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ABSTRACT

In situ capturing technologies add tissue context to
gene expression data, with the potential of provid-
ing a greater understanding of complex biological
systems. However, splicing variants and full-length
sequence heterogeneity cannot be characterized at
spatial resolution with current transcriptome profil-
ing methods. To that end, we introduce spatial iso-
form transcriptomics (SiT), an explorative method
for characterizing spatial isoform variation and se-
quence heterogeneity using long-read sequencing.
We show in mouse brain how SiT can be used to pro-
file isoform expression and sequence heterogeneity
in different areas of the tissue. SiT reveals regional
isoform switching of Plp1 gene between different lay-
ers of the olfactory bulb, and the use of external
single-cell data allows the nomination of cell types
expressing each isoform. Furthermore, SiT identifies
differential isoform usage for several major genes im-
plicated in brain function (Snap25, Bin1, Gnas) that
are independently validated by in situ sequencing.
SiT also provides for the first time an in-depth A-to-
I RNA editing map of the adult mouse brain. Data
exploration can be performed through an online re-
source (https://www.isomics.eu), where isoform ex-
pression and RNA editing can be visualized in a spa-
tial context.

INTRODUCTION

Post-transcriptional modification such as alternative splic-
ing and RNA editing generates substantially more tran-
scripts than there are genes. These modifications increase
transcriptome complexity and have important implications
for cellular function, as evidenced by their tight regulation

and role in development and tissue homeostasis (1). Al-
ternatively spliced transcripts are particularly important in
neurogenesis and brain development, contributing to the
complex architecture of the mammalian central nervous
system (CNS) by regulating a vast array of neuronal func-
tions through cell-type-specific expression patterns (2,3).
Several links have been reported between defective alterna-
tive splicing and diseases including epilepsy, autism spec-
trum disorders, schizophrenia, or spinal muscular atrophy
(4). Transcriptomic diversity can also be generated through
adenosine-to-inosine (A-to-I) RNA editing, a process medi-
ated by a specific family of enzymes called adenosine deam-
inases (5). This process is involved in proper neuronal func-
tion (6), and dysregulated and aberrant A-to-I RNA editing
has also been reported in neurological and neurodegenera-
tive diseases such as epilepsy, amyotrophic lateral sclerosis,
and developmental disorders (7).

Information on the spatial distribution of post-
transcriptional modifications is crucial for a better
understanding of their roles in physiology and disease. Re-
cent technological advances have enabled high-throughput
quantification of gene expression in a spatial context (8).
These methods can broadly be categorized into those
that detect the presence of a predefined set of target
genes and those where observations stem from sampling
across the entire transcriptome. The latter is required for
a priori free exploratory analysis and novel hypothesis
generation. Such methods are usually based on in situ
capture of poly-adenylated RNA on spatially barcoded
reverse transcription primers, which allows capturing all
mRNAs in the transcriptome. The captured transcripts
are then sequenced ex situ, and their spatial barcodes are
used to infer their spatial origins. Even though several
new such in situ-capture-based methods for large-scale
transcriptome profiling have recently emerged (9–12), they
only assess transcripts as 3′ cDNA tags and not as complete
transcripts. The fundamental reason behind this is that all
those methods are based on short-read library preparation
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and sequencing, which inevitably implies that full-length
transcript information is lost. As a large amount of diver-
sity in the transcriptome stems from post-transcriptional
modifications, a truly comprehensive description of the
transcriptome can only be obtained by characterizing the
full-length sequences of the transcripts.

The situation was similar in droplet-based single-cell
transcriptomics where until recently just the end of the
cDNA was typically sequenced. Recent bioinformatics and
methodological developments have enabled detection, char-
acterization, and quantification of full-length transcripts in
single-cell experiments using either short reads (13) or long
reads generated with Pacific Biosciences (PacBio) (14) or
Oxford Nanopore Technology (Nanopore) (15,16). Long-
read sequencing is the only option to unambiguously access
the full exonic structure of captured transcripts (17). PacBio
sequencing has a higher accuracy (>99%) than Nanopore
sequencing (97%) (18), while the latter provides a higher se-
quencing throughput. A single PromethION flow cell gen-
erates more than 100 million reads, whereas only 4 mil-
lion usable reads are obtained with the most recent 8M
PacBio SMRTcell (19). Considering the vast amount of
RNA molecules captured in current high throughput single-
cell or spatial transcriptomics approaches, Nanopore se-
quencing is a more attractive option to generate a sufficient
amount of reads to reach the sequencing saturation needed
for comprehensive transcript isoform and sequence hetero-
geneity exploration.

We explored whether those recent developments in single-
cell transcriptomics can be applied in spatial transcrip-
tomics to obtain spatially resolved full-length sequence in-
formation.

The Visium platform by 10x Genomics appeared well
suited since cDNA from tissue sections is synthesized in situ
on spatially barcoded slides in this approach. Consequently,
the resulting sequencing reads contain those spatial bar-
codes and can be assigned to coordinates on the slide. A re-
cent study proposed a hybrid approach in which single-cell
transcript isoforms were characterized by PacBio sequenc-
ing (20). The obtained isoforms were then inferred to spa-
tial coordinates by shallow Nanopore sequencing of spatial
transcriptomics (Visium) libraries. However, the low cov-
erage and the lack of unique molecular identifiers (UMIs)
did not enable broad exploration of the spatial sequence
heterogeneity of full-length isoforms nor RNA editing in
the studied tissue. Another study (21) recently used the Vi-
sium system to perform full-length spatial transcriptomics
of the mouse heart. However, the insufficient coverage of
the 5′ ends of transcripts led the authors to assemble full-
length cDNA from partial transcript sequences without us-
ing UMIs for expression quantification.

