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Specific associations between plasma biomarkers
and postmortem amyloid plaque and tau
tangle loads
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Geidy E Serrano7, Eric M Reiman8, Henrik Zetterberg4,9,10,11,12, Niklas Mattsson-Carlgren1,13,14 ,

Shorena Janelidze1, Kaj Blennow4,9 & Oskar Hansson1,15,**

Abstract

Several promising plasma biomarkers for Alzheimer’s disease have
been recently developed, but their neuropathological correlates
have not yet been fully determined. To investigate and compare
independent associations between multiple plasma biomarkers
(p-tau181, p-tau217, p-tau231, Ab42/40, GFAP, and NfL) and neuro-
pathologic measures of amyloid and tau, we included 105 partici-
pants from the Arizona Study of Aging and Neurodegenerative
Disorders (AZSAND) with antemortem plasma samples and a post-
mortem neuropathological exam, 48 of whom had longitudinal
p-tau217 and p-tau181. When simultaneously including plaque and
tangle loads, the Ab42/40 ratio and p-tau231 were only associated
with plaques (qAb42/40[95%CI] = �0.53[�0.65, �0.35], qp-tau231[95%
CI] = 0.28[0.10, 0.43]), GFAP was only associated with tangles
(qGFAP[95%CI] = 0.39[0.17, 0.57]), and p-tau217 and p-tau181 were
associated with both plaques (qp-tau217[95%CI] = 0.40[0.21, 0.56],
qp-tau181[95%CI] = 0.36[0.15, 0.50]) and tangles (qp-tau217[95%
CI] = 0.52[0.34, 0.66]; qp-tau181[95%CI] = 0.36[0.17, 0.52]). A model
combining p-tau217 and the Ab42/40 ratio showed the highest
accuracy for predicting the presence of Alzheimer’s disease neuro-
pathological change (ADNC, AUC[95%CI] = 0.89[0.82, 0.96]) and
plaque load (R2 = 0.55), while p-tau217 alone was optimal for
predicting tangle load (R2 = 0.45). Our results suggest that high-
performing assays of plasma p-tau217 and Ab42/40 might be an

optimal combination to assess Alzheimer’s-related pathology in
vivo.
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Introduction

The recent development of plasma biomarkers for Alzheimer’s dis-

ease (AD) has revolutionized the field (Zetterberg & Bendlin, 2020;

Hansson, 2021; Ossenkoppele et al, 2022), as these markers have

the benefit of being significantly cheaper and less invasive than

established markers (i.e., cerebrospinal fluid [CSF] and positron

emission tomography [PET]), while showing the excellent diagnos-

tic performance (Karikari et al, 2020; Palmqvist et al, 2020; Jane-

lidze et al, 2021a). Several plasma biomarkers are currently

available, among which, the most studied include the amyloid-b42/
40 (Ab42/40) ratio, glial fibrillary acidic protein (GFAP), neurofila-

ment light (NfL), and, particularly, phosphorylated tau (p-tau) mea-

sures. Previous studies have indicated the excellent diagnostic
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performance of some of these plasma biomarkers for distinguishing

AD from non-AD neurodegenerative disorders (Karikari et al, 2020;

Palmqvist et al, 2020; Thijssen et al, 2020; Janelidze et al, 2020a),

with noninferior performance compared with CSF and PET markers

(Palmqvist et al, 2019; Janelidze et al, 2020a, 2021a; Ashton

et al, 2021; Benedet et al, 2021; Mielke et al, 2021), as well as an

important utility for predicting disease progression (Ashton

et al, 2021; Cullen et al, 2021; Mielke et al, 2021; Janelidze

et al, 2021a). Nonetheless, there are still important topics to be

addressed to optimize their usage in clinical practice, including

improved interpretation of obtained plasma biomarker results and a

fair head-to-head comparison, especially against gold standard neu-

ropathological measures (Hansson et al, 2022).

One of the most important knowledge voids of plasma bio-

markers is the degree to which they specifically correlate with key

neuropathological changes. Although previous studies have already

investigated the association of some of these biomarkers with mea-

sures of neuropathology, whether these markers are primarily

related to amyloid, tau, or to both pathologies is still under debate.

For instance, p-tau181 has shown strong associations with neuro-

pathological measures of amyloid-b and tau pathologies (Lantero

Rodriguez et al, 2020; Thijssen et al, 2020; Grothe et al, 2021;

Smirnov et al, 2022), but this has been shown in independent ana-

lyses for amyloid and tau or with scales combining these two

pathologies, which did not allow for the interpretation of the specific

-or independent- associations with these two pathological measures.

Similarly, plasma p-tau231 has also shown associations with neuro-

pathologically defined plaque and tangle load, without exploring

specific associations with these neuropathologic measures (Ashton

et al, 2021; Smirnov et al, 2022). Only one study with plasma

p-tau217 has suggested that this biomarker may be independently

associated with both plaques and tangles (Mattsson-Carlgren

et al, 2021), but no other biomarkers were investigated. On the con-

trary, the accuracy of the plasma Ab42/40 ratio, GFAP, or NfL levels

to predict AD pathology seems to be lower than that of p-tau

markers, although only few studies have investigated their associa-

tion with neuropathologic measures of AD pathology (Thijssen

et al, 2020; Smirnov et al, 2022; Winder et al, 2022).

Another challenge when trying to optimize the use of plasma bio-

markers in clinical practice is the lack of comparison among bio-

markers in the same population. Differences in clinical performance

for the same biomarkers can be observed depending on the charac-

teristics of the study (e.g., diagnostic groups, patient characteristics,

outcomes, and/or presence of co-pathologies). Thus, head-to-head

studies are crucial to allow a fair comparison and avoid bias due to

population selection. Nonetheless, these studies are scarce, espe-

cially those including neuropathological measures (Smirnov et al,

2022; Winder et al, 2022). The use of neuropathological data would

also allow investigating whether any of these biomarkers might be

useful for detecting other common co-pathologies observed in AD

patients, such as Lewy bodies or TAR DNA-binding protein 43

(TDP-43; Hansson, 2021; Smirnov et al, 2022).

When comparing multiple plasma biomarkers, it is equally

important to consider the discriminative power of the assays. While

there are many plasma biomarkers currently available, there are

also many platforms by which to measure them, which can highly

affect their performance. As it has been shown recently with the

plasma Ab42/40 ratio, different assays and/or platforms could lead

to significantly different performances in detecting AD-related

pathology (Janelidze et al, 2021b). Similarly, comparisons between

multiple species and assays of p-tau measures showed only a mod-

est correlation, suggesting also significantly different diagnostic per-

formance (Mielke et al, 2021; Janelidze et al, 2022a; Ashton

et al, 2022b). Considering the differences in the clinical performance

of different assays for the same biomarkers, the use of high-

performing assays is of utmost importance when comparing differ-

ent biomarkers to avoid reporting differences that are related to the

method rather than the biomarkers themselves.

