to the ACM’s definition of repro-
ducibility (Table 1). Another use case is ACM’s definition of re-
peatability, which is to verify that the results are the same even if
a workflow is executed multiple times in the same environment,
and it will not be broken by updates to dependencies. Thus, these
use cases indicate that we must verify the reproducibility of the
results, regardless of the differences in execution methods and
environments.

We designed Tonkaz to accept as arguments 2 RO-Crates, one
containing the expected provenance and the other containing the
actual provenance. Tonkaz compares the biological feature values
of the output files in the 2 RO-Crates and calculates the repro-
ducibility scale for each file. Among the various types of output
files, including analysis results, summary reports, or execution

https://raw.githubusercontent.com/sapporo-wes/sapporo-service/main/sapporo/ro-terms.csv
https://scicrunch.org/resolver/RRID:SCR_006620
https://scicrunch.org/resolver/RRID:SCR_001235
https://scicrunch.org/resolver/RRID:SRC_023204

4 | GigaScience, 2023, Vol. 12, No. 1

Table 2: Reproducibility scale of workflow execution results. For each of the output files, this is determined by comparing the expected
provenance with the provenance of the actual execution. If the file of the same name in the expected provenance and the actual execution
are identical, the file is considered fully reproduced. If the file of the same name is not identical, it is determined whether its difference
is acceptable or not using the feature and threshold values. If the difference is acceptable, the file is considered partially reproduced. If
the file exists in the expected provenance but not in the actual execution, it is considered to be not reproduced

Reproducibility scale Level Description

Fully Reproduced 3 Output files are identical with the same checksum.
Acceptable Differences 2 Output files are not identical, but their biological feature values (e.g., number of

reads, mapping rate, and variant frequency) are similar (within a threshold).
Unacceptable Differences 1 Output files are not identical, and their biological feature values are not similar

(beyond threshold).
Not Reproduced 0 The workflow does not produce output files.

Table 3: File types and extensions defined in EDAM ontology. These file types and extensions are used to extract biological feature values
from the output files.

EDAM ID File type Extension

format_1929 FASTA .fa,.fasta

format_1930 FASTQ .fq,.fastq,.fq.gz,.fastq.gz

format_1975 GFF .gff,.gff3

format_2306 GTF .gtf

format_2572 BAM .bam

format_2573 SAM .sam

format_3003 Bed .bed

format_3004 BigBed .bb

format_3005 Wig .wig

format_3006 BigWig .bw

format_3016 VCF .vcf,.vcf.gz

{
 "@context": ["https://w3id.org/ro/crate/1.1/context", { ... }],
 "@graph": [
 ...,
 {
 "@id": "outputs/star_salmon/RAP1_UNINDUCED_REP2.markdup.sorted.bam",
 "@type": ["File", "FormalParameter", "OutputFile"],
 "contentSize": 3279083,
 "dateModified": "2022-09-08T08:52:19.755363",
 "encodingFormat": "application/gzip",
 "format": {

"@id": "http://edamontology.org/format_2572"
 },
 "gid": 1000,
 "mode": "-rw-r--r--",
 "sha512": "2d6c8436dd1da0e4e49f9bdfbf8d656d7740f7eae149bb2add417d6739c05aeb441aa84239041f9aac87688042c7b31bfca5c95d0dfaf742512f2e740a788979",
 "stats": {

"@id": "#31d3ba80-21df-4ab7-93e7-558154d07161"
 },
 "uid": 1000,
 "url": "http://localhost:1122/runs/93f4d8bf-424d-4d5e-bc79-9482e1620be9/data/outputs/star_salmon/RAP1_UNINDUCED_REP2.markdup.sorted.bam"
 },
 {
 "@id": "#31d3ba80-21df-4ab7-93e7-558154d07161",
 "@type": ["FileStats"],
 "duplicateRate": 0.8027008887713803,
 "duplicateReads": 78936,
 "generatedBy": {

"@id": "#samtools"
 },
 "mappedRate": 1.0,
 "mappedReads": 98338,
 "totalReads": 98338,
 "unmappedRate": 0.0,
 "unmappedReads": 0
 },
 ...
]
}

Figure 1: An example of a file entity in RO-Crate. This is a part of the actual workflow execution results and uses the RNA-seq workflow distributed by
the nf-core project. The output file in this example is a BAM file, and its biological feature values are the file size, number of mapped reads, and
mapping rate. Thus, the file entity contains properties such as “contentSize,” “stats:mappedReads,” and “stats:mappedRate.” These are defined as
additional terms in Sapporo, and the values are extracted from the file using SAMtools.

