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Abstract

Eosinophilic esophagitis (EoE) is a chronic and progressive immune-mediated disease of the 

esophagus associated with antigen-driven type 2 inflammation and symptoms of esophageal 

dysfunction. Our understanding of EoE pathophysiology has evolved since its initial recognition 

more than 20 years ago and has translated into diagnostic and novel therapeutic approaches 

that are affecting patient care. The mechanisms underlying disease development and progression 

are influenced by diverse factors, such as genetics, age, allergic comorbidities, and allergen 

exposures. Central to EoE pathophysiology is a dysregulated feed-forward cycle that develops 

between the esophageal epithelium and the immune system. Allergen-induced, type 2-biased 

immune activation by the esophageal epithelium propagates a cycle of impaired mucosal barrier 

integrity and allergic inflammation, eventually leading to tissue remodeling and progressive organ 

dysfunction. Herein, we review the current understanding of fundamental pathophysiological 

mechanisms contributing to EoE pathogenesis.

Introduction

Eosinophilic esophagitis (EoE) is a chronic, progressive immunemediated disease of the 

esophagus associated with antigen-driven type 2 inflammation and symptoms of esophageal 

dysfunction.1 EoE is a common cause of feeding dysfunction in the pediatric population2,3 

and manifests clinically with gastrointestinal symptoms that often vary based on a patient’s 

age. Younger patients with EoE often manifest with vomiting, heartburn, abdominal 

pain, feeding intolerance, and/or failure to thrive, whereas adolescents and adults most 

often present with progressive esophageal dysfunction, including dysphagia and food 

impactions.4–8 Individuals with EoE frequently report adverse symptoms related to food 

ingestion and have multiple immunoglobulin (Ig)E food sensitizations,9 which can result in 

numerous dietary restrictions. The chronic gastrointestinal symptoms, feeding dysfunction, 

and restricted diets reduce patient quality of life, with EoE ranking among the lowest quality 

of life scores in pediatric patients with chronic disease.10
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Characteristic EoE endoscopic features include linear furrows, esophageal rings, white 

plaques, exudates, and esophageal narrowing. However, endoscopic abnormalities can be 

subtle, and up to 30% of children with active disease can have an endoscopically normal-

appearing esophagus.11 Furthermore, the symptoms and active eosinophilic inflammation 

can be discordant.12,13 Consequently, the reference standard for EoE diagnosis and disease 

surveillance remains histopathologic evaluation of esophageal mucosal biopsy specimens 

for increased intraepithelial eosinophils, with active disease defined by a tissue eosinophil 

density greater than or equal to 15 eosinophils/high-power field (HPF).1,14 Additional 

histopathologic features in the esophageal mucosa associated with active disease are being 

increasingly incorporated into histologic evaluations of esophageal tissue biopsy specimens 

for EoE, including epithelial cell morphology changes, basal zone hyperplasia (BZH), 

dilated intercellular spaces (DIS), and lamina propria (LP) fibrosis.15,16

Since the recognition of EoE as a distinct clinical disease in the early 1990s,17,18 our 

understanding of the disease pathophysiology has advanced significantly. Mechanisms 

underlying disease development and progression are influenced by diverse factors, 

such as genetics, age, allergic comorbidities, and allergen exposures. Central to EoE 

pathophysiology is a dysregulated feed-forward cycle that develops between an abnormal 

esophageal epithelium and the immune system (Fig 1). The esophageal epithelium with 

impaired barrier function stimulates allergen-induced, type 2-biased immune activation. This 

allergic inflammation promotes further impairment of mucosal integrity and propagates 

chronic immune activation, tissue remodeling, and progressive organ dysfunction. 

Herein, we breakdown the complex pathophysiological mechanisms contributing to EoE 

pathogenesis.