Therefore, the main objective of this study was to identify spe-

cific relationships between multiple plasma biomarkers and core

AD-related pathologies using high-performing assays. To this end,

we investigated associations between multiple plasma biomarkers

and autopsy-assessed measures of core AD pathologies (plaque and

tangle loads) in the same participants. We focused on investigating

whether these biomarkers primarily reflect amyloid, tau, or both

pathologies. Further, we identified the best combination of bio-

markers to predict each of these pathological measures, as well as

the presence or absence of AD as a binary measure based on pathol-

ogy (Montine et al, 2012). We also investigated associations

between plasma biomarkers and the presence of co-pathologies

commonly observed in AD patients including cerebral amyloid

angiopathy (CAA), Lewy body disease (LBD), TDP-43, cerebral

white matter rarefaction (CWMR), and argyrophilic grain disease

(AGD). Finally, we examined whether longitudinal changes of the

two plasma biomarkers longitudinally available (i.e., p-tau217 and

p-tau181) were associated with presence of AD pathology.

Results

Our sample comprised a total of 105 participants from the Arizona

Study of Aging and Neurodegenerative Disorders (AZSAND) includ-

ing all participants with complete antemortem plasma samples and

a postmortem neuropathological exam (Table 1). These participants

were categorized as having significant AD pathologic change

(n = 59) or not (n = 46) based on the Alzheimer’s disease neuro-

pathologic change (ADNC) scale, in which both amyloid and tau

pathologies are accounted for (Montine et al, 2012). Participants

with significant AD pathology were those with intermediate or high

scores in the ADNC scale, whereas those with none or low scores

were classified as having nonsignificant AD pathology. No differ-

ences in age at death nor sex were observed between groups. APOE-

e4 prevalence (49.2% vs. 10.9%, P < 0.001) and core AD pathology

(plaques: 12.70 vs. 1.03, P < 0.001; tangles: 9.79 vs. 5.54,

P < 0.001) measures were significantly higher in participants with

intermediate/high ADNC. Among all the co-pathologies under inves-

tigation (i.e., CAA, LBD, CWMR, and AGD), only the presence of

CAA was significantly higher in participants with intermediate/high

ADNC (86.4% vs. 34.8%, P < 0.001).

Associations between plasma biomarkers and core AD
pathologies

Our first objective was to assess the associations between each

plasma biomarker and the two neuropathological measures of AD

pathology (i.e., total amount of plaques and tangles),
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independently. Plaque and tangle loads were measured on a semi-

quantitative scale that ranged from 0 to 3 in five different brain

regions (Mirra et al, 1991), and we combined these regional mea-

sures into a total score (range: 0–15) for each pathology. We used

partial Spearman’s q to assess the association between each

plasma biomarker and each total amount of pathology while

adjusting for age, sex, and time between blood draw and death.

We found that all plasma biomarkers except NfL (q = 0.10,

P = 0.895) were significantly associated with the total amount of

plaques (0.41 ≤ |q| ≤ 0.73, P < 0.001, Fig 1A and Table 2).

Plasma p-tau217 showed the highest correlation coefficient

with plaques, which was significantly higher than all others

(0.10 ≤ qdiff ≤ 0.63, P ≤ 0.016) except plasma Ab42/40 ratio

(qdiff = 0.19, P = 0.055). All plasma biomarkers except NfL (q = 0.19,

P = 0.257) were also associated with the total amount of tangles in

the independent models (0.26 ≤ |q| ≤ 0.66, P ≤ 0.016; Fig 1B and

Table 1. Demographic characteristics at time of death.

Overall
(n = 105)

None/low ADNC
(n = 46)

Interm./high ADNC
(n = 59) P-value

Demographics

Age, mean (SD) 84.7 (7.99) 83.5 (7.99) 85.7 (7.93) 0.174

Women, n (%) 43 (41.0%) 21 (45.7%) 22 (37.3%) 0.506

APOE-e4 carrier, n (%) 34 (32.4%) 5 (10.9%) 29 (49.2%) < 0.001

Time between blood sampling and death, days, mean (SD)
(range)

482 (355)
[9–1,760]

414 (300)
[9–1,120]

536 (387)
[9–1760]

0.137

AD-core neuropathological measures

Plaque total, mean (SD) 7.60 (6.34) 1.03 (1.99) 12.7 (2.83) < 0.001

CERAD, n (%)

Zero 27 (25.7%) 27 (58.7%) 0 (0%) < 0.001

Sparse 19 (18.1%) 18 (39.1%) 1 (1.7%)

Moderate 0 (0%) 0 (0%) 0 (0%)

Frequent 59 (56.2%) 1 (2.2%) 58 (98.3%)

Tangle total, mean (SD) 7.93 (3.69) 5.54 (2.41) 9.79 (3.44) < 0.001

Braak stage, n (%)

I–II 5 (4.8%) 5 (10.9%) 0 (0%) < 0.001

III–IV 65 (61.9%) 37 (80.4%) 28 (47.5%)

V–VI 35 (33.3%) 4 (8.7%) 31 (52.5%)

Presence of co-pathologies

CAA, n (%) 67 (63.8%) 16 (34.8%) 51 (86.4%) < 0.001

LBD, n (%) 21 (20.0%) 11 (23.9%) 10 (16.9%) 0.523

TDP-43, n (%)a 19 (18.1%) 5 (10.9%) 14 (23.7%) 0.422

CWMR, n (%) 58 (55.2%) 20 (43.5%) 38 (64.4%) 0.052

AGD, n (%)b 28 (26.7%) 12 (26.1%) 16 (27.1%) 1.000

Plasma levels

p-tau217, pg/ml 0.432 (0.394) 0.194 (0.113) 0.617 (0.434) < 0.001

p-tau181, pg/ml 2.36 (1.49) 1.61 (0.845) 2.96 (1.61) < 0.001

p-tau231, pg/ml 30.0 (15.2) 25.4 (13.6) 33.6 (15.5) < 0.001

Ab42/40 0.125 (0.0142) 0.133 (0.0135) 0.119 (0.0114) < 0.001

GFAP, ng/ml 0.190 (0.110) 0.149 (0.0948) 0.222 (0.111) < 0.001

NfL, pg/ml 7.37 (5.11) 7.17 (5.12) 7.53 (5.15) 0.420

ADNC (Montine et al, 2012) refers to a measure of AD pathology and was dichotomized as: nonsignificant AD pathology (none/low) and significant AD pathology
(intermediate/high). Plaques and tangles were measured in a semi-quantitative scale ranging from 0 to 15. CERAD (Mirra et al, 1991) scale and Braak staging
(Braak & Braak, 1991) refer to measures of plaque and neurofibrillary tangle, respectively. CAA (Beach et al, 2015), LBD (Beach et al, 2009), TDP-43 (Arnold
et al, 2013), CWMR (Dugger et al, 2014), and AGD (Josephs et al, 2008; Sabbagh et al, 2009) refer to the presence (vs. absence) of these co-pathologies.
Ab, amyloid-b; ADNC, Alzheimer’s disease neuropathologic change; AGD, argyrophilic grains disease; CAA, cerebral amyloid angiopathy; CERAD, Consortium to
Establish a Registry for Alzheimer’s Disease; CWMR, cerebral white matter rarefaction; GFAP, glial fibrillary acidic protein; Interm., intermediate; LBD, Lewy body
disease; NfL, neurofilament light; p-tau, phosphorylated tau; TDP-43, TAR DNA-binding protein 43.
aForty-seven participants missing.
bOne participant missing.
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Table 2). Again, p-tau217 had the highest correlation coefficient with

the total amount of tangles, which was significantly higher than all

other plasma correlation coefficients (0.11 ≤ qdiff ≤ 0.47, P ≤ 0.006)

except for that of plasma GFAP (qdiff = 0.10, P = 0.206).