Workflow reproducibility scale | 5

Developer's Environment

Workflow

Sapporo + Yevis

Provenance (expected)

Developer User

Sharing Platform

User's Environment

Provenance (actual)

Tonkaz

Sapporo + Yevis

Workflow

Figure 2: The flowchart representing the Tonkaz use case. The workflow built by the workflow developer is executed by WES, which is a combination of
Sapporo and Yevis, and the workflow provenance, including feature values of the output files, is generated in RO-Crate format. This provenance is used
as the expected value for the verification of reproducibility. Using the shared workflow, the user executes the shared workflow in their own
environment using WES. Using Tonkaz, the user then compares the shared provenance with the provenance generated by the user’s workflow
execution and verifies the reproducibility of the workflow execution results.

logs, the system needs to select the files to compare. We aimed
to compare the analysis results that led to a biological interpre-
tation and to avoid the comparison of the output files that are
not in a standard format. Therefore, we selected the file types
to be compared as an initial set and selected the corresponding
EDAM ontology terms listed in Table 3. With this selection, for
example, the nf-core RNA-seq workflow produces 872 files, but
only 25 files are assigned to the EDAM ontology and compared. In
the process of comparing files and calculating the reproducibil-
ity scale, Tonkaz first checks whether the files are identical using
a checksum (Fig. 3). If the files are identical, the reproducibility
scale is “Fully Reproduced.” If the files are not identical, Tonkaz
compares the biological feature values of the files using a thresh-
old value to determine whether the differences are acceptable or
not. The default threshold value used is 0.05, but this value can
be changed according to the use case. This is because some work-
flows for medical applications or quality control of biological ma-
terials require a lower threshold value. The comparison result is
finally summarized in a table, and the reproducibility scale of each
file is also displayed in a table (Fig. 4). However, Tonkaz does not
score the reproducibility of the entire workflow. This is because,
again, the purpose of comparison may differ depending on the
use case, and it is not practical to automate the final decision.
Thus, we implemented an option to generate structured data in
Tonkaz. In addition, we believe that workflow developers should
use this option and write conditions or scripts to determine the
reproducibility for each use case.

Results
To demonstrate the effectiveness of our approach, we verified the
reproducibility of workflow execution results by comparing the
results of public workflows used by researchers in real research
projects, not simple ones for testing. We selected these workflows
as they are fairly representative and mature current best prac-
tice for sequencing pipelines, implemented in different but typical
workflow systems, and have similar set of genomics features that
we can assess for provenance comparison. This verification was
based on the following 5 practical use cases: (i) execution in the
same environment, (ii) execution in a different environment, (iii)
execution of different versions of the workflow, (iv) execution with

missing datasets, and (v) comparison using all output files. We
used the following 3 workflows: (i) the mitochondrial short variant
discovery workflow that distributed a GATK best practice work-
flow (hereafter referred to as GATK workflow, language: WDL) [33,
34], (ii) RNA-seq workflow distributed by nf-core (hereafter re-
ferred to as RNA-seq workflow, language: Nextflow) [24, 28], and
(iii) GATK best practice–compatible germline short variant discov-
ery workflow, which is used to process whole-genome sequencing
data of the Japanese Genotype–Phenotype Archive (hereafter re-
ferred to as JGA workflow, language: CWL) [35–37]. We used the
following 2 execution environments: (i) Ubuntu 20.04 LTS (CPU: In-
tel Xeon E5-2640 @ 2.50 GHz, RAM: 24 GB, Docker: 20.10.8) and (ii)
macOS 12.5.1 (CPU: Apple M1 Max, RAM: 64 GB, Docker: 20.10.16).
Table 4 shows the setting for each execution as a combination,
and Table 5 summarizes the verification results based on the use
cases. The methods and results of the workflow execution and
verification are described in the online documentation “sapporo-
wes/tonkaz - tests/README.md” [38] and are published on
Zenodo [39].