Currently, no efficient approach is available to generate
comprehensive spatially resolved databases of full-length
RNA sequences, and define the spatial landscape of splicing
and single nucleotide variations (SNVs). We introduce spa-
tial isoform transcriptomics (SiT), which combines an exist-
ing approach that yields spatial gene expression information
after short-read sequencing of cDNA reverse transcribed
in situ on tissue sections with long-read sequencing to gen-
erate spatially resolved full-length mRNA sequence data.
While we opted for the Oxford Nanopore Promethion long-

read sequencing technology, our approach is easily trans-
ferrable to other sequencing technologies. To analyze the se-
quencing data, we took advantage of the fact that spatially
barcoded cDNA has a similar design as single-cell cDNA
with the cell barcode replaced by a spatial barcode. This
similarity allowed us to adapt a strategy we recently devel-
oped for the analysis of long-read single-cell RNA sequenc-
ing data (ScNaUmi-seq (15)) to analyze spatially resolved
long-read sequencing data. SiT enables spatial exploration
of isoform expression and RNA sequence heterogeneity in
an un-targeted manner, by interrogating all captured iso-
forms and SNVs rather than a single isoform or SNV at a
time.

We demonstrate the workflow for two different areas of
the mouse brain and show that deep long-read sequencing
identifies multiple genes that display spatially distinct alter-
native isoform expression. Furthermore, exploration of full-
length sequence heterogeneity provides for the first time a
global map of A-to-I RNA editing in adult mouse brain.

MATERIALS AND METHODS

Mouse brain samples

Olfactory bulbs were isolated from C57BL/6 mice (>2
months old), snap-frozen in Isopentane (Sigma-Aldrich)
and embedded in cold optimal cutting temperature (OCT,
Sakura) before sectioning. A left hemisphere was isolated
from a C57BL/6J (8–12 weeks old) mouse and processed
similarly. Two adjacent (50 �m apart) left hemisphere sec-
tions and one olfactory bulb section was used for the Vi-
sium workflow. For in situ sequencing (ISS), left hemisphere
sections were from the same individual, while for the olfac-
tory bulb, sections from a different individual were used.
Mouse procedures were performed by Adlego Biomedical
AB (Uppsala, Sweden), approved by the Stockholm ethics
committee (project 4570–2019 with amendment 4566–2020
Stockholms djurförsöksetiska nämnd). They followed Di-
rective 2010/63/EU of the European Parliament and of
the Council, the Swedish Animal Welfare Act (Djursky-
ddslagen: SFS 1988:534), the Swedish Animal Welfare Or-
dinance (Djurskyddsförordningen: SFS 1988:539) and the
provisions regarding the use of animals for scientific pur-
poses (DFS 2004:15 and SJVFS 2012:26).

10x genomics visium experiments

The Visium Spatial Tissue Optimization Slide & Reagent
kit (10x Genomics, Pleasanton, CA, USA) was used to op-
timize permeabilization conditions for mouse brain tissue.
Spatially barcoded full-length cDNA was then generated
using Visium Spatial Gene Expression Slide & Reagent kit
(10x Genomics) following the manufacturer’s protocol. Two
coronal sections of the left hemisphere (IDs: CBS1 and
CBS2) and one section of olfactory bulb (ID: ‘MOB’) were
processed. Tissue permeabilization was performed for 6 and
9 min (CBS1, CBS2) and 12 min (MOB). cDNA amplifica-
tion was conducted with 12 (CBS) and 17 (MOB) cycles. A
fraction of each cDNA library was used for long-read se-
quencing (see ‘Oxford Nanopore sequencing’), whereas 10
�l each was used in the 10x Genomics Visium library prepa-
ration protocol of fragmentation, adapter ligation, and in-
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Figure 1. SiT methodology and datasets. (A) Experimental and computational steps for SiT analysis. Right side shows unsupervised gene expression clus-
tering and gene- (short-read) and isoform-level (SiT) expression of Snap25 in a mouse coronal brain section (CBS2). (B) Nanopore sequencing saturation
curves for three Visium samples showing the number of UMIs observed as a function of the number of Nanopore reads. Labels indicate sequencing satu-
rations obtained with all flow cells (CBS1, CBS2, MOB) and with just one latest generation Promethion flow cell per sample (vertical dotted lines, CBS1,
CBS2). (C) Mean read number (RN) per molecule (UMI) observed for each of the three samples. (D) Percentage of assignment at each step of the workflow:
Reads with polyA tail (PolyA) expressed as percentage of total reads; Assigned spatial barcode (SpatialBC) expressed as percentage of reads with PolyA
tail found; UMI assigned reads (UMI) as percentage of reads with spatial barcode. Details about the spatial barcode/UMI assignment strategy are in (15).
(E) Normalized transcript coverage plot for Nanopore and for Illumina sequencing.

dexing. The libraries were sequenced on a NextSeq500 (Illu-
mina), with 28 bases from read 1 and 91 from read 2, and at
a depth of 253, 217 and 210 million reads for MOB, CBS1,
and CBS2 samples, respectively. The raw sequencing data
was processed with a pre-launch (version 4509.7.5) of the
Space Ranger pipeline (10x Genomics) and mapped to the
mm10 genome assembly.