As a sensitivity analysis, we also investigated these correlations

separately for participants without (i.e., ADNC none or low) and

with significant AD pathology (i.e., ADNC intermediate or high,

Appendix Table S1). In the group without significant AD pathol-

ogy, only the Ab42/40 ratio showed a significant correlation with

amyloid (q = -0.33, P < 0.001). No plasma biomarkers showed a

significant correlation with tau tangle load in this group. In the

group of significant AD pathology, both p-tau217 (q = 0.41,

P = 0.049) and the Ab42/40 ratio (q = -0.30, P < 0.001) presented

a significant correlation with amyloid plaque load. Further, p-

tau217 (q = 0.56, P = 0.001), p-tau181 (q = 0.49, P = 0.008), and

GFAP (q = 0.47, P = 0.011) had a significant correlation with tau

tangle load.

Since plaque and tangle load were highly correlated (q[95%
CI] = 0.63[0.48, 0.73], P < 0.001, Appendix Fig S1), we performed

an analysis to identify the specific (or independent) associations

between each plasma biomarker and the two pathologies. For this,

we used partial Spearman’s q again, adjusting further for the other

pathology as well (i.e., when looking at plaques adjusting for tan-

gles and vice-versa). In these models, p-tau217 (q = 0.40,

P = 0.003), p-tau181 (q = 0.36, P = 0.009), and the Ab42/40 ratio

(q = -0.53, P < 0.001) were significantly associated with plaques

(Fig 2 and Table 2). Plasma GFAP showed no significant association

with plaque load when adjusted for tangle load (b = 0.09, P = 1.00)

and p-tau231 showed an association only at a trend level (q = 0.28,

P = 0.084). In this analysis, the Ab42/40 ratio correlation coefficient

with plaques was the highest, being significantly higher than that of

p-tau231 (qdiff = 0.25, P = 0.028) but not than that of p-tau217

(qdiff = 0.13, P = 0.246) nor p-tau181 (qdiff = 0.17, P = 0.146). In

addition, we observed that only p-tau217 (q = 0.52, P < 0.001),

p-tau181 (q = 0.36, P = 0.010), and GFAP (q = 0.39, P = 0.004) were

associated with tangles. The correlation coefficient of p-tau217 with

tangles was significantly higher than that of p-tau181 (qdiff = 0.17,

P = 0.004) when adjusting for the total amount of plaques but not

than that of plasma GFAP (qdiff = 0.13, P = 0.207).

Comparing the correlation coefficients to each of these two

pathologies for each biomarker, we observed three groups of bio-

markers (Fig 2 and Appendix Table S2). We observed that plasma

p-tau231 (71.8%) and the Ab42/40 ratio (83.1%) had a major

proportion of variance explained by plaques than tangles. On the

contrary, the opposite happened with plasma GFAP and NfL, with

tangles explaining the major part of these biomarkers’ variance

(GFAP: 82.1%, NfL: 82.9%). Finally, in p-tau217 (plaques:

43.4%, tangles: 56.6%) and p-tau181 (plaques: 50.5%, tangles:

49.5%) both pathologies contributed similarly to explaining their

variance.

Finally, we investigated which combination of biomarkers better-

predicted plaques and tangles, independently. We found that the

parsimonious model that better-predicted load of amyloid plaques

included both p-tau217 and the Ab42/40 ratio (R2 = 0.57, Table 3),

which was significantly better than the one only including p-tau217

based on AICc (DAICc = 15.5). On the contrary, p-tau217 alone was

selected as the parsimonious model to predict the load of neurofi-

brillary tangles (R2 = 0.50, Table 3).

Prediction of neuropathological scales’ classification

Next, we investigated differences in plasma levels by ADNC groups

(as a four-level variable, i.e., none, low, intermediate, or high) using

a Kruskal-Wallis test and Wilcoxon test for post hoc comparisons.

All three p-tau plasma measures showed significant differences

between intermediate and high levels of ADNC. Plasma p-tau217

and the Ab42/40 ratio levels were significantly different between

intermediate and low ADNC. However, we only found significant

differences between none and low ADNC in plasma p-tau217 levels

(Fig 3), although this became only a trend when removing the

highest plasma value of the low group. Notably, p-tau217 also

showed the highest fold-change among all ADNC consecutive levels

(Appendix Table S3).

Then, we also examined differences in pathological scales spe-

cific for amyloid (Consortium to establish a registry for Alzheimer’s

disease [CERAD]) (Mirra et al, 1991) and tau (Braak staging) (Braak

& Braak, 1991) pathologies. Similarly, all biomarkers except NfL

showed significant differences between sparse and moderate/fre-

quent groups on CERAD’s classification. Only plasma p-tau217

showed differences between zero and sparse groups (Appendix

Fig S2). Regarding Braak staging, all biomarkers except NfL were

significantly different when comparing 0–IV with V–VI groups

(Appendix Fig S3).

We next investigated the accuracy of each plasma biomarker

to predict the presence of AD pathology as measured with the

dichotomized ADNC (none/low vs. intermediate/high) classifica-

tion. For this, we used receiver-operating characteristic (ROC)

curves and calculated the area under the curve (AUC) for each

biomarker independently adjusting for age, sex, and time between

blood sampling and death. All biomarkers except NfL (AUC[95%

CI] = 0.61 [0.50, 0.71], P = 0.698) were predictive of the presence

of ADNC when assessed individually (0.88 ≥ AUC ≥ 0.72, Appen-

dix Table S4 and Fig 4). Plasma p-tau217 had the highest AUC

(AUC[95%CI] = 0.88 [0.81–0.95]) of all individual biomarkers,

which was significantly higher than all others except for the

Ab42/40 ratio (AUC[95%CI] = 0.80 [0.72–0.89], P = 0.099). We

also repeated this analysis with CERAD (low/sparse vs. moder-

ate/frequent) and Braak staging (0–IV vs. V–VI) classification. For

CERAD, p-tau217 was also the best individual biomarker as per

classification accuracy (AUC[95%CI] = 0.89 [0.83–0.96],

P < 0.001), comparable only to that of the Ab42/40 ratio (AUC

[95%CI] = 0.82 [0.74–0.90], P < 0.001, Fig 4 and Appendix

Table S5). For Braak staging, p-tau217 again showed the highest

accuracy (AUC[95%CI] = 0.93 [0.87–0.98], P < 0.001) comparable

only to that of GFAP (AUC[95%CI] = 0.86[0.79–0.94], P < 0.001,

Fig 4 and Appendix Table S6).