Genetic Contributions to Eosinophilic Esophagitis Pathogenesis

EoE pathophysiology is driven by an interplay between genetic, environmental, and 

immunologic components. A recent comprehensive review focused on the contributions 

of genetics to the etiology of EoE19; we refer readers to this article for more detailed 

discussions. A relatively strong genetic contribution to EoE is supported given the increased 

EoE frequency among first-degree family members.20,21 The familial inheritance pattern 

of EoE is inconsistent with a Mendelian/monogenic disorder, with the exception of 

rare families having single-gene mutations that drive disease transmission patterns. Most 

frequently, EoE has a complex inheritance pattern that is influenced by the effects of 

multiple genetic risk loci and the host environment. Notably, disease concordance among 

siblings is nearly 10-fold higher among dizygotic twins than in nontwin siblings (22% vs 

2.4%, respectively),21 suggesting that shared early life environmental factors substantially 

influence risk of disease development. Indeed, Jensen et al22 evaluated the role of early life 

factors and determined that prenatal (maternal fever, preterm labor), intrapartum (cesarean 

section), and early life medical treatments (antibiotics, acid suppressants) are associated with 

an increased risk of developing EoE.

EoE is a rare disease (prevalence of approximately 0.5–1 case per 1000 individuals23), 

resulting in genetic studies that have been relatively limited to small samples sizes. However, 

5 independent genome-wide association studies (GWAS) completed with subjects with EoE 
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have identified numerous susceptibility loci with genome-wide significance (Table 1).24–28 

Four genetic loci (5q22 [TSLP/WDR36], 2p23 [CAPN14], 11q13 [LRRC32/EMSY], and 

16p13 [CLEC16A/DEX1]) have been reproduced across multiple studies, with a number of 

other risk loci identified in single studies. Candidate gene–phenotype association studies 

have identified additional genetic loci that are also associated with the disease (Table 

2).24,29–37 Collectively, many of the genes identified in these different analyses seem to 

influence epithelial barrier function or TH2-mediated immune responses, consistent with the 

underlying pathoetiology of EoE. Furthermore, most EoE genetic risk variants identified are 

located outside of gene-coding regions, suggesting a key role for genotype-dependent gene 

regulation in EoE.19

Disease Triggers

In the past 2 decades, the incidence and prevalence of EoE have been increasing at 

rates that outpace increased recognition.23 This suggests that environmental factors, rather 

than genetic changes, have a critical role in disease pathogenesis. EoE is an antigen-

driven disease associated with exposures to food antigens and possibly environmental 

aeroallergens.38,39

Food allergens (eg, milk, egg, wheat, soy) are well-established disease triggers,40–42 with 

dietary elimination of specific food allergen triggers or elemental diet therapy resulting in 

disease remission in most subjects.43 Individuals with IgE-mediated food allergy (IgE-FA) 

have an increased risk for the development of EoE. Using a large pediatric cohort from 

a single academic referral center, Hill et al44 reported that children with IgE-FA had an 

EoE prevalence of approximately 1 case per 20 individuals, nearly 100-fold higher than 

population-based estimates of 0.5 to 1 case per 1000. Furthermore, 68% of children with 

EoE had self- and/or parent-reported IgE-FA.44 Pelz et al45 also revealed that physician-

diagnosed IgE-FA was common in patients with EoE, with patients with EoE and concurrent 

IgE-FA having distinct clinical characteristics compared with patients with EoE without 

IgE-FA. Interestingly, some individuals with IgE-FA may have a propensity to develop 

esophageal eosinophilia. Endoscopy results of patients with a history of anaphylaxis to 

cow’s milk revealed that 38% of these individuals had esophageal eosinophilia (>15 

eosinophils/HPF) at baseline, many of whom did not report chronic gastrointestinal or 

esophageal symptoms.46 Similarly, endoscopy results on adults with peanut allergy found 

that 14% of the adult subjects had subclinical esophageal eosinophilia (>15 eosinophils/

HPF).47 Notably, individuals undergoing food oral immunotherapy (OIT) for treatment of 

their IgE-FA can develop EoE, with an incidence of biopsy-proven EoE ranging between 

3.2% and 5.4%.48,49 However, this incidence is likely an underrepresentation given that 

many patients experience gastrointestinal adverse events during OIT, but few actually 

undergo endoscopic evaluation.50 A small study of adults undergoing peanut OIT revealed 

that most subjects developed asymptomatic esophageal eosinophilia (6 of 7 subjects [87%] 

with peak eosinophil counts [PECs] > 5 eosinophils/HPF; 4 of 7 subjects [57%] with PECs 