Oxford nanopore sequencing

Nanopore sequencing of full-length cDNA libraries
prepared from the 10x Genomics workflow yields 20–
50% reads without the 3′ adapter sequence and thus
lacks the spatial barcode and UMI (15). To deplete such
fragments, we initially selected for cDNA that contains
a biotinylated 3′ primer. 10 ng of the 10x Genomics
Visium PCR product were amplified for 5 cycles with
5′-AAGCAGTGGTATCAACGCAGAGTACAT-3′ and
5′-Biotine-AAAAACTACACGACGCTCTTCCGATCT-
3′. Excess biotinylated primers were removed by 0.55x
SPRIselect (Beckman Coulter) purification, and the bi-
otinylated cDNA (in 40 �l EB, Qiagen) was bound to 15 �l
1× SSPE washed Dynabeads™ M-270 Streptavidin beads

(Thermo) in 10 �l 5× SSPE for 15 min at room temperature
on a shaker. Beads were washed twice with 100 �l 1× SSPE
and once with 100 �l EB. The beads were suspended in 100
�l 1× PCR mix and amplified for 8 cycles with the primers
NNNAAGCAGTGGTATCAACGCAGAGTACAT and
NNNCTACACGACGCTCTTCCGATCT to generate
enough material (1–2 �g) for Nanopore sequencing library
preparation. To deplete small fragments which are typically
of little interest for transcript isoform analysis (cDNA
from degraded RNA, ribosomal RNAs), small cDNA (<1
kB) was depleted with a 0.5× SPRI select purification.
If fragments between 0.5 and 1 kB need to be retained,
SPRIselect concentration should be increased to 0.8x.
Nanopore sequencing libraries were prepared with the
LSK-109 or LSK-110 kit from Oxford Nanopore (1 �g
cDNA) following the instructions from the manufacturer.
PromethION flow cells were loaded with 200 ng libraries
each. PCR amplifications for Nanopore library prepa-
rations were made with Kapa Hifi Hotstart polymerase
(Roche Sequencing Solutions): initial denaturation, 3 min
at 95◦C; cycles: 98◦C for 30 s, 64◦C for 30 s, 72◦C for 5 min;
final elongation: 72◦C for 10 min, primer concentration
was 1 �M.
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Oxford nanopore data processing

Nanopore reads were processed according to the scNaUmi-
seq protocol (15) with slight modifications. Ligation of
the amplified cDNA with the Oxford Nanopore adapters
(LSK-109 or LSK-110 kit) leads to the generation of 3–
20% of chimeric cDNA where two or, to a far lesser
extent, multiple cDNA molecules are ligated together.
cDNA from the 10xGenomics Visium system is flanked
at the 5′ by a Template Switching Oligonucleotide (TSO,
AAGCAGTGGTATCAACGCAGAGTACAT) and at the
3′ by a poly(A) followed by an adapter sequence (CTA-
CACGACGCTCTTCCGATCT). Junctions of individual
cDNAs in chimeric reads are characterized by the pres-
ence of those 5′ and/or 3′ terminal sequences joined to-
gether within the read sequence. To split reads that originate
from chimeric cDNA, we initially scanned reads for internal
(>200 nucleotides from end) TSO and 3′ adapter sequences
flanked by a poly(T) (poly(T)-adapter). When two adja-
cent poly(T)-adapters, two TSOs or one TSO adjacent to a
poly(T)-adapter and thus junctions of two cDNA molecules
were found, the read was split into two separate reads. Next
all reads were scanned for poly(A/T) tails and the 3′ adapter
sequence to define the orientation of the read and strand-
specificity. Scanned reads were then aligned to Mus muscu-
lus mm10 with minimap2 (22) v2.17 in spliced alignment
mode. Spatial barcodes and UMIs were then assigned to
nanopore reads using the strategy and software previously
described for single-cell libraries (15). SAM records for each
spatial spot and gene were grouped by UMI after removal
of low-quality mapping reads (mapqv = 0) and potentially
chimeric reads (terminal Soft/Hard-clipping of > 150 nt). A
consensus sequence per molecule (UMI) was computed de-
pending on the number of available reads for the UMI using
the ComputeConsensus sicelore-2.0 pipeline. For molecules
supported by more than two reads (RN > 2), a consensus
sequence was computed with SPOA (23) using the sequence
between the end of the TSO (SAM Tag: TE) and the base
preceding the polyA sequence (SAM Tag: PE). Quality val-
ues for consensus nucleotides were assigned as –10*log10(n
Reads not conform with consensus nucleotide/n Reads to-
tal). Consensus cDNA sequences were aligned to the Mus
musculus mm10 build with minimap2 v2.17 in spliced align-
ment mode. SAM records matching known genes were an-
alyzed for matching Gencode vM24 transcript isoforms
(same exon makeup). To assign a UMI to a Gencode tran-
script, we required a full match between the UMI and the
Gencode transcript exon-exon junction layout authorizing
a two-base margin of added or lacking sequences at exon
boundaries, to allow for indels at exon junctions and impre-
cise mapping by minimap2. Detailed statistics of each step
of Nanopore read processing are provided in Supplemen-
tary Table S1.

Sequencing quality control metrics

The 5′ and 3′ coverage of Illumina and Nanopore sequenc-
ing reads were compared by analyzing the coverage along
length-normalized transcripts using Picard CollectRnaSe-
qMetrics pipeline (http://broadinstitute.github.io/picard;
Broad Institute, 2019). Long-read sequencing satura-
tion curves were computed using sicelore-2.0 Satura-

tionCurve pipeline implementing the saturation curve
calculation proposed by 10x Genomics (ref.: https:
//kb.10xgenomics.com/hc/en-us/articles/115003646912-
How-is-sequencing-saturation-calculated-).

Spatial multi-assays storage

Raw gene expression matrices generated by Space Ranger
were processed using R/Bioconductor (version 4.0.2) and
Seurat (24) package (version 3.9.9). We created Seurat ob-
jects for each of the three samples (MOB, CBS1 and CB2)
with different assays for the analysis as follows: (i) ‘Spa-
tial’ containing gene-level raw short-read data from the
Space Ranger output, (ii) ‘ISOG’ containing the gene-level
Nanopore long-read data, (iii) ‘ISO’ containing isoform-
level transcript information where only the molecules where
all exons are observed are kept, (iv) ‘JUNC’ containing each
individual exon-exon junction observation per isoform and
(v) ‘AtoI’ containing exonic editing sites from the RADAR
database (mm9 UCSC liftover to mm10) and from the Licht
et al., 2019, study, for which we observed at least one UMI in
our dataset. The ‘AtoI’ assay stored non edited UMI count
(@counts slot), edited UMI count (@data slot), and the
editing ratio (@scale.data slot) per editing site.