Next, we investigated whether combining different biomarkers

would improve the models with only individual biomarkers. We

found that plasma p-tau217 and the Ab42/40 ratio was the optimal

combination to predict the presence of ADNC (AUC[95%CI] = 0.90

[0.84, 0.96], Table 3 and Fig 4), but the AUC was not significantly

higher than that of p-tau217 alone when using the DeLong’s test

(P = 0.124). With CERAD we observed a similar behavior, with

plasma p-tau217 and the Ab42/40 ratio being the best combination

(AUC[95%CI] = 0.91 [0.86–0.97], Appendix Table S7), although the

AUC was not significantly better than that of p-tau217 alone

(P = 0.173). In the case of Braak staging, there were no
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combinations of biomarkers that improved the accuracy compared

with p-tau217-only models.

Prediction of presence of co-pathologies

In this analysis, we investigated whether any of the available

plasma biomarkers improved the basic models’ accuracy (only

covariates) on predicting the presence of co-pathologies, using a

similar approach as before but further adjusting for the presence of

intermediate/high ADNC. We observed that only plasma NfL signifi-

cantly improved the prediction of the presence of CWMR (Dugger

et al, 2014) (AUC[95%CI] = 0.76 [0.66, 0.85]) compared with the

basic model (AUC[95%CI] = 0.65 [0.54, 0.76], P = 0.028, Appendix

Table S8 and Appendix Fig S4A). In particular, participants with

CWMR had significantly higher plasma NfL levels than those with-

out (b = 0.88, P = 0.002, Appendix Fig S4B). No other biomarkers

improved the prediction of the presence of this nor any other co-

pathology (Appendix Tables S9–S12 and Appendix Fig S5). Raw dis-

tribution of plasma levels by the presence of each co-pathology can

be observed in Appendix Figs S6–S10.

As an additional analysis, we further checked whether there were

differences between plasma levels in participants with only co-

pathologies (e.g., CAA only) and participants with AD pathology

and co-pathologies (e.g., CAA and ADNC) as it may have important

clinical implications. We found that p-tau217 was significantly

higher in those participants having both AD pathology (as ADNC

intermediate or high) and CAA compared to those with only AD

pathology (P = 0.037, Appendix Fig S11). However, the group of

AD-only pathology was small (n = 8). At the statistical trend level,

we also observed differences in plasma Ab42/40 levels in AD-only

versus AD and LBD groups (P = 0.058, Appendix Fig S12); in both

p-tau217 and Ab42/40 levels in AD-only versus AD and AGD groups

(P = 0.052 and P = 0.069, respectively; Appendix Fig S13) and in

NfL levels in AD-only versus AD and CWMR (P = 0.090, Appendix

Fig S14). No differences were observed in the case of TDP-43

(Appendix Fig S15). Finally, we also considered primary tauopathies

(CBD, PSP, and AGD) as a unique group and compared the plasma

levels of those participants to those with only AD pathology and

those with AD pathology and other tauopathies. Plasma p-tau217

(P < 0.001), p-tau181 (P = 0.001), Ab42/40 ratio (P < 0.001), and

◀ Figure 1. Associations between plasma biomarkers and amyloid plaque or neurofibrillary tau tangle loads.

Black lines represent the association between plasma biomarkers and amyloid plaque (A) and tau tangle (B) loads after adjusting for covariates (age, sex, and time
between blood sampling and death), but dots represent raw data. Shadowed area represents the 95%CI. Plaque and tangle loads were measured on a semi-quantitative
scale from 0 to 3 using the CERAD (Mirra et al, 1991) templates in five different regions that were added up to a total score ranging from 0 to 15. Datapoints are colored
based on the ADNC classification. Standardized Spearman’s q and P-values of the association between plasma biomarkers and a load of amyloid plaques or tau tangles
are shown in the plot.
Ab, amyloid-b; ADNC, Alzheimer’s disease neuropathologic change; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; CI, confidence interval; GFAP, glial
fibrillary acidic protein; NfL, neurofilament light; p-tau, phosphorylated tau.

Table 2. Associations between plasma biomarkers and amyloid plaque and/or neurofibrillary tau tangle loads.

Adjusted for covariates Adjusted for covariates and pathology

q [95%CI] P-value P-value comp. q [95%CI] P-value P-value comp.

Plaques

p-tau217 0.73 [0.58, 0.8] < 0.001 Ref. 0.40 [0.21, 0.57] 0.003 0.246

p-tau181 0.63 [0.47, 0.72] < 0.001 0.016 0.36 [0.16, 0.52] 0.009 0.146

p-tau231 0.41 [0.23, 0.54] < 0.001 < 0.001 0.28 [0.09, 0.44] 0.084 0.028

Ab42/40 �0.54 [�0.68, �0.37] < 0.001 0.055 �0.53 [�0.66, �0.36] < 0.001 Ref.

GFAP 0.43 [0.24, 0.58] < 0.001 0.001 0.09 [�0.11, 0.31] 1.000 < 0.001

NfL 0.10 [�0.09, 0.28] 0.895 < 0.001 �0.04 [�0.25, 0.19] 0.145 < 0.001

Tangles

p-tau217 0.66 [0.51, 0.78] < 0.001 Ref. 0.52 [0.34, 0.66] < 0.001 Ref.

p-tau181 0.54 [0.36, 0.67] < 0.001 0.006 0.36 [0.15, 0.5] 0.010 0.004

p-tau231 0.31 [0.10, 0.48] 0.016 0.001 0.11 [�0.09, 0.31] 1.000 < 0.001

Ab42/40 �0.26 [�0.45, �0.05] < 0.001 < 0.001 0.11 [�0.12, 0.32] 1.000 < 0.001

GFAP 0.55 [0.38, 0.68] < 0.001 0.206 0.39 [0.18, 0.58] 0.004 0.207

NfL 0.19 [�0.01, 0.38] 0.257 < 0.001 0.19 [�0.04, 0.36] 0.535 0.003

Partial Spearman’s q was used to investigate associations between plasma biomarkers and AD-core pathologies. In all cases, we corrected for age, sex, and time
between blood sampling and death. We further corrected for tau (first set of rows) or amyloid (last set of rows) pathologies for assessing specific associations with
amyloid and tau, respectively (last three columns). Semi-quantitative amyloid plaque load was used as a predictor in the first set of analyses (first set of rows)
and semi-quantitative tau tangle load was used in the second set of analyses (last set of rows). Significant associations (P < 0.05 corrected for multiple compari-
sons) are shown in bold. Differences between the correlation coefficients were tested using bootstrapping the strongest association as reference (Ref.) and shown
in the last column. Significant differences (P < 0.05) can be understood as significantly weaker associations compared with those of the references in each case.
Ab, amyloid-b; CI, confidence intervals; GFAP, glial fibrillary acidic protein; NfL, neurofilament light; p-tau, phosphorylated tau.
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GFAP (P = 0.024) levels were significantly different when comparing

participants with only AD pathology and participants with only pri-

mary tauopathies (Appendix Fig S16). Only Ab42/40 ratio levels

were different between the AD group with CBD, PSP, or AGD

pathology (P = 0.038).