> 15 eosinophils/HPF) accompanied by mild endoscopic and other histologic abnormalities 

during their first year of therapy.51 One subject met clinicopathologic criteria for EoE with 

symptoms of dysphagia and food impaction, prompting withdrawal from the study early for 

safety concerns. Notably, the tissue eosinophilia and other histologic abnormalities resolved 
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in most of the remaining subjects (4 of 6 subjects) during the second year of OIT. Larger 

studies are needed to determine whether individuals with IgE-FA and baseline eosinophilia 

represent a subpopulation of patients with food allergy with chronic mucosal inflammation 

and whether OIT-induced EoE is an exacerbation of this chronic disease or a new pathologic 

development. Together, these data establish food antigens as critical pathologic drivers of 

EoE and suggest that links between the immunopathogenesis of IgE-FA and EoE are likely.

Aeroallergens have also been implicated as potential EoE triggers and/or disease 

exacerbators, supported by the use of aeroallergens in EoE animal models,52,53 development 

of denovo EoE in human subjects during sublingual immunotherapy to aeroallergens 

for allergic rhinitis,54–56 and seasonal variation of EoE symptoms, food impactions, and 

esophageal eosinophilia.57–62 Furthermore, retrospective review and case reports have 

suggested that subcutaneous immunotherapy (SCIT) may be useful for patients with EoE 

as an adjunctive therapy in patients with comorbid allergic rhinitis and/or asthma,63,64 with 

another case report revealing efficacy of SCIT as a monotherapy to induce and maintain 

clinicohistologic remission of EoE.65 Additional studies are necessary to evaluate the 

safety and efficacy of SCIT as an adjunctive therapy, and possibly even monotherapy, for 

patients with EoE and comorbid allergic rhinitis and/or allergic asthma and determine how 

immunomodulation to environmental aeroallergens affects disease pathogenesis.

Esophageal Epithelial Cells and Mucosal Barrier Dysfunction

Epithelium-derived alarmin cytokines, thymic stromal lymphopoietin (TSLP), and 

interleukin (IL)-33 function as danger signals that are rapidly released into the extracellular 

milieu in response to tissue damage. These cytokines facilitate TH2 immune responses 

by skewing developing adaptive responses and have direct effects on multiple allergic 

effector cells, including eosinophils, mast cells, and basophils.66 GWAS implicated genetic 

variants in TSLP in EoE susceptibility.24,25,27,28 Indeed, individuals carrying the risk allele 

for the TSLP variant most associated with EoE had elevated esophageal TSLP RNA 

expression.24 Moreover, both TSLP and IL33 gene expression were increased in esophageal 

biopsy specimens from children with EoE,24,30,67–69 and mice genetically deficient in 

TSLPR or IL-33R/ST2 had attenuated inflammation in experimental EoE-like disease.69,70 

Finally, IL-33 protein was markedly increased within the nuclei of basal layer esophageal 

epithelial cells in patients with active EoE vs controls, with levels normalizing on EoE 

remission.68 One mechanism by which allergenic proteins may trigger alarmin cytokine 

production is through a novel RipIL-33 allergen-sensing pathway in esophageal epithelial 

cells.71 The RIPK1–caspase 8 ripoptosome complex in the epithelial cells functions as an 

allergen-sensing platform that detects diverse allergic stimuli, resulting in caspase 8-directed 

activation and release of IL-33 (Fig 2). This pathway may be the first molecular evidence 

for how food and environmental allergens trigger/promote esophageal mucosal inflammation 

and a novel cellular pathway for therapeutic inhibition.