10x Genomics visium data-driven annotation of anatomical
regions

The Spatial assay was normalized with SCTransform (25)
using standard parameters. The first 30 principal compo-
nents of the assay were used for uniform manifold approx-
imation and projection (UMAP) representation and clus-
tering (resolution = 0.4). Brain regions defined by cluster-
ing were assigned to known anatomical regions based on
the Allen Mouse Brain Atlas and expression of represen-
tative gene markers (Supplementary Table S2). Spot clus-
tering was similar between short- and long-read data (Sup-
plementary Figure S1). As short-read data contains more
UMIs per spot, our different gene markers representations
are based on short-read data.

Spatial spot deconvolution

For MOB, spatial spots were deconvoluted using SPOTlight
(26) release 0.1.4 and signature genes identified from (27)
wild type samples Plp1 expresser cell types (mean normal-
ized expression > 1) identified using Seurat FindAllMark-
ers (logfc.threshold = 0.25, min.pct = 0.1). Cell types con-
tributing to at least 8% were selected and SPOTlight de-
convolution scores were used for correlation computation
with Plp1 isoforms expression. The same approach was per-
formed for the coronal brain sections (CBS1 and CBS2) us-
ing Zeisel et al. (28) external dataset (mean expression > 1
UMI/cell).

Differential splicing detection

Seurat FindMarkers function (logfc.threshold = 0.25,
test.use = ‘wilcox’, min.pct = 0.1) was used to detect genes
showing at least two isoforms as markers of different brain
regions using the Nanopore isoform-level ‘ISO’ assay. Re-
sults were filtered for non-majority isoforms, i.e. not the

http://broadinstitute.github.io/picard
https://kb.10xgenomics.com/hc/en-us/articles/115003646912-How-is-sequencing-saturation-calculated-
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isoform showing the highest bulk expression, requiring
Bonferroni-adjusted P-value ≤0.05.

Coronal brain sections transcriptome correlation

Images were masked and then aligned using the functions
MaskImages and AlignImages of the STUtility (29) R pack-
age (version 1.0.0). We then computed and minimized the
physical distance between spots to define pair of spots show-
ing the smallest distance between sections. We then com-
puted the whole transcriptome correlation per pair of spots
using cor.test function from Stats R package using gene-
level short-read (Spatial assay) and long-read (ISOG assay)
UMI count matrices.

In situ sequencing validation

Two cryosections of the olfactory bulb and two coronal sec-
tions of the left hemisphere (at 10 �m thickness) were placed
on SuperFrost Plus microscope slides (ThermoFisher Sci-
entific), stored at –80◦C and shipped on dry ice to CAR-
TANA for library preparation, probe hybridization, probe
ligation, rolling circle amplification, and fluorescence label-
ing using the HS Library Preparation Kit (P/N 1110) and
for the in-situ sequencing using the ISS kit (P/N 3110) and
sequential imaging using a 20× objective. ISS probes. The
specific isoform targets used in this study are listed in Sup-
plementary Table S3. The result table of the spatial coordi-
nates of each molecule of all targets together with the refer-
ence DAPI image per sample were provided by CARTANA.
Quantification of the ISS signal was done with the use of
TissUUmaps (https://tissuumaps.github.io/, version 3.0.9)
(30). The ISS DAPI images (ISS-1, ISS-2) from two coro-
nal brain sections were loaded into the software tool one
at a time, along with a table of identified genes and their
corresponding x,y-coordinates delivered by CARTANA. In
TissUUmaps, regions were manually drawn using the ‘draw
tool’ to match the gene-level data driven annotation per-
formed on CBS1. For each region (polygon), the software
matched all genes with coordinates that fall within those of
the polygon. The output from the software was a table of
each gene and its matched region, which was subsequently
concatenated to arrive at the final count per region.

Long-read calibration for high-confidence RNA editing call

To only keep high confidence Nanopore base calls, we an-
alyzed the agreement between the Nanopore data (con-
sensus sequences for UMIs) and Illumina data for editing
sites covered by both sequencing technologies. We first ex-
amined the agreement of long- and short-read data as a
function of the number of Nanopore reads used to gener-
ate the consensus sequence for the molecule (UMI) (Sup-
plementary Table S4). Next, we analyzed how the agree-
ment between Illumina and Nanopore UMIs depends on
the consensus quality (QV) of the Nanopore UMI at the
editing site (agreement of the reads backing the UMI, see
`Oxford Nanopore data processing’ section for consensus
QV calculation). We then defined the minimal number of
Nanopore reads per UMI and the minimal consensus qual-
ity required for 99% agreement with Illumina data and re-

tained Nanopore UMIs backed by at least three reads and
a consensus quality at the editing position of at least 6.

RNA editing ratios

Samples CBS2 and MOB were used for calculating global
editing ratios. To test the significance of our findings, resam-
pling of capture spots across the sample was performed. Ob-
served editing ratios per spot were kept, and each spot was
randomly assigned a region label from the pool of original
labels without replacement 10k times. A normal distribu-
tion was fitted to the simulated editing ratios to calculate
the probability of observing a value equal to, or more ex-
treme, than the observed value. An editing ratio was com-
puted for each individual editing site at a region level as the
total edited molecules divided by the total molecules ob-
served at the editing site position within each region.