Use of the p-tau217/Ab42 ratio

Given that the CSF p-tau/Ab42 ratio is commonly used both in

research and in clinical practice, we wanted to investigate whether a

plasma p-tau/Ab42 ratio would also be useful for predicting AD

pathology. For this, we selected p-tau217 as it showed the highest

associations in the previous analyses. We compared the accuracy of

predicting plaques and tangles, independently, comparing parsimo-

nious models including the plasma p-tau217/Ab42 ratio as a possi-

ble independent variable to those obtained in the previous sections

including p-tau217. We observed that the p-tau217/Ab42 ratio was

preferentially selected over p-tau217 in the models predicting

plaques and tangles. Based on the AICc, we observed that models

including the p-tau217/Ab42 ratio were slightly, but significantly,

better than those previously presented (plaques: R2p-tau217/Ab42

ratio = 0.60, AICc = 210.1 vs. R2p-tau217 = 0.57, AICc = 218.4; tangles:

R2p-tau217/Ab42 ratio = 0.52, AICc = 228.7 vs. R2
p-tau217 = 0.50,

AICc = 233.5; Appendix Table S13). We also observed that

p-tau217/Ab42 ratio levels were significantly different between the

none versus low ADNC groups (P = 0.029), even when removing

the outlier in the low group.

Longitudinal associations between p-tau217 and p-tau181 with
AD pathology

Finally, we investigated whether longitudinal changes in plasma

p-tau217 and p-tau181 were associated with the presence of AD

pathology at death (median[range] timepoints: 2 [2–5], mean (SD)

time difference from first timepoint to death: 1378 (1357) days).

Details of these participants can be found in Appendix Table S14.

First, we observed that longitudinal increments of p-tau217 but not

p-tau181 were associated with plaque burden (p-tau217: b = 0.09,

P = 0.005; p-tau181: b = 0.05, P = 0.350, Table 4). In independent

models, we observed that p-tau217 increments, but not those in

p-tau181, were also associated with tangle load (p-tau217: b = 0.09,

P = 0.004; p-tau181: b = 0.08, P = 0.094, Table 4).

In the last analysis, we examined whether participants with inter-

mediate/high ADNC pathology at death showed higher increments

in p-tau levels compared with those with none/low ADNC pathol-

ogy. We observed that participants with intermediate/high ADNC

had significantly higher p-tau217, but not p-tau181, longitudinal

increases (p-tau217: b = 0.13, P = 0.018; p-tau181: b = 0.12,

P = 0.152, Table 4 and Appendix Fig S17). These differences were

observable up to 7 years before death, as defined by nonoverlapping

95%CIs. These results remained when removing two cases with

very high plasma levels (p-tau217: b = 0.21, P = 0.009; p-tau181:

b = 0.16, P = 0.118).

Discussion

In this study, we have investigated the specific associations between

multiple plasma biomarkers, using high-performing assays, and

autopsy-assessed measures of AD pathology in a single cohort. Our

main result was that the plasma Ab42/40 ratio and p-tau231 were

selectively associated with plaques, plasma GFAP only with tangles,

whereas p-tau181 and, most strongly, p-tau217 were independently

associated with both plaques and tangles. We also observed that

p-tau217 showed the highest accuracy to predict the presence of AD

pathology. Regarding co-pathologies, only the use of plasma NfL

showed an improvement on predicting the presence of cerebral

white matter rarefaction (CWMR), but no other biomarkers further

improved this prediction nor any of any other co-pathology. Notably,

the use of the plasma p-tau217/Ab42 ratio showed slight, although

significant, improvements compared with p-tau217 alone when

assessing semi-quantitative measures of AD pathology. Finally, we

observed that longitudinal increases in p-tau217, but not those of

p-tau181, were significantly associated with the presence of AD

pathology at death, especially with tangle burden. Taken altogether,

this study supports the use of plasma p-tau217, when assessed with

high-performing assays, as the best biomarker for measuring AD-

related pathology, supported by its independent associations with

neuropathological measures of both plaques and tangles.

The main result of this study was the observation that plasma p-

tau217 and plasma p-tau181 were specific markers of both amyloid

plaques and tau tangles. A previous study with a subsample of the

individuals included here (n = 88) already suggested an independent

association between plasma p-tau217 and the two main AD-related

pathologies (Mattsson-Carlgren et al, 2021). The novelty of our

study was to demonstrate that this dual association only occurred in

Figure 2. Specific associations between plasma levels and both amyloid
plaque and tau tangle loads
.Bars represent the partial Spearman’s q of amyloid plaque load (blue) and tau
tangle load (orange) on plasma levels after adjusting for the other pathology
load. In separate models, each biomarker was used as a dependent variable
and either amyloid load or tau load as independent variables adjusting for the
other pathology measure. We also adjusted for age, sex, and time between
blood sampling and death. Numbers inside the bars represent partial
Spearman’s q and numbers above the bars represent the percentual partial
Spearman’s q over the sum of the partial Spearman’s q of the two pathologies’
(%partial q = 100*partial q/[partial qplaque + partial qtangle]).
Ab, amyloid-b; GFAP, glial fibrillary acidic protein; NfL, neurofilament light;
p-tau, phosphorylated tau.
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p-tau217 and p-tau181. Further, we observed that p-tau217 changed

earlier along the ADNC scale (Fig 3), and also that longitudinal

changes in plasma p-tau217, but not those of p-tau181, were associ-

ated with AD-related pathology. Although this analysis was explor-

atory, due to the limited sample size with longitudinal data, it is in

agreement with a very recent study in which plasma p-tau217 was

the only biomarker with significantly different longitudinal increases

based on amyloid status in both CU and MCI participants (Ashton

et al, 2022a). Altogether, our data suggest that plasma p-tau217 is

the best-suited plasma biomarker among the ones studied here to

assess the presence of AD-related pathology across the whole con-

tinuum. Although p-tau181 has shown very good performance as an

AD biomarker (Karikari et al, 2020, 2021; Thijssen et al, 2020; Jane-

lidze et al, 2020a; Grothe et al, 2021), multiple (plasma and CSF)

studies support that p-tau217 may be a more useful biomarker than

p-tau181, as it has stronger correlations with amyloid and tau

pathology proxies, earlier change, and better diagnostic accuracy

(Barth�elemy et al, 2020; Hanes et al, 2020; Palmqvist et al, 2020;

Janelidze et al, 2020b, 2021a; Grothe et al, 2021; Leuzy et al, 2021).

Further, our longitudinal results suggest that the utilization of

plasma p-tau217 in clinical trials may be useful not only as a

prescreening method, but also for disease monitoring, especially for

those drugs targeting tau pathology, but larger sample sizes are

needed to confirm this finding.