The comparisons C1, C3, and C5 present execution results in
the same environment. Comparison C1 was performed using the
GATK workflow, and the output file types were BAM and VCF. The
reproducibility scale value was level 2 (Acceptable Difference) for
all files, with no differences in biological feature values express-
ing biological interpretation (e.g., mapping rate and variant fre-
quency). The difference between these files was due to the fact
that both the BAM and VCF files included the file paths of the orig-
inal input file and timestamps in the header lines. Thus, when us-
ing the analysis tool GATK [40], it is challenging to fully reproduce
the output files because of the behavior that the output files con-
tain the file paths and timestamps. Comparison C3 was performed
using the JGA workflow, and the output file types were VCF. This
result also showed no differences in biological feature values, and
the differences in file contents were due to the behavior of GATK.
Comparison C5 was performed using the RNA-seq workflow, and
the output file types were BAM, GTF, and BED. All GTF and BED files
were level 3 (Fully Reproduced), and all BAM files were level 2 (Ac-
ceptable Difference). The difference between BAM files was due to
the different order of the mapped reads in the BAM file. These BAM
files were mapped by STAR [41] (RRID:SCR_004463) and sorted
by SAMtools; however, differences occurred. These results show

https://scicrunch.org/resolver/RRID:SCR_004463

6 | GigaScience, 2023, Vol. 12, No. 1

Iterate
feature values

Loop end

Not Reproduced

Fully Reproduced

Unacceptable
Differences

Acceptable
Differences

True

False

Different

SameChecksum

No

Yes

Crate exists?

Threshold

Expected file crate Actual file crate

Figure 3: The process for calculating the reproducibility scale of a file. Tonkaz first checks whether the files are identical using a checksum. If the files
are identical, the reproducibility scale value is “Fully Reproduced.” If the files are not identical, Tonkaz compares the biological feature values of the
files using a threshold value to determine whether the differences are acceptable or not. If the differences are acceptable, the reproducibility scale
value is “Acceptable Difference.” If the differences are unacceptable, the reproducibility scale value is “Unacceptable Difference.” The default threshold
value used is 0.05, but this value can be changed according to the use case. If the file entity exists only in 1 of the 2 RO-Crates, the reproducibility scale
value is “Not Reproduced.”

cases in which the output files were not identical, although the
biological feature values were equal due to the behavior of the
analysis tool.

The comparisons C2, C4, and C6 present the execution results
in different environments. All of these comparison results were
level 0 (Not Reproduced) because all execution in the Mac envi-
ronment either failed or never finished. All workflows used in this
experiment were Docker containerized and designed to be very re-
producible in the execution context; however, runtime errors oc-
curred due to the Arm processor architecture of the Mac environ-
ment. Thus, even a very well-considered workflow may not be re-
producible in a different environment. In such cases, it is essential
to increase the debuggability of the cause of the irreproducibility
of the execution results. Therefore, the importance of this debug-
gability indicates that it is helpful to include information about
the execution environment in the workflow provenance; our ap-
proach and RO-Crate address them.

Comparison C7 presents the execution results in different ver-
sions. Workflow developers often check for workflow breakage
when updating versions of analysis tools included in the work-
flow. In the RNA-seq workflow used in this comparison, the de-
pendent analysis tools STAR, SAMtools, and StringTie [42] (RRID:
SCR_016323) were updated with the workflow update from v3.6
to v3.7. As a result of the comparison (C7), the number of files
with level 2 increased compared to C5, a comparison involving

the same version. The file types that became level 2 were GTF, BED,
and BAM; the GTF and BED files were newly changed from level 3
to level 2 when compared to C5. The differences between the GTF
files were due to differences in the FPKM field values and the ver-
sion of StringTie included in the header line. The BED files had a
different number of lines, and the BAM files had a different num-
ber of mapped reads; however, those differences were within the
threshold value. This result indicates that verification using bio-
logical feature values and threshold is effective because apparent
differences occur in output due to version updates and other rea-
sons, and it is necessary to determine whether these differences
are acceptable or not.

Comparison C8 presents the execution results in a case
where the input dataset was partially missing. The dataset used
in RNA-seq_1st contains 6 sequence read files (FASTQ) [43],
while the dataset used in RNA-seq_small contained 4 sequence
read files [44]. As a result of the comparison, the output files
related to the sample with half the number of reads were
level 1 (Unacceptable Difference), while the sample with zero
reads was level 0. In this case, setting the threshold used
for verification to, for example, 0.5 instead of 0.05 (default
value) will verify that the workflow is functioning as expected.
That is, this suggests that the threshold value and final deci-
sion may vary depending on the objectives of developers and
users.

https://scicrunch.org/resolver/RRID:SCR_016323

Workflow reproducibility scale | 7

Figure 4: Example of the Tonkaz output. Tonkaz displays a table for each file and a final summary table. The user checks those summary tables to
determine the reproducibility of the entire workflow and the differences between the expected and actual files (e.g., by using the diff command).

8 | GigaScience, 2023, Vol. 12, No. 1

Table 4: Combination table of workflow execution and execution settings. The first column is the definition of the execution name. In
the second column and below are the workflow execution settings. The blank cells in the third and fourth columns indicate that there
are no differences in the execution settings.