RESULTS

Spatial isoform detection enabled through in situ capture and
long-read sequencing

We fixed fresh-frozen tissue samples on spatially barcoded
glass slides using methanol. After staining and imaging,
mRNA molecules were captured in situ and tagged with
barcodes and UMIs (10x Genomics Visium). Full-length
cDNA libraries were then split for preparation of 3′ short-
read sequencing libraries as well as long-read Nanopore li-
braries (Figure 1A). Resulting gene expression data were
clustered to define distinct anatomical regions used as land-
marks for regional isoform usage analysis.

We demonstrate the isoform landscape in situ in two re-
gions of the mouse brain: the olfactory bulb (MOB) and two
coronal sections of the left hemisphere (CBS1, CBS2). We
provide a dataset of 13 Nanopore PromethION flow cells
with a total of 535 million reads, reaching a high long-read
sequencing saturation for the three samples (Figure 1B, C).
The initial Nanopore PromethION flow cells (before July
2020) generated a median of 40 million reads, while the most
recent flow cells (after December 2020) yielded more than
100 million reads (Figure 1B, Supplementary Table S1), a
throughput that provided a high sequencing saturation of
51.6% and 62.8% for CBS1 and CBS2, respectively, with
just one sequencing run. We used short-read data to assign
spatial barcodes and UMIs to Nanopore reads, using the
previously described scNaUMI-seq protocol (15) (Figure
1D). Our experimental approach, which included a cDNA
size selection step for full-length cDNA enrichment (Sup-
plementary Figure S2) provided a nearly uniform represen-
tation of full-length transcripts, enabling the exploration of
splicing and full-length sequence heterogeneity (Figure 1E).

Regional isoform switching in the olfactory bulb

To investigate the spatial isoform landscape in MOB, we fol-
lowed the SiT workflow depicted in Figure 1A. We gener-
ated 253 million Illumina short reads and 74 million long
reads from two PromethION flow cells reaching a sequenc-
ing saturation of 87.2% (93.1% for short reads). For the
long-read data, we applied a stringent filter to only re-
tain molecules (UMIs) that contain all exon-exon junctions

https://tissuumaps.github.io/
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Figure 2. SiT reveals isoform switches in the mouse olfactory bulb. (A) Data-driven annotation (left panel) of mouse olfactory bulb spatial regions through
transcriptome-clustering of short-read data. Heatmap shows the expression of prominent marker genes for each region. (B) Exonic structure of the dif-
ferent Plp1 isoforms (mm10 genome build) detected by SiT. (C, D) Expression of Plp1 isoforms detected by SiT (C) and ISS (D). (E) Uniform Manifold
Approximation and Projection (UMAP) representation of an external MOB single cell dataset (27). The dot plot on the right indicates Plp1 expression
per cell type in the single cell dataset. (f) Spatial spot deconvolution of cell types with high/prominent Plp1 expression. Each dot corresponds to a pie
graph indicating cell type composition in this spot (upper panel). Per spatial spot correlation observed between deconvolution score and Plp1 isoform
expression (lower panel). Results show that Plp1 is predominantly expressed by olfactory ensheathing cells (OEC) in the olfactory nerve layer (ONL) and
by myelinating-oligodendrocytes (MyOligo) in the granule cell layer (GCL).
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(mean exon number 6.7) of the reference isoform (Mouse
Gencode vM24). Following this strategy, we unambigu-
ously defined the full transcript structure for 2.19 million
UMIs, sequenced with 59.9% of the 25.5 million spatialBC-
UMI associated reads (mean 6.8 reads per UMI).

Across the tissue section, we observed 23560 different
Gencode reference isoforms of 13291 distinct genes. We
computed a Pearson correlation of the UMIs number per
capture-spot equal to 0.95 between short and long reads
(Supplementary Figure S3). Per spatially barcoded spot
(55 �m diameter), we observed a median of 1917 UMIs cor-
responding to a median of 974 distinct isoforms (Supple-
mentary Figure S4). Standard clustering of the short-read
data defined five anatomic regions, as previously demon-
strated (31) (Figure 2A). Based on this unsupervised clus-
tering, we mined for genes showing a differential isoform
usage between regions and identified 36 such genes, out of
which Myl6 and Plp1 showed the most prominent patterns
(Materials and Methods, Supplementary Table S5).

Myosin Light Chain 6 (Myl6), codes for the non-
phosphorylatable alkali light chain component of the hex-
americ Myosin motor protein, which has been shown to be
involved in neuronal migration and synaptic remodeling in
immature and mature neurons (32,33). Myl6 produces two
main polypeptides of same size, that just differ in five of
the last nine carboxy terminal amino acids: the non-muscle
isoform Myl6-206 (Lc17a) and the smooth-muscle isoform
Myl6-201 (Lc17b) (34). Our data revealed a high expression
of Myl6-201 in the granule cell layer while Myl6-206 is pref-
erentially expressed in the olfactory nerve and mitral cell
layer (Supplementary Figure S5).

Proteolipid protein 1 (Plp1), a gene involved in se-
vere pathologies associated with CNS dysmyelination (35),
demonstrated a clear regional difference in isoform expres-
sion between the inner granule cell layer, expressing full
Plp1-201 (PLP) isoform and the outer regions of the ol-
factory nerve layer, expressing preferentially the truncated
Plp1-202 (DM20) isoform (Figure 2B, C, Supplementary
Figure S6). SiT allows to clearly identify 35 codons that are
exclusively present in PLP and to quantify the PLP/DM20
splicing balance in a spatial context, a balance that has
been shown to be implicated in Pelizaeus-Merzbacher dis-
ease (36).

Interestingly, while the Myl6 SiT isoform switch could be
confirmed by short reads due to its proximity to the 3′ end
of the transcript, short reads were unable to confirm the al-
ternate splicing of Plp1 detected by SiT since the alternate
exon is located far from the 3′ end. This illustrates the huge
advantage of SiT for comprehensive differential isoform us-
age analysis (Supplementary Figure S7).