While plasma p-tau217 and p-tau181 were associated with both

plaques and tangles, the other studied biomarkers showed more

specific associations to only one pathology. For instance, when

amyloid was not accounted for, plasma p-tau231 showed a signifi-

cant correlation with tangle counts; however, when taking into

account the two pathologies, this biomarker only showed a signifi-

cant association with amyloid plaques. Previous studies have

suggested that p-tau231, both as a CSF and a plasma biomarker,

may be an early AD marker tightly associated with amyloid pathol-

ogy (Su�arez-calvet et al, 2020; Ashton et al, 2021; Meyer et al, 2022;

Mil�a-Alom�a et al, 2022; Smirnov et al, 2022). Contrary to previous

studies, we observed significantly lower associations with amyloid

than that of p-tau217 and the Ab42/40 ratio, and some elevated

levels in subjects without neuropathological evidence of amyloid

plaques (Fig 1). One possible explanation for the early increases

observed here and in previous studies may be that they are related

to soluble amyloid, which cannot be detected in our study and is

presumably an earlier event in the Alzheimer’s continuum. We

acknowledge that further research is needed to understand the rela-

tionship between this biomarker and actual pathology.

Similarly, the plasma Ab42/40 ratio was also only associated

with plaques when both pathologies were included in a single

model, supporting its tight relationship with amyloid pathology

(Verberk et al, 2018; Janelidze et al, 2021b). Nonetheless, the most

important finding regarding the plasma Ab42/40 ratio was that com-

bining it with plasma p-tau217 could slightly improve amyloid

plaque assessment, replicating a previous result from our group

when assessing amyloid positivity by CSF (Janelidze et al, 2022b);

however, in our case this improvement only reached significance

when predicting the continuous variable. Thus, our results suggest

Table 3. Parsimonious models to predict AD-related pathology.

b [95%CI] P-value association R2 AICc AUC [95%CI]

Plaques

p-tau217 0.58 [0.44, 0.72] < 0.001 0.57 218.36 –

Ab42/40 �0.32 [�0.46, �0.18] < 0.001

Age 0.03 [�0.11, 0.16] 0.705

Sex 0.01 [�0.26, 0.28] 0.940

Time blood-death 0.00 [�0.14, 0.13] 0.968

Tangles

p-tau217 0.64 [0.50, 0.78] < 0.001 0.50 233.46 –

Age 0.02 [�0.12, 0.16] 0.776

Sex �0.34 [�0.63, �0.05] 0.020

Time blood-death 0.13 [�0.01, 0.27] 0.077

ADNC

p-tau217 1.83 [1.09, 2.79] < 0.001 0.66 93.77 0.90 [0.84, 0.96]

Ab42/40 �1.00 [�1.79, �0.29] 0.008

Age 0.29 [�0.26, 0.89] 0.310

Sex 0.07 [�1.10, 1.26] 0.908

Time blood-death 0.23 [�0.45, 0.96] 0.513

Parsimonious models were selected as those that better explained each AD pathology measure with a smaller number of predictors based on the AICc criterion.
Initial models included basic covariates (age, sex, and time between blood sampling) and all biomarkers that showed a significant association in the univariate
analyses. Covariates were kept in the models even when they did not contribute to the model for a fair comparison to univariate analyses. Significant predictors
(P < 0.05) are shown in bold. Men are the reference sex group.
Ab, amyloid-b; ADNC, Alzheimer’s disease neuropathologic change; AICc, corrected Akaike criterion; AUC, area under the curve; CI, confidence intervals; p-tau,
phosphorylated tau.
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that the combination of the plasma Ab42/40 ratio and p-tau217 may

be useful in clinical trials targeting amyloid pathology as a prescre-

ening method, but more powered studies are needed to confirm the

additional value of the Ab42/40 ratio.

One surprising finding of our study was the specific association

between plasma GFAP and tau tangles. Contrarily, previous studies

have shown significant associations between this marker and amy-

loid pathology (as measured by CSF or PET), which were stronger

than those with tau pathology (also measured with CSF or PET;

Benedet et al, 2021; Pereira et al, 2021). Apart from the fact that

GFAP levels were high in some cases with no or low amounts of

plaques, two main points must be accounted when comparing these

to our results. First, none of the aforementioned studies adjusted for

tau pathology when assessing associations with amyloid. Following

this approach (i.e., adjusting only for covariates), we also observed

an association between plasma GFAP and plaques. And second, that

tau PET is known to not be sensitive to early tau pathology, which

may have decreased the power to detect these associations in

previous studies (Mattsson et al, 2017; Leuzy et al, 2020; Soleimani-

meigooni et al, 2020). On the contrary, recent studies have shown

the association between higher levels of plasma GFAP and increased

risk of clinical progression and steeper rates of cognitive decline

(even after adjusting for amyloid) (Rajan et al, 2020; Verberk

et al, 2021; Ebenau et al, 2022), which supports a link with tau

pathology given the known strong association between tau and clin-

ical symptoms. Another plausible hypothesis is that plasma GFAP

levels are not directly related to either plaque or tangle deposition

but to the astrocytic reactivity in response to these processes. Actu-

ally, GFAP as a protein is overexpressed in reactive astrocytes, and

its measures in CSF GFAP have been widely accepted as a marker of

reactive astrogliosis. Unfortunately, no measures neuropathological

measures of astrocytic reactivity were available in this sample,

which prevented us to investigate this important issue. Future stud-

ies should investigate whether plasma GFAP is related to astrocytic

reactivity and up to what level this is also indirectly related to amy-

loid and/or tau pathologies.

Figure 3. Plasma levels by ADNC classification
.Groups were compared using a pairwise Wilcoxon test as a post hoc comparison after testing tendency using a Kruskal–Wallis test. Post hoc comparisons were only
performed between consecutive groups (ncomp = 3). Central band of the boxplot represents the median of the group, the lower and upper hinges correspond to the first
and third quartiles, and the whiskers represent the maximum/minimum value or the 1.5 IQR from the hinge, whatever is lower.
***P ≤ 0.001; **P ≤ 0.010; *P ≤ 0.050.
Ab, amyloid-b; ADNC, Alzheimer’s disease neuropathologic change; CI, confidence interval; GFAP, glial fibrillary acidic protein; IQR, interquartile range; NfL, neurofilament
light; p-tau, phosphorylated tau.
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The CSF p-tau/Ab42 ratio has received a lot of attention in recent

years, both as a research and a clinical tool (Hansson et al, 2006;

Fagan et al, 2007; Li et al, 2007; Snider et al, 2009; Mil�a-Alom�a

et al, 2020; Salvad�o & Larsson, 2022). Thus, we wanted to investi-

gate whether a similar ratio would be also useful using plasma bio-

markers. We observed that p-tau217/Ab42 ratio slightly, but

significantly, improved prediction accuracy to detect AD-related

pathology, and seem to be able to detect earlier changes. Although

further investigation is needed, we suggest that this ratio may be

useful to track AD pathology across the continuum due to its rela-

tionship with both main pathological hallmarks of AD, as well as

better statistical characteristics of ratios, which can account for pro-

duction/clearance participants’ inter-variability (Janelidze et al,

2016; Hansson et al, 2019).