Execution name Workflow Version Dataset Environment

GATK_1st GATK Linux
GATK_2nd Linux
GATK_mac Mac
JGA_1st JGA Linux
JGA_2nd Linux
JGA_mac Mac
RNA-seq_1st RNA-seq v3.7 Standard Linux
RNA-seq_2nd v3.7 Standard Linux
RNA-seq_mac v3.7 Standard Mac
RNA-seq_v3.6 v3.6 Standard Linux
RNA-seq_small v3.7 Small Linux

Table 5: Comparisons of execution and verification results. The definition of each execution is defined in Table 4. Five use cases are
assigned according to the combination of executions. In the fifth column and below are the number of files for each reproducibility scale
defined in Table 2: level 3 is “Fully Reproduced,” level 2 is “Acceptable Difference,” level 1 is “Unacceptable Difference,” and level 0 is “Not
Reproduced.”

ID Source execution Target execution Use case Level 3 Level 2 Level 1 Level 0

C1 GATK_1st GATK_2nd Same environment 0 5 0 0
C2 GATK_1st GATK_mac Different environment 0 0 0 5
C3 JGA_1st JGA_2nd Same environment 0 4 0 0
C4 JGA_1st JGA_mac Different environment 0 0 0 4
C5 RNA-seq_1st RNA-seq_2nd Same environment 20 5 0 0
C6 RNA-seq_1st RNA-seq_mac Different environment 0 0 0 25
C7 RNA-seq_1st RNA-seq_v3.6 Different version 13 12 0 0
C8 RNA-seq_1st RNA-seq_small Missing dataset 8 5 7 5
C9 RNA-seq_1st RNA-seq_2nd All output files 557 306 1 8

Comparison C9 presents the execution results in a case where
all the output files were compared. Most of the files were level
3 or level 2; however, 16 files were not reproduced (level 0).
These level 0 files had random names or timestamps in the file
names, for example, mqc_mqc_mplplot_gtnuqiebfc_1.pdf and
execution_report_2022-09-08_06-28-19.html. Therefore, it
is not appropriate to use all files to verify the reproducibility of
execution results; it is essential to focus on characteristic files,
such as BAM and GTF files.

For the 5 practical use cases, we found that our approach was
well suited to verify the reproducibility of the workflow execution
results. In all use cases, existing methods that use checksums to
verify exact file matches can produce false positives; this means
that the workflow is considered not reproduced, even though it
is working as expected. Therefore, it is important to introduce a
reproducibility scale and verify the workflow execution results’
reproducibility at higher resolutions.

Discussion
Despite its complexity, data analysis in bioinformatics is consid-
ered reproducible and is being shared. In particular, the workflows
shared by nf-core and GATK best practices are well maintained
and include test datasets, documentation, and open-source li-
censes. Ideally, all shared workflows would be like these; however,
in reality, this is challenging because of the amount of work and
domain knowledge required. Thus, we aim to facilitate workflow
sharing by providing a workflow provenance model and a work-
flow provenance verification method. However, our approach is

not applicable in domains where it is difficult to verify the results
and inferences using a computer. In such cases, it is first neces-
sary to discuss an ontology or structured format for representing
the research.

A related project, CODECHECK [45], aims to provide the veri-
fication of the reproducibility of data analysis by a third party
in scientific publishing. CODECHECK proposes a procedure sim-
ilar to a peer review system, in which the workflow associ-
ated with research articles is verified at the time of publi-
cation by a reviewer called a CODECHECKER. However, this
project focuses on increasing the availability of the workflow
and does not verify the execution results. As such, it is un-
likely to address the case of our concern that the execu-
tion results are not exactly the same, but the conclusions of
the study remain the same. Our proposed metrics, a repro-
ducibility scale of workflow execution results, would be use-
ful in such workflow reproducibility validation in publishing as
well.

In a scientific context, automated verification is a crucial pro-
cess that should be performed for various reasons. Workflow de-
velopers can use it to easily add or update code and improve devel-
opment efficiency. Administrators of workflow registries can use
it to perform quality control, such as checking for broken links
between the analysis tools and data used internally. Users of the
workflow can also use it to validate the behavior of the workflow
as an acceptance test in their own environment, thereby improv-
ing the reliability of their research projects. Tonkaz aims to sup-
port these validation efforts in different use cases and promote
open science.