We validated the differential regional isoform expres-
sion of Myl6 and Plp1 using an independent hybridization-
based technology, in situ sequencing (ISS), on a tissue sec-
tion from another individual (Figure 2d, Supplementary
Figure S5).

Cell type inference reveals origin of plp1 isoforms

Each spatially barcoded spot typically captures transcripts
from multiple cells. Single-cell RNA-seq data allow to de-
convolute the transcriptional signal into the likely con-

stituent cell types of the spot, and to associate specific cell
type(s) to spatial isoform expression data. We used a previ-
ously published mouse olfactory bulb single-cell RNA-seq
dataset (27) to perform a deconvolution strategy based on
identifying pairwise cell correspondence using SPOTlight.
This approach nominated the myelinating-oligodendrocyte
(MyOligo) cell type within the granule cell layer as the pre-
dominant origin of the Plp1 standard isoform and the ol-
factory ensheathing cell (OEC) within the olfactory nerve
layer as the predominant origin of the truncated Plp1 iso-
form DM20 (Figure 2E, F).

Deep sequencing of coronal brain sections

SiT was then applied to two 50 �m spaced adjacent coronal
brain sections (CBS1, CBS2). The higher complexity of the
spatial coronal brain section libraries motivated a deeper
sequencing than for the MOB (Figure 1B). We generated
a total of 174 and 287 million long reads with three and
eight Oxford Nanopore flow cells, for CBS1 and CBS2 re-
spectively (Supplementary Table S1). Clustering based on
short-read gene expression data defined 12 anatomical re-
gions (Figure 3a, Supplementary Figure S8) that broadly
corresponded to regions in the Allen mouse brain refer-
ence atlas (37) (Figure 3B). To assess the robustness of our
method, we computed the transcriptome expression corre-
lation between the two sections after image alignment and
minimization of the spot-to-spot distance between sections
(Supplementary Figure S9). We observed a Pearson cor-
relation of 0.98 and 0.93, respectively for short-read and
long-read gene-level profiles of corresponding pairs of spa-
tial spots (Figure 3C).

Regional isoform switching in coronal brain sections

Next, we sought to identify genes with differential isoform
usage across the 12 anatomical regions. Using the UMI fil-
tering described for MOB, we successfully assigned 10 mil-
lion molecules (UMIs) to a precise isoform in CBS2, cor-
responding to 33097 distinct isoforms encoded by 16899
genes. Among those genes, we observed 9053 (53.6%) that
expressed a single isoform and 7846 (46.4%) that expressed
multiple isoforms across the tissue section (Figure 3D). We
obtained a median of 3644 UMIs for each spatially bar-
coded spot, corresponding to a median of 1524 unique iso-
forms (Supplementary Figure S4, cf. Supplementary Ta-
ble S1 for CBS1 statistics). We noticed small variations
in the number of isoforms per gene across the different
brain regions and a slightly higher isoform complexity in
the CA3 region of the hippocampus (Figure 3E, Supple-
mentary Table S6). Among the multi-isoform genes, we
mined those showing a splicing pattern change across re-
gions to decipher differences in spatial cell organization.
We identified 126 and 166 significant (Bonferroni-adjusted
P-value < 0.05) regional isoform switching genes in CBS1
and CBS2 respectively, out of which 61 were identified in
both sections (Materials and Methods, Supplementary Ta-
bles S5–S7).

Hypothalamus expresses high levels of a snap25a isoform.
For both sections, our data revealed a pronounced regional
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Figure 3. SiT robustness assessment using two coronal brain sections. (A) Data-driven annotation of two mouse coronal brain regions through transcrip-
tome clustering of short-read data. (B) Allen Mouse Brain Atlas reference map for the coronal brain section region annotation. (C) Gene-level short-read
and long-read transcriptome correlation between corresponding spatial spots of the CBS1 and CBS2 section after image alignment and distance mini-
mization. (D) Histogram showing the frequency distribution of the number of isoforms per gene for CBS1 and CBS2. The median length of transcripts is
indicated for each category. (E) Average number of isoforms per gene detected for each spatial region.

isoform switching for several genes involved in brain func-
tion (Figure 4A, B). A first example is Snap25 which was
expressed as the Snap25-202 (Snap25a) isoform in the hy-
pothalamus, in contrast to the midbrain where Snap25-201
(Snap25b) was the predominant isoform (Figure 4C, D).
Both isoforms result from the inclusion/exclusion of two
closely spaced sequences that encode distinct fifth exons.
This results in 9 out of 206 amino acid changes between
the two polypeptides, a difference that has been shown to
play a role in plasticity at central synapses (38). As previ-
ously described, Snap25a is the dominant transcript dur-
ing embryonic and early postnatal development in mouse
brain, while in adulthood, Snap25b becomes the domi-
nant mRNA. Snap25a remains the dominant isoform in en-
docrine and neuroendocrine cells throughout life (39). The
observed spatial isoform expression pattern was confirmed
by ISS (Figure 4E, F).

Dense neuronal regions and white matter express differ-
ent bin1 isoforms. A second example of regional isoform
switching is Bin1, which belongs to the Bin-Amphiphysin-
Rvs167 (BAR) domain superfamily proteins. Bin1 is in-
volved in the regulation of membrane curvature, particu-
larly in clathrin-coated synaptic vesicles (40). The Bin1 locus
has been identified as a leading modulator of genetic risk in
Alzheimer’s disease (41). Our data revealed a clear regional
differential Bin1 isoform usage. Midbrain and fiber tracts
expressed Bin1-205 (human Bin1iso9), while the Bin1-201
isoform (human Bin1iso1) was expressed in a sparse pattern
including in the isocortex, and the hippocampal formation,

with enrichment in the Dentate Gyrus (DG) and the CA3
region. Spatial deconvolution using the single-cell Mouse
Brain Atlas dataset (28) revealed a high correlation be-
tween Bin1-205 isoform expression and Oligodendrocytes
especially the MOL1 and MOL3 subtypes, which delin-
eates more precisely the expression of Bin1-205 (Bin1iso9)
in these two subtypes of mature oligodendrocytes (42) (Sup-
plementary Figure S10).