Finally, we also investigated whether the levels of these bio-

markers could be used to predict the presence of common AD co-

pathologies. Only plasma NfL significantly predicted the presence of

CWMR (i.e., significantly improved the model with only covariates),

with those subjects with the presence of CWMR having higher

plasma NfL levels. This is in agreement with NfL being a biomarker

of nonspecific axonal degeneration (Zetterberg et al, 2016; Bridel

et al, 2019), but these results should be confirmed in an indepen-

dent cohort. None of the biomarkers investigated could predict any

of the other co-pathologies investigated (i.e., CAA, TDP-43, LBD,

and AGD), which replicates some of the results from a recent study

in a different cohort with a subsample of the biomarkers described

here (Smirnov et al, 2022). Interestingly, we found that participants

with AD and CAA pathologies had significantly higher levels of

p-tau217 than those with only CAA or only AD pathology. However,

due to the low number of subjects with only AD pathology, we con-

sider this as a hypothesis-generating result that needs confirmation

in a larger sample. Given the results from our study and previous

studies, we emphasize the urgent need of developing new

biomarkers capable of measuring the presence of these and other

common co-pathologies in vivo for a better diagnosis and prognosis

for AD patients.

The main strength of this study was the availability of high-

performing assays of multiple plasma biomarkers, including the

three main p-tau biomarkers phosphorylated at different sites, in a

relatively large neuropathological cohort. Thus, we were able to

directly compare specific associations between all of these bio-

markers to gold standard measures of pathology in the same partici-

pants. Further, the use of semi-quantitative scores for measuring the

burden of AD pathology, compared with the typical dichotomous

scales used, allowed us to perform more complex analyses. How-

ever, some limitations must be acknowledged. First, we recognize

the small number of participants with intermediate levels of pathol-

ogy and those with or without certain co-pathologies. Another limi-

tation is the restricted number of participants in the longitudinal

subsample, which may have reduced the power to find significant

time interactions with plasma p-tau181. In this analysis, the big dif-

ference in the number of blood draws and in their time lags may

have also affected our results. Thus, our results in this regard

should be taken with caution. Also, we could only analyze p-tau217

and p-tau181 in this longitudinal sample, which did not allow a

complete comparison among biomarkers. Finally, we acknowledge

that replication in an independent is needed to establish the robust-

ness of our results.

In conclusion, our results support that plasma p-tau217 and

plasma p-tau181 are specific markers of both amyloid plaques and

tau tangles, whereas the Ab42/40 ratio and p-tau231 levels are

markers strictly associated with plaques and GFAP with tangles.

This is important when interpreting p-tau measures in the A/T/N

(Jack et al, 2016) context, as they may be more related to A (amy-

loid) than previously thought, as recently suggested (Groot

et al, 2022; Moscoso et al, 2022; Therriault et al, 2022). Further, the

◀ Figure 4. Plasma biomarkers for predicting neuropathological scales’ classification.

ROC curves for all models are shown in the left column and the correspondent AUC and 95% CI are shown in the right column. Models for all individual plasma
biomarkers and the parsimonious (when available) model are shown. All models included: age, sex, and time between blood sampling and death as covariates. The
parsimonious model for ADNC and CERAD included p-tau217 and Ab42/40 as predictors. The basic model includes only covariates. ADNC was dichotomized as negative
(none/low) or positive (intermediate/high). CERAD was dichotomized as negative (low/sparse) or positive (moderate/frequent). Braak stages were dichotomized as nega-
tive (0–IV) or positive (V–VI). The individual biomarker with the best performance is shown as a solid bold line. Dashed lines represent individual biomarkers with signifi-
cant (P < 0.05) lower AUC than the best individual biomarker (p-tau217 in all cases). Other models with solid lines represent AUC equivalent to that of the best
individual biomarker.
Ab, amyloid-b; ADNC, Alzheimer’s disease neuropathologic change; AUC, area under the curve; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; CI, con-
fidence interval; GFAP, glial fibrillary acidic protein; NfL, neurofilament light; p-tau, phosphorylated tau; ROC, receiver-operating characteristic.

Table 4. Associations between longitudinal changes of plasma biomarkers and the presence of AD-related pathology at death.

Predictor

p-tau217 p-tau181

b [95%CI] P R2 AICc b [95%CI] P R2 AICc

Plaques*time 0.09 [0.03, 0.15] 0.005 0.37 189.35 0.05 [�0.05, 0.15] 0.350 0.30 255.72

Tangles*time 0.09 [0.03, 0.14] 0.004 0.53 173.95 0.08 [�0.01, 0.17] 0.094 0.35 248.79

ADNC*time 0.13 [0.02, 0.24] 0.018 0.24 197.95 0.12 [�0.05, 0.29] 0.152 0.21 258.79

Linear mixed effect models were used to investigate these associations in independent models including age at baseline and sex as covariates using random
intercepts and fixed time-slopes. The interaction between time and amyloid plaques, tau tangles, or the presence of ADNC was used as predictors, in independent
models for both p-tau217 and p-tau181. Significant associations (P < 0.05) between plasma biomarkers and the presence of AD-related pathology are shown in
bold.
ADNC, Alzheimer’s disease neuropathologic change; AICc, corrected Akaike criterion, CI, confidence intervals; p-tau, phosphorylated tau.
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combination of high-performing assays of plasma p-tau217 and the

Ab42/40 ratio gives the highest accuracy for predicting amyloid

plaque load, while p-tau217 alone may be sufficient to predict the

load of tangles. These results may be useful to design prescreening

strategies for clinical trials targeting amyloid and tau pathologies.

Materials and Methods

Participants

All samples were obtained through autopsies of subjects enrolled in

the Arizona Study of Aging and Neurodegenerative Disorders

and Brain and Body Donation Program (BBDP) at Banner Sun

Health Research Institute (Beach et al, 2015). The BBDP recruits

independently-living normal and neurologically-impaired elderly

subjects predominantly from the surrounding Sun City’s retirement

communities. These volunteer research subjects are followed pro-

spectively with annual standardized clinical assessments for the rest

of their lives. Participants included in this study ranged from cogni-

tively unimpaired to mild cognitive impairment and AD patients, as

well as patients with other neurodegenerative diseases. We selected

participants with both plasma and neuropathological exams avail-

able, including only those with all biomarkers available in the cross-

sectional analyses. Participants in the cross-sectional analysis were

also restricted as to those having blood drawing up to 5 years before

death (mean (SD) [range] time: 482 (355) [9–1,760] days). All

experiments were conducted in accordance with the Declaration of

Helsinki. The operations of the Brain and Body Donation Program

are approved by Institutional Review Boards and all participants or

their legal representatives gave informed consent.

Plasma biomarkers

Plasma p-tau217 and p-tau181 concentrations were measured in-

house using an immunoassay developed by Lilly Research Laborato-

ries (IN, USA), each of which had performed very well in multiple

studies and cohorts (Palmqvist et al, 2020; Janelidze et al, 2020a;

Mielke et al, 2021; Thijssen et al, 2021). Plasma p-tau231 concentra-

tion was also measured in-house using a Simoa approach which

was developed at the University of Gothenburg, which can detect

Ab pathology with high accuracy (Ashton et al, 2021). The

remaining plasma biomarkers (Ab42, Ab40, GFAP, and NfL) were

measured with prototype fully automated Elecsys� plasma immu-

noassays (updated versions for Ab42 and Ab40 (Palmqvist

et al, 2022)) plasma immunoassays (not commercially available)

cobas e 601 and cobas e 411 analyzers (Roche Diagnostics Interna-

tional Ltd, Rotkreuz, Switzerland), also in-house (Palmqvist

et al, 2019). Longitudinal samples were only analyzed for p-tau217

and p-tau181, and not the Elecsys measurements or p-tau231 for

logistic reasons.