Workflow reproducibility scale | 9

When generating workflow provenance using a format, such as
RO-Crate, it is important to consider licensing issues. The prove-
nance includes not only the execution results but also the ex-
ecuted workflow, input datasets, and software used internally.
These files and software may have different licenses, and combin-
ing them under a single license can cause relicensing problems. In
RO-Crate, a license can be specified for each entity; however, this
approach is not currently possible as Sapporo automatically gen-
erates provenance from run requests and execution results with-
out the original license information. This limitation can be over-
come if data and software are consistently able to present their li-
censes, but this would require a generic method to get the license
information of files retrieved from the internet.

Software begins to degrade from the moment it is developed,
and it is not easy to maintain the same quality over time. Cases
in which an error, including a stack trace, is thrown are quite for-
tunate; in many cases, the software cannot be executed in the
first place, the process does not finish, or the output is inaccurate
without throwing an error. Dealing with such cases and improving
debuggability is accomplished by packaging the expected behav-
ior of the software at the time it is developed. In our approach,
we were able to attach information, such as OS, CPU architec-
ture, and dependent software versions, to the expected workflow
provenance due to RO-Crate’s extensibility. However, when analy-
sis tools are used internally, as in a workflow, the behavior of the
analysis tools tends to be a black box. Therefore, if an option to
display the reproducibility of the execution for each analysis tool
is provided, it will be possible to identify the cause of the irrepro-
ducibility of the workflow execution results.

In the Results section, we showed the cases where the differ-
ences are found in the outputs but the biological interpretation
will be identical. However, there are cases where users find dif-
ferences that affect the interpretation even when comparing the
same workflow definitions. For example, the output results may
change when the workflow has a tool that dynamically uses ex-
ternal databases, which may be regularly updated over time. An-
other case when the impact on the results can be observed is a
comparison of runs of the workflow that does not explicitly spec-
ify the software version, nor is it properly packaged.

As the system allows users to change the reporting threshold in
comparison to the outputs, users need to be aware of the accept-
able differences in the outputs of the given workflow. Although
the threshold needs to be low for workflows used in applications
that require severe quality control, such as medical data analysis,
users can set it higher for workflows that can generate different
outputs per run. For example, workflows using external databases
or used for environmental monitoring purposes may have outputs
that vary per run. The system alerts when a change was found, but
as the interpretation depends on the cases, users need to under-
stand the reason from the workflow description.

Though Tonkaz aims to improve the reproducibility of data
analysis, the system itself also has a challenge in the reproducibil-
ity of its function. The system uses the file extension to check
the file type, then specifies an external tool to extract the bio-
logical features from the file to compare the workflow outputs.
However, the extracted features may change by the updates in
the external tools, which results in the inconsistency of the re-
sults of comparison by Tonkaz. Another issue we see in the re-
producibility of the comparison is the system’s dependency on
Sapporo, our WES implementation. Ideally, the results, analysis
summaries, logs, and so on generated by analysis tools should be
in a standardized format so any system can generate comparable
statistics. The bioinformatics community needs to have a consen-

sus for such outputs of data analysis. As a related project, MultiQC
attempts to summarize the results of multiple analysis tools [46]
(RRID:SCR_014982). The Tonkaz system may improve its future
consistency by integrating with a community effort like MultiQC,
which can share the effort to extract the information from the
analysis tools.

We used RO-Crate to express the provenance of our study and
added additional terms and properties to the “@context” declara-
tion for verification purposes. These terms are currently located
on our own GitHub repository, but we are discussing with the
RO-Crate community moving them to a more authoritative loca-
tion, such as https://github.com/ResearchObject/ro-terms. In fu-
ture work, we are also considering using the Workflow Run RO-
Crate profile [47], which is currently under development to cap-
ture the provenance of executing a computational workflow, in-
stead of our custom terms.

The proposed method is currently dependent on our software
implementation; however, it can be generalized by the following 3
steps: (i) extract the statistics of biological features from the out-
put, (ii) represent the statistics in a standardized format, and (iii)
compare the statistics and report on the reproducibility scale. Al-
though we implemented steps (i) and (ii) in Sapporo, it is ideal to
let workflow execution systems have those 2 steps rather than a
WES implementation. Once steps (i) and (ii) become common, step
(iii) can be implemented in many kinds of data analysis platforms,
while Tonkaz only provides a CLI interface. However, the bioinfor-
matics community needs to have a consensus on the standard-
ized scale for reproducibility.