The lower layers of human esophageal squamous epithelium comprise actively proliferating 

cells. As the epithelial cells migrate toward the luminal surface, the cells differentiate, 

flatten, and establish cell-cell connections to form a barrier that protects the underlying 

tissue from repeated exposures to exogenous antigens. In a disrupted epithelial barrier, 
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antigens pass through and activate the immune system. In EoE, the epithelial barrier is 

abnormal. The epithelium has characteristic proliferative responses, with BZH being a 

well-recognized histologic change associated with active EoE.16 In-depth transcriptional 

and functional analyses of the esophageal epithelium have revealed profound loss 

of cell differentiation, with genes involved in differentiation and keratinization being 

the most down-regulated biological processes in the esophagus-specific transcripts 

altered during EoE.72,73 Furthermore, junctional proteins (eg, E-cadherin, claudin-1, 

desmoglein-1) necessary to maintain barrier integrity are significantly down-regulated 

during EoE.33,35,74,75

Dysregulated epithelial protease activity has also been implicated in EoE mucosal barrier 

abnormalities. Several GWAS identified calpain 14 (CAPN14), encoding an intracellular 

calcium-activated protease, as the gene most highly associated with EoE.25–28 CAPN14 
is specifically expressed in the esophagus, and overexpression and silencing experiments 

in cultured esophageal cells had a significant disruptive effect on epithelial barrier 

function.76,77 Serine protease inhibitors (SERPINs) and serine protease inhibitors, Kazal 

type (SPINKs) were also among the most dysregulated peptidase families in EoE.72 SPINK7 

expression is reduced in EoE, leading to increased proteolytic activity in esophageal 

epithelial cells that was associated with loss of epithelial differentiation, decreased 

barrier integrity, and enhanced proinflammatory responses, specifically through TSLP 

production.34,78

Collectively, these data suggest that allergen-triggered, epithelial-derived alarmin cytokines 

and impaired epithelial cell barrier function associated with loss of cell differentiation 

and dysregulated endogenous proteases promote allergic inflammatory responses in the 

esophageal mucosa. These immune responses, as reviewed subsequently, further impair 

mucosal integrity to propagate chronic immune activation that leads to progressive tissue 

dysfunction (Fig 1).

Eosinophilic Esophagitis Immunopathogenesis

Interleukin-13 and Interleukin-4—IL-13 has a central role in EoE pathogenesis, 

directing eosinophil-predominant inflammatory responses and characteristic histologic 

changes to the epithelium associated with barrier dysfunction (Fig 2).31,33,79–82 IL-13 is 

produced in the esophagus by infiltrating immune cells, including eosinophils, T helper 2 

(TH2) lymphocytes, and mast cells.83–85 IL-13 is highly up-regulated in human esophageal 

tissue during EoE, and treating cultured primary esophageal epithelial cells with IL-13 

alone induces a gene program that largely overlaps with the esophageal transcriptome 

from EoE biopsy specimens.80 IL-13 stimulation of cultured human epithelial cells also 

promotes barrier dysfunction and reduces epithelial cell differentiation in the absence 

of eosinophils.31,33 Furthermore, IL-13 induces expression of CCL26 (eotaxin-3), which 

promotes eosinophil chemotaxis and recruitment into the tissue.80 Murine models support 

a prominent role for IL-13 in disease, as esophageal eosinophilic inflammation is induced 

directly by intranasal or intratracheal IL-13 administration,79 and IL-13 overexpression 

drives esophageal eosinophilia, epithelial hyperplasia, and esophageal remodeling (fibrosis, 

angiogenesis).81 Conversely, IL-13–deficient mice fail to develop esophageal eosinophilia in 

Underwood et al. Page 5

Ann Allergy Asthma Immunol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an aeroallergen-induced EoE model.53 These studies provided the rationale for monoclonal 

antibodies (mAbs) targeting IL-13 in human clinical trials for EoE, which revealed 

therapeutic efficacy in reducing EoE histologic and endoscopic signs, but limited efficacy 

in reducing clinical symptoms.86,87 Collectively, these studies implicate IL-13 as a central 

immune mediator in the observed immunologic and histologic changes characteristic of 

active EoE.