The Gnas locus shows complex isoform expression pattern
across brain regions. A third example of regional isoform
switching is Gnas, encoded by a complex imprinted lo-
cus (43) as the alpha-subunit of the stimulatory G pro-
tein (Gs�), an important component of the cyclic AMP
signaling pathway (44). In both coronal brain sections,
we observed a high expression of Gnas �-L (Gnas-208)
across all regions making it the most abundant Gnas
isoform. SiT identified multiple Gnas isoforms such as
the lowly expressed splice variant Gnas �-S (Gnas-206)
present mainly in fiber tracts as well as Gnas-221, a pa-
ternally imprinted allele-specific isoform, expressed in iso-
cortex and in the CA3 region of the hippocampus, in-
cluding a restricted expression in or adjacent to the pos-
terior amygdalar nucleus (PA) region according to the
Allen Mouse Brain reference atlas (Supplementary Figure
S11).

SiT identified several additional differences in the re-
gional isoform usage for an additional set of genes includ-
ing Cnih2, Caly, Dtnpb1 and Aldoa, which were confirmed
by ISS (Supplementary Figure S12).
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Figure 4. SiT reveals Snap25 isoform-switch between mouse brain regions. (A) Dotplot showing the seven most significant (adjusted P-value < 0.05)
regional differences in isoform usage detected in CBS1 and CBS2 sections (CBS2 expression value is shown). (B) Heatmap illustrating the number of
isoform-switching genes identified for each pair of brain regions (same order for the horizontal and vertical axes). Genes discussed in this study are
highlighted with symbols when differential transcript usage was called for CBS1 (left part) and/or CBS2 (right part) for each pair of regions. (C) Snap25
isoforms (alternative exon 5) tracks and number of molecules (UMI) observed in Midbrain and Hypothalamus (CBS2). (D) Snap25 isoform expression in
coronal brain sections revealed by SiT. (E) Contribution of Snap25-202 to the total expression of Snap25 in different brain regions for two independent
replicates of SiT (left) and ISS (right). (F) Snap25 isoform expression validation by in situ-sequencing (ISS).
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SiT reveals A-to-I RNA editing mouse brain map

We next examined whether SiT enables exploration of Sin-
gle Nucleotide Variation (SNV). We investigated RNA
adenosine-to-inosine (A-to-I) editing events, the principal
source of transcript sequence heterogeneity in the mam-
malian transcriptome. RNA editing has been shown to be
essential for neurotransmission and other neuronal func-
tions (45). While other studies examined editing events on
bulk samples from mouse brain (46), or spatially resolved
by ISS for a limited number of targeted editing sites (47),
none has yet provided a large-scale spatially resolved RNA
editing map of the mouse brain.

Robust SNV calling requires substantial sequencing
depth, and we therefore focused on CBS2 for this purpose
(Supplementary Table S1). We explored a total of 5817
exonic A-to-I RNA editing sites described in the litera-
ture (46,48). To ensure high-confidence calls with Nanopore
long reads, we defined an ad hoc UMI sequencing depth and
a consensus call accuracy threshold for Nanopore editing
site calls. To that end, we examined the agreement between
long- and short-read editing site data for the same UMI

(RNA molecule) for 70225 UMIs where at least one known
editing site was observed in both Illumina and Nanopore
molecules (total 88175 editing site observations). Based on
the analysis shown in Supplementary Figure S13, we re-
tained UMIs backed by at least 3 reads with a consensus
quality at the editing site greater than 6 for further analy-
sis. This resulted in a 99% agreement between Illumina and
Nanopore editing site calls. Out of the 377304 Nanopore
editing site observations, 249 759 (66.2%) passed those fil-
ters and were used for downstream analysis (Figure 5A,
Materials and Methods). Globally, we observed an A-to-I
RNA editing ratio of 10.56% for 2730 distinct editing sites
covered by at least one UMI (46.9% of the 5817 known
editing sites explored, Supplementary Table S8). Interest-
ingly, editing ratios displayed a non-uniform spatial distri-
bution (Figure 5b). Consistent with a previous report (47),
we observed a significantly higher editing ratio in Thalamus
(mean 17.6%; 749/4247 UMIs edited) than in Fiber tracts
(mean 5.4%; 657/12063 UMIs edited). We also noticed a
positive correlation between the expression levels of the
A-to-I editing enzymes (adenosine deaminases, ADARs)
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and the editing ratios for the brain regions (Figure 5C,
Supplementary Table S9). The same variation between dis-
tinct brain areas was independently noticed in both coronal
brain sections (Supplementary Figure S14; cf. Supplemen-
tary Figure S15 for MOB analysis), which display similar
profiles. We observed a Pearson correlation score of 0.96 be-
tween CBS1 and CBS2 editing ratio for the 483 editing sites
showing at least 20 UMIs in CBS1 and CBS2 long reads
profiles (Supplementary Figure S16).

We next sought to compare the potential of short- and
long-read sequencing to identify RNA editing events. As
expected, we observed that long reads yield more informa-
tion than short reads (Figure 5D) since they allowed investi-
gation of sequence heterogeneity beyond the 3′-end editing
sites. This resulted in the identification of editing variation
across brain regions in several key genes of neuronal func-
tion such as Gria2 (49), Grik5 (50), Tmem63b (51) or Blcap
(52) (Figure 5E).