In the article regarding a “reproducibility crisis,” Baker quoted
a Johns Hopkins microbiologist as stating, “The next step may
be identifying what is the problem and to get a consensus” ([9],
p. 452). Subsequently, the proliferation of virtualization technol-
ogy and workflow systems has lowered the bar for reexecut-
ing data analysis that an individual or others have previously
built. Despite this, workflow developers are always anxious about
whether their workflows are broken. In response to this anxiety,
we realized that the cause is our binary view of whether the work-
flow could be reproduced or not. To remove this anxiety, we pro-
posed a new approach to verify the reproducibility of workflows by
providing a range of reproducibility of execution results. With the
development of sharing platforms, workflow sharing has become
more active. Therefore, we hope that by verifying reproducibility
and sharing the results, more workflows will be reused with con-
fidence, which, in turn, will lead to increased scientific progress.

Availability of Source Code and
Requirements
� Project name: Tonkaz
� Project homepage: https://github.com/sapporo-wes/tonkaz
� DOI: 10.5281/zenodo.7559433
� biotoolsID: tonkaz
� RRID: SCR_023206
� Operating system(s): Platform independent
� Programming language: TypeScript
� Other requirements: Deno
� License: Apache License, Version 2.0

� Project name: Sapporo-service
� Project homepage: https://github.com/sapporo-wes/sapporo

-service
� DOI: 10.5281/zenodo.7559425
� biotoolsID: sapporo-service

https://scicrunch.org/resolver/RRID:SCR_014982
https://github.com/ResearchObject/ro-terms
https://github.com/sapporo-wes/tonkaz
https://github.com/sapporo-wes/sapporo-service

10 | GigaScience, 2023, Vol. 12, No. 1

� RRID: SCR_023202
� Operating system(s): Platform independent
� Programming language: Python
� Other requirements: Docker recommended
� License: Apache License, Version 2.0

� Project name: Yevis-cli
� Project homepage: https://github.com/sapporo-wes/yevis-cli
� DOI: 10.5281/zenodo.7546102
� biotoolsID: yevis-cli
� RRID: SCR_023204
� Operating system(s): Platform independent
� Programming language: Rust
� Other requirements: Docker recommended
� License: Apache License, Version 2.0

Authors’ Contributions
H.S. and T.O. conceived and developed the methodology and soft-
ware and conducted the investigation. H.S., T.F., and T.O. wrote the
manuscript. T.F., T.O., and T.I. supervised the project. All authors
read and approved the final version of the manuscript.

Abbreviations
ACM: Association for Computing Machinery; CPU: central pro-
cessing unit; CWL: Common Workflow Language; GA4GH: Global
Alliance for Genomics and Health; ID: identifier; OS: operating sys-
tem; RNA-seq: RNA sequencing; RO-Crate: Research Object Crate;
SAM: Sequence Alignment/Map; VCF: Variant Call Format; WDL:
Workflow Description Language; WES: workflow execution ser-
vice.

Competing Interests
The authors declare that they have no competing interests.

Data Availability
The workflow, result, and documentation related to the experi-
ment described in the “Results” section are available on GitHub
and Zenodo as follows:

� Execution method and result [38]
� Workflow definitions [48]
� Raw data of workflow execution results [39]

Funding
This study was supported by JSPS KAKENHI (grant 20J22439
to H.S.), the CREST program of the Japan Science and Tech-
nology Agency (grant JPMJCR17A1 to T.I.), and the Life Science
Database Integration Project, NBDC of Japan Science and Tech-
nology Agency.

Acknowledgments
We acknowledge and thank the following scientific communi-
ties and their collaborative events where several of the authors
engaged in irreplaceable discussions and development through-
out the project: the Pitagora Meetup, Workflow Meetup Japan,
NBDC/DBCLS BioHackathon Series, and RO-Crate community. We
also acknowledge Prof. Masahiro Kasahara for his valuable com-

ments on the project. Computations were partially performed on
the NIG supercomputer at ROIS National Institute of Genetics.

References
1. Stephens, ZD, Lee, SY, Faghri, F, et al. Big data: Astronomical or

genomical? PLoS Biol 2015;13(7):e1002195.
2. Stein, LD. The case for cloud computing in genome informatics.

Genome Biol 2010;11(5):207.
3. Goodwin, S, McPherson, JD, McCombie, RW. Coming of age: ten

years of next-generation sequencing technologies. Nat Rev Genet
2016;17(6):333–51.

4. Prins, P, de Ligt, J, Tarasov, A, et al. Toward effective software so-
lutions for big biology. Nat Biotechnol 2015;33(7):686–7.

5. Perkel, JM. Workflow systems turn raw data into scientific
knowledge. Nature 2019;573(7772):149–51.

6. Bánáti, A, Kacsuk, P, Kozlovszky, M. Evaluating the reproducibil-
ity cost of the scientific workflows. In: 2016 IEEE 11th Interna-
tional Symposium on Applied Computational Intelligence and Informat-
ics (SACI). 2016. p. 187–90.