Outliers were defined as subjects with values above or below

more than 5 interquartile range of the third or the first quartile and

were excluded from subsequent analyses. Only one plasma NfL

value was considered an outlier. We also excluded another plasma

NfL value that strongly affected the models (based on the standard-

ized residuals) due to the very young age of the subject (44 years)

and the strong correlation between NfL and age.

Pathological measures

All neuropathological measures were performed by a single US-

certified neuropathologist (TGB).

Core AD pathology
Tissue processing methods have been detailed previously (Beach

et al, 2008). Histopathological scoring was performed blinded to

clinical and neuropathological diagnosis, as well as levels of the

plasma biomarkers. Amyloid plaque and neurofibrillary tangle den-

sity were graded at standard sites in frontal, temporal, and parietal

cortices, as well as the hippocampus and entorhinal cortex, as previ-

ously explained (Beach et al, 2008). To obtain the total plaque

score, each region was first rated as none, sparse, moderate, or fre-

quent, using the published CERAD templates (Mirra et al, 1991).

These descriptive measures were then converted into 0–3 scores in

each region that combined and gave the total plaque score with a

maximum value of 15. Neurofibrillary tangle abundance was mea-

sured similarly using the CERAD templates. Additionally, Braak

staging was performed based on the topographical distribution of

neurofibrillary tangle change (Braak & Braak, 1991). Global CERAD

scoring and Thal phases (Thal et al, 2002) were also assessed as a

measure of amyloid pathology. Using these three global scales we

obtained a global measure of ADNC as described in the NIA-AA

guidelines (Montine et al, 2012). Although the ADNC score was

used as a four-scale measure in some analyses, we also dichoto-

mized as a significant AD pathology (nonsignificant AD pathology)

ADNC when scores were intermediate or high (none or low).

Non-AD pathology
CAA was graded on a 0–3 scale based analogously on CERAD tem-

plates (Mirra et al, 1991) and dichotomized as positive if the score

was above 1. Immunohistochemical staining in 10 brain regions for

p129 alpha-synuclein, as well as Thioflavin-S (for substantia nigra)

was used as a secondary stain to detect Lewy bodies and were

staged based on the Unified Staging System (Beach et al, 2009).

TDP-43 positivity, location of positivity, and morphology were

recorded as explained previously (Arnold et al, 2013). Significant

CWMR was defined as exceeding 25% of the total centrum semio-

vale area within one or more cerebral lobes using hematoxylin and

eosin on large format section protocol (Dugger et al, 2014). AGD

was defined as typical spindle-shaped structures revealed by the

Gallyas silver stain (Josephs et al, 2008; Sabbagh et al, 2009).

Statistical analyses

First, partial Spearman’s q was used to assess associations between

each plasma biomarker (as dependent variable) and both plaques

and tangles (as independent variables), independently. These

models were adjusted for age, sex, and time between blood draw

and death. To assess specific associations with each of these patho-

logical measures, we also used partial Spearman’s q further

adjusting for the other pathology. Differences between two correla-

tion coefficients were tested using a bootstrapping approach

(n = 1,000). Specific contribution of plaque and tangle loads on each

biomarker concentration was obtained as the percentage of partial

Spearman’s q of each pathology over the sum of the partial Spear-

man’s q of the two pathologies. Diagnostic accuracies of plasma
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biomarkers were assessed using ROC curve analysis, with age, sex,

and time between blood draw and death as covariates. When asses-

sing the diagnostic accuracy of non-AD pathologies, the ADNC sta-

tus as a dichotomous variable was also included as a covariate.

Differences in the area under the curve (AUC) between two ROC

curves were compared with the DeLong test (Robin et al, 2011). Dif-

ferences in plasma levels between pathological groups were

assessed with Kruskal–Wallis tests, with the pairwise Wilcoxon test

as a post hoc comparison among groups (only differences between

consecutive groups tested). We used the R package MuMIn to select

the most parsimonious models to predict both continuous and

dichotomous pathological measures following procedures described

earlier (Palmqvist et al, 2021). Only plasma biomarkers showing a

significant association with each pathological measure in the initial

univariable models were included as possible predictors and the

aforementioned covariates. All covariates were included in the final

parsimonious model (even when they were not significant) to allow

a fair comparison against univariable models. When multiple p-tau

(at different phosphorylation sites) biomarkers were possible predic-

tors, independent models for each p-tau marker were performed

and then compared based on the corrected Akaike criterion (AICc)

to avoid multicollinearity problems. Plasma levels were log-

transformed for this analysis. Linear mixed models (LME) were used

to assess longitudinal changes in plasma biomarkers. Three inde-

pendent models were performed for each biomarker. In each one,

the interaction between time and one measure of AD pathology

(i. plaques, ii. tangles, or iii. presence of ADNC) was used as a pre-

dictor. The LME models were adjusted for age and sex and included

random intercepts and fixed slopes due to the limited number of

datapoints (median[range]: 2[2–5]). Statistical analyses were done

using R version 4.1.0. Significance was set at P < 0.05 (two-tailed)

and corrected for multiple comparisons using a false discovery rate

(FDR).

Data availability

Anonymized data will be shared by request from a qualified aca-

demic investigator and as long as data transfer is in agreement with

USA legislation on the general data protection regulation and deci-

sions by the Institutional Review Boards of the Brain and Body

Donation Program and the Arizona Study of Aging and Neurodegen-

erative Disorders.

Expanded View for this article is available online.
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Problem
Alzheimer’s disease is characterized by the deposition of amyloid
plaques and neurofibrillary tau tangles in the brain. In recent years,
several plasma biomarkers have been developed to assess these two
pathologies, which have been validated against other fluid and neuro-
imaging biomarkers. However, their specific associations with each of
these two pathologies are still not fully understood.

Results
In a set of participants with available blood samples and a neuro-
pathological exam, we observed that some plasma biomarkers are
specifically associated with only amyloid (Ab42/40 and p-tau231),
some to only tau (GFAP) and, some to both pathologies (p-tau217 and
p-tau181). Further, we showed that the combination of p-tau217 and
the Ab42/40 ratio was optimal for assessing amyloid, while p-tau217
alone was sufficient to assess tau pathology.

Impact
Comparing head-to-head the associations between high-performing
assays of different plasma biomarkers and neuropathological correlates
allowed us to determine which is the optimal single or combination of
plasma biomarkers for assessing actual pathology. This has a direct
impact on the design of clinical trials, as we showed that p-tau217 may
not only be useful as a prescreening tool for clinical trials but also may
be a good surrogate endpoint, especially on those trials targeting tau
pathology. Furthermore, combining it with the Ab42/40 ratio would sig-
nificantly improve the assessment of continuous amyloid pathology.
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