IL-4 promotes differentiation of TH2 cells and regulates eosinophil trafficking by inducing 

eosinophil chemotaxins and eosinophil adhesion molecules.88,89 IL4 expression is also 

increased in EoE by disease activity.82 Notably, dupilumab, a fully human mAb targeting the 

IL-4Rα chain, which antagonizes both IL-4 and IL-13 signaling, was found to have efficacy 

in improving histologic, endoscopic, and symptomatic measures in phase 3 clinical trials. 

Consequently, the US Food and Drug Administration approved dupilumab in May 2022 as 

the first therapeutic for treating EoE in adolescents aged 12 years and above and adults.90,91

CCL26 and Interleukin-5—Mechanistic studies have implicated CCL26 (eotaxin-3) and 

IL-5 as additional immune mediators that affect eosinophil function during EoE. CCL26 

is a chemokine that causes eosinophil chemotaxis by CCR3, the CCL26 receptor. Notably, 

CCL26 is the most highly up-regulated gene (53 fold) in the EoE transcriptome and CCL26 
expression significantly correlates with disease activity.30 Furthermore, CCR3-deficient 

mice are protected from developing experimental EoE. CCL26 production is produced 

mainly by the esophageal epithelium and induced by IL-13 stimulation.80

IL-5 is an important cytokine in eosinophil development and function, promoting eosinophil 

maturation, proliferation, activation, and survival. In allergen-induced EoE, disease can 

be induced in wildtype, but not IL-5–deficient, mice and treating wild-type mice with 

IL-5–neutralizing antibody blocks both allergen– and IL-13–induced EoE.52,53,92,93 These 

data supported human trials targeting eosinophils through IL-5 inhibition in individuals 

with EoE.94–97 Mepolizumab and reslizumab are humanized mAbs that neutralize IL-5 by 

binding and preventing cytokine-receptor interaction. These biologic medications reduce 

both blood (>90%) and tissue (55%) eosinophil levels in human EoE.94,96,97 However, 

neither medication induced complete histologic remission (PECs < 15 eosinophils/HPF) in 

most individuals, and there was no significant clinical improvement in the symptoms. It 

remains unclear whether the incomplete histologic response and poor clinical improvement 

reflect eosinophil persistence in the tissue or evidence that symptoms are driven by other cell 

populations. Ongoing trials with biologics targeting and more completely depleting tissue 

eosinophils (eg, benralizumab, lirentelimab) through antibody-dependent cell cytotoxicity 

may further clarify our understanding of IL-5 and eosinophils’ role in disease pathogenesis 

and the effectiveness of therapeutic strategies specifically targeting this immune axis.

Eosinophils—Eosinophils are pleotropic cells often residing within the mucosal tissues 

with known effector functions in allergic inflammation, immunoregulation, and tissue 

remodeling and repair. Eosinophil infiltration into the esophageal tissue was recognized 

early in the study of EoE as a fundamental pathologic and diagnostic feature of the 

disease.17,18 Although not pathognomonic for EoE, intraepithelial eosinophils are absent 

within the esophageal mucosa of healthy individuals,98 and their migration into the 
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epithelium implies underlying tissue pathology. In human EoE, esophageal eosinophil levels 

correlate with disease severity by endoscopy,99,100 histopathologic severity (eg, epithelial 

hyperplasia, DIS),12,30,99,101 and tissue remodeling and fibrosis.102,103

Although esophageal mucosal eosinophils are a disease hallmark, the mechanisms by which 

eosinophils contribute to pathophysiology are not fully understood. Eosinophils generate 

and release reactive oxygen species and toxic granule proteins (eg, major basic protein, 

eosinophil peroxidase, eosinophil cationic protein) that damage the esophageal epithelium 

and potentially decrease epithelial barrier function. Indeed, degranulating eosinophils and 

extracellular granule proteins are observed in human EoE.30,94,104 Major basic protein 

can also increase smooth muscle reactivity through the muscarinic M2 receptors105 and 

activate mast cells and basophils106 also present in the tissue during EoE.107,108 Esophageal 

eosinophils from human subjects with EoE also express high levels of TH2 cytokines that 

sustain and augment allergic inflammatory responses (eg, IL-4, IL-5, IL-13, IL-9) and 

produce profibrotic factors (eg, transforming growth factor beta [TGF-β]) that promote 

tissue remodeling and fibrosis.84,109 Eosinophils also generate leukotrienes that contribute 

to smooth muscle proliferation and hyperresponsiveness, which could promote esophageal 

dysfunction.