7. Software with impact. Nat Methods 2014;11(3):211.
8. Rebooting review. Nat Biotechnol 2015;33(4):319.
9. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature

2016;533(7604):452–4.
10. Drummond, C. Replicability is not reproducibility: nor is it good

science. In: Proceedings of the Evaluation Methods for Machine Learn-
ing Workshop at the 26th ICML. Vol. 1. 2009.

11. Association for Computing Machinery. Artifact review and
badging version 1.1. 2020. https://www.acm.org/publications/p
olicies/artifact-review-and-badging-current. (accessed: 22 April
2023).

12. Leprevost, FdV, Barbosa, VC, Francisco, EL, et al. On best prac-
tices in the development of bioinformatics software. Front Genet
2014;5:199.

13. Wratten, L, Wilm, A, Göke, J. Reproducible, scalable, and share-
able analysis pipelines with bioinformatics workflow managers.
Nat Methods 2021;18(10):1161–8.

14. Amstutz, P, Mikheev, M, Crusoe, MR, et al. Existing workflow
systems. 2021. https://s.apache.org/existing-workflow-systems.
(accessed: 22 April 2023).

15. Crusoe, MR, Abeln, S, Iosup, A, et al. Methods included: standard-
izing computational reuse and portability with the common
workflow language. Communications of the ACM 2022;65(6):54–63.

16. Voss, K, Gentry, J, Auwera, GVD. Full-stack genomics pipelining
with GATK4 + WDL + Cromwell. F1000Research 2017;6:1381.

17. Di Tommaso, P, Chatzou, M, Floden, EW, et al. Nextflow en-
ables reproducible computational workflows. Nat Biotechnol
2017;35(4):316–9.

18. Köster, J, Rahmann, S. Snakemake—a scalable bioinformatics
workflow engine. Bioinformatics 2012;28(19):2520–2.

19. Leprevost, FdV, Grüning, BA, Alves Aflitos, S, et al. BioContainers:
an open-source and community-driven framework for software
standardization. Bioinformatics 2017;33(16):2580–2.

20. Soiland-Reyes, S, Sefton, P, Crosas, M, et al. Packaging research
artefacts with RO-Crate. Data Sci 2022;5(2):97–138.

21. Khan, FZ, Soiland-Reyes, S, Sinnott, RO, et al. Sharing interop-
erable workflow provenance: a review of best practices and
their practical application in CWLProv. Gigascience 2019;8(11):
giz095.

22. Goble, C, Soiland-Reyes, S, Bacall, F, et al. Implementing FAIR
digital objects in the EOSC-Life workflow collaboratory. Zenodo.
https://doi.org/10.5281/zenodo.4605654, 2021.

https://github.com/sapporo-wes/yevis-cli
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://s.apache.org/existing-workflow-systems
https://doi.org/10.5281/zenodo.4605654

Workflow reproducibility scale | 11

23. O’Connor, BD, Yuen, D, Chung, V, et al. The Dockstore: en-
abling modular, community-focused sharing of Docker-based
genomics tools and workflows. F1000Research 2017;6:52.

24. Ewels, PA, Peltzer, A, Fillinger, S, et al. The nf-core framework
for community-curated bioinformatics pipelines. Nat Biotechnol
2020;38(3):276–8.

25. Ivie, P, Thain, D. Reproducibility in scientific computing. ACM
Computing Surveys 2019;51(3):1–36.

26. Suetake, H, Tanjo, T, Ishii, M, et al. Sapporo: a workflow execu-
tion service that encourages the reuse of workflows in various
languages in bioinformatics. F1000Research 2022;11:889.

27. Danecek, P, Bonfield, JK, Liddle, J, et al. Twelve years of SAMtools
and BCFtools. Gigascience 2021;10(2):giab008.

28. Patel, H, Ewels, P, Peltzer, A, et al. nf-core/rnaseq: nf-core/rnaseq
v3.7. Zenodo. https://doi.org/10.5281/zenodo.6513815, 2022.

29. Rehm, HL, Page, AJH, Smith, L, et al. GA4GH: International poli-
cies and standards for data sharing across genomic research and
healthcare. Cell Genom 2021;1(2):100029.

30. Ison, J, Kalas, M, Jonassen, I, et al. EDAM: an ontology of bioin-
formatics operations, types of data and identifiers, topics and
formats. Bioinformatics 2013;29(10):1325–32.