AMPA receptors (AMPARs) mediate most of the fast
excitatory neurotransmission in the brain and are com-
posed of four different subunits. The transcript for the
Gria2 (GluA2) subunit is known to be edited at two po-
sitions: the R/G site (mm10, chr3:80692286), which is in
the ligand-binding domain where editing causes faster de-
sensitization and recovery from desensitization, and the
Q/R site (mm10, chr3:80706912) located within the chan-
nel pore, which editing renders AMPARs virtually Ca2+-
impermeable and thereby affects a key aspect of neurotrans-
mission (53). Consistent with previous observations (54),
we observed less editing at the R/G site (mean = 55.5%,
142/256 UMIs edited) than at the Q/R site (mean = 94.2%,
81/86 UMIs edited). We also observed regional differences
in R/G site editing with low editing levels in subregions of
the hippocampus (DG granule cell layer: mean = 36.4%,
4/11 edited UMIs; CA1/CA2: mean = 20.5%, 8/39 UMIs
edited) and high editing levels in the isocortex region
(mean = 67.5%, 79/117 UMIs edited) (Figure 5E).

DISCUSSION

Here we present SiT, the first transcriptome-wide approach
to explore isoform expression and sequence heterogeneity in
a tissue context. We demonstrated the ability of SiT to iden-
tify differential isoform usage across brain regions. We fur-
ther validated the ability of SiT to detect A-to-I RNA edit-
ing events in full-length transcript sequences. In the mouse
olfactory bulb, we demonstrated a clear isoform switch of
Plp1, a gene coding for the major myelin protein in the
nervous system, between the outer regions of the olfactory
nerve layer and the inner granule cell layer. In coronal brain
sections we showed differential isoform usage for several
other key genes, including Snap25, Bin1 or Gnas. We fur-
ther established the spatial pattern of A-to-I RNA editing
events to provide for the first time a map of global editing
ratios in the adult mouse brain and show that SiT enables
investigation of individual editing sites in a spatial context.

One limitation of SiT is that only 26–40% of the
Nanopore reads both matched the reference genome and
were assigned to a valid spatial barcode and a UMI for
the three sections while 63–90% of the Illumina reads met
those criteria. The principal reasons for the high fraction

of unassigned Nanopore reads are: (i) elimination of low-
quality Nanopore reads where no spatial barcode and UMI
can be identified. Further improvements in Nanopore se-
quencing accuracy will increase assignment efficiency sig-
nificantly. (ii) About 20% of the sequences do not contain
the RT primer with the spatial barcode and the UMI and
are discarded. Those are mainly low-quality reads and PCR
artifacts lacking the 3′ end of the cDNA. Optimization of
the library preparation should significantly increase assign-
ment efficiency, for instance by further depletion of un-
wanted cDNA sequences that do not contain a polyA tail.
(iii) While our Illumina-guided cell (or spatial) barcode and
UMI assignment strategy is highly accurate (15), the effi-
ciency of UMI assignment to Nanopore reads depends on
the sequencing saturation of the short-read dataset which
was 71%, 73% and 93% for the CBS1, CBS2 and MOB sec-
tion respectively. Nanopore reads with UMIs that were not
found in the Illumina dataset cannot be assigned and are
lost. The development of an Illumina-free assignment strat-
egy will help recover molecules missed during Illumina se-
quencing and increase the efficiency of UMI assignment.
Another limitation of SiT is that the resolution is limited to
that of the Visium technology. Several alternatives were re-
cently described that increase the resolution of spatial tran-
scriptomics (DBiT-seq (11), Slide-SeqV2 (55)). SiT can be
readily adapted to those approaches which generate full-
length cDNA. A last point, also shared with all single-cell
approaches, regards the limitations on the number and in-
tegrity of captured mRNA molecules. Only half of the cap-
tured molecules contain all exons of a Gencode isoform and
are unambiguously attributed to a full-length isoform. The
rest corresponds to truncated cDNA, likely derived from
degraded RNA. Another limitation of both single-cell and
sequencing based spatial transcriptomics approaches is that
only a fraction of the mRNA molecules is captured and se-
quenced. This leads to drop-outs and noisy expression pat-
terns for low expressed transcripts. Further optimizations of
the Visium workflow aiming at reduced RNA degradation
prior to cDNA synthesis and increased capture of mRNA
molecules should address those limitations.

Our results show that a throughput of 100 million
long reads, now obtained routinely with one PromethION
flow cell, is sufficient to explore the spatial landscape of
transcript isoform expression in a typical Visium exper-
iment. Increased sequence accuracy and throughput of
the Nanopore technology will further benefit the SiT ap-
proach. We anticipate that such progresses should make SiT
more and more applicable in many different environments,
including clinical contexts. A straightforward application
would certainly be in oncology to resolve spatially the ex-
pression of pathological isoforms (e.g. fusion transcripts)
and cancer mutations in order to better characterize the het-
erogeneity of tumor biopsies. SiT could thus contribute to
the advent of more efficient therapeutic avenues.

SiT expands the spatial transcriptomics toolbox to long-
read-based exploration of transcript isoforms and SNVs,
such as RNA editing or somatic mutations. These observa-
tions have thus far escaped detection due to the limitations
of conventional short-read sequencing approaches. In com-
bination with whole-brain molecular maps (56), we show
here how this approach offers a new opportunity to under-
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stand the spatial and molecular organization of complex or-
gans. While Nanopore sequencing was chosen due to a far
lower cost per read over PacBio sequencing (Supplementary
Table S10), SiT can easily be adapted for PacBio sequenc-
ing.

The SiT methodology is based on commercially avail-
able reagents and enables a deepened investigation of the
isoform landscape, including studies of imprinting, fusion
transcripts, and SNV expression in a spatial context. SiT
will enable a better description of complex transcriptomes.
As such, it provides an important additional resource to en-
rich existing Cell Atlas initiatives, as illustrated here through
the online resource of mouse brain that we provide (https:
//www.isomics.eu/).
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All relevant data have been deposited in Gene Expres-
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