31. Danecek, P, Auton, A, Abecasis, G, et al. The variant call format
and VCFtools. Bioinformatics 2011;27(15):2156–8.

32. Suetake, H, Fukusato, T, Igarashi, T, et al. Workflow shar-
ing with automated metadata validation and test execution
to improve the reusability of published workflows. Gigascience
2022;12:giad006.

33. DePristo, MA, Banks, E, Poplin, R, et al. A framework for variation
discovery and genotyping using next-generation DNA sequenc-
ing data. Nat Genet 2011;43(5):491–8.

34. Peterson, A, Verdier, A, Abdel Ghany, A, et al. broadinsti-
tute/gatk - scripts/mitochondria_m2_wdl. GitHub. 2021.
https://github.com/broadinstitute/gatk/tree/33bda5e08b6a09
b40a729ee525d2e3083e0ecdf8/scripts/mitochondria_m2_wdl.

35. Kodama, Y, Mashima, J, Kosuge, T, et al. The DDBJ Japanese
Genotype-phenotype Archive for genetic and phenotypic hu-
man data. Nucleic Acids Res 2015;43(D1):D18–22.

36. National Bioscience Database Center. Whole genome sequenc-
ing analysis—NBDC Human Database. 2023. https://humandbs

.biosciencedbc.jp/en/whole-genome-sequencing. (accessed: 22
April 2023).

37. Bioinformation and DDBJ Center. ddbj/jga-analysis. GitHub.
2023. https://github.com/ddbj/jga-analysis.

38. Suetake, H. sapporo-wes/tonkaz - tests/README.md. GitHub.
2022. https://github.com/sapporo-wes/tonkaz/blob/main/tests/
README.md.

39. Suetake, H. Raw data of workflow execution results used in
Tonkaz’s experiments. Zenodo. https://doi.org/10.5281/zenodo.7
660388 2023.

40. McKenna, A, Hanna, M, Banks, E, et al. The Genome Analysis
Toolkit: a MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Res 2010;20(9):1297–303.

41. Dobin, A, Davis, CA, Schlesinger, F, et al. STAR: ultrafast universal
RNA-seq aligner. Bioinformatics 2013;29(1):15–21.

42. Pertea, M, Pertea, GM, Antonescu, CM, et al. StringTie enables im-
proved reconstruction of a transcriptome from RNA-seq reads.
Nat Biotechnol 2015;33(3):290–5.

43. nf-core Community. nf-core/test-datasets -
rnaseq/samplesheet/v3.4/samplesheet_test.csv. GitHub. 2018.
https://raw.githubusercontent.com/nf-core/test-datasets/rnas
eq/samplesheet/v3.4/samplesheet_test.csv.

44. Suetake, H, Ohta, T. sapporo-wes/test-workflow: 1.0.2 -
assets/nf-core_rnaseq_samplesheet_small_test.csv. Zenodo.

2022. https://raw.githubusercontent.com/sapporo-wes/test-w
orkflow/1.0.2/assets/nf-core_rnaseq_samplesheet_small_test.
csv.

45. Nüst, D, Eglen, SJ. CODECHECK: an open science initiative
for the independent execution of computations underlying re-
search articles during peer review to improve reproducibility.
F1000Research 2021;10:253.

46. Ewels, P, Magnusson, M, Lundin, S, et al. MultiQC: summarize
analysis results for multiple tools and samples in a single report.
Bioinformatics 2016;32(19):3047–8.

47. Workflow Run RO-Crate Working Group. Workflow Run RO-
Crate. 2023. https://www.researchobject.org/workflow-run-crat
e/. (accessed: 22 April 2023).

48. Suetake, H, Ohta, T. sapporo-wes/test-workflow: 1.0.2. Zenodo. ht
tps://doi.org/10.5281/zenodo.7102664, 2022.

https://doi.org/10.5281/zenodo.6513815
https://github.com/broadinstitute/gatk/tree/33bda5e08b6a09b40a729ee525d2e3083e0ecdf8/scripts/mitochondria_m2_wdl
https://humandbs.biosciencedbc.jp/en/whole-genome-sequencing
https://github.com/ddbj/jga-analysis
https://github.com/sapporo-wes/tonkaz/blob/main/tests/README.md
https://doi.org/10.5281/zenodo.7660388
https://raw.githubusercontent.com/nf-core/test-datasets/rnaseq/samplesheet/v3.4/samplesheet_test.csv
https://raw.githubusercontent.com/sapporo-wes/test-workflow/1.0.2/assets/nf-core_rnaseq_samplesheet_small_test.csv
https://www.researchobject.org/workflow-run-crate/
https://doi.org/10.5281/zenodo.7102664