Not all EoE features associate with eosinophilic inflammation, however. In experimental 

EoE, eosinophil-deficient mice have reduced stricture formation and decreased epithelial 

BZH and LP thickness but still develop esophageal motility dysfunction.93,110 In humans 

with EoE, esophageal eosinophilia dissociates from symptoms of esophageal dysfunction 

and endoscopic abnormalities,12,99,100,111 some of which correlate with tissue mast cell 

levels.111 Furthermore, individuals with an EoE-like disease have similar clinical features, 

response to steroid therapy, and strong familial association with EoE but have no tissue 

eosinophilia by histopathology.112 Interestingly, these individuals had reduced CCL26 and 

increased esophageal lymphocytic infiltrates compared with individuals with EoE. Finally, 

EoE endotypes (see subsequent discussion) had variable degrees of histologic, endoscopic, 

and clinical abnormalities, but their classification was independent of PECs.113

A review by Doyle et al114 proposed a model whereby eosinophils have divergent roles in 

EoE pathogenesis by disease stage (ie, early vs established disease). Given that eosinophils 

have homeostatic roles in the gastrointestinal tract, their appearance at early stages of 

EoE may reflect functions to protect/restore a damaged epithelial barrier. In later stages of 

disease, these cells may become activated and promote tissue damage, thereby perpetuating 

inflammation and fibrosis.

Mast Cells—Mast cells are tissue-resident immune cells that have central roles in allergic 

inflammatory responses. Mast cells are normally present within the esophageal mucosa 

during homeostasis and predominantly reside in the LP. During active EoE, mast cells 

infiltrate and expand within the esophageal epithelium, where they become activated and 

degranulate.83,108,115–117 Clinically, mast cell numbers correlate with patient-reported pain 

symptoms.111,118 A clinical trial of anti–IL-5 therapy in children with EoE revealed that the 

severity of reported pain during EoE correlated with esophageal mast cell, not eosinophil, 

levels.109 A recent study corroborated these findings and suggested that a relationship 
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between mast cells and the molecular expression of esophageal TRPV1, an ion channel 

serving as a detector of painful stimuli on sensory neurons, may contribute to the mast 

cell–pain association in EoE.118 Notably, mast cell infiltration into the epithelium persists 

despite treatment-induced resolution of tissue eosinophilia, and mast cell levels correlate 

with persistent symptoms and endoscopic (furrowing, rings) and histologic abnormalities 

(BZH, DIS).83,111,117

Mast cells are equipped with effector mechanisms that contribute to disease pathogenesis. 

They prominently produce esophageal IL-13,83 cytokines that activate eosinophils (IL-3, 

IL-5, granulocyte-macrophage colony-stimulating factor), and inflammatory mediators, 

including histamine, prostaglandins, leukotrienes, and thromboxanes, which increase 

vascular permeability and smooth muscle contraction.119 In experimental EoE, mast cell 

infiltration into the esophageal muscle layers associates with smooth muscle hypertrophy, 

increased contractility, and decreased relaxation responses partially mediated by TGF-

β1 expression.110,115,120 Mast cells also promote fibroblast activation and collagen 

secretion.120,121

Single-cell RNA sequencing (scRNA-seq) analysis of the esophageal mast cell population 

in human EoE reveals a heterogeneous population with cell subsets associated with distinct 

spatial compartments that fluctuate by EoE disease status.83 During homeostasis, a resident 

mast cell population with a quiescent phenotype is present in the LP. During active 

disease, 2 additional mast cell populations emerge in the intraepithelial compartment; these 

populations assumed a proinflammatory state and expressed proliferation-associated genes. 

Notably, one of these populations persists during disease remission, poised to reinitiate 

inflammation.

Collectively, these data emphasize the importance of mast cells in EoE disease pathogenesis. 

Future diagnostic testing methods for clinical and outcomes–based research will need to 

consider this effector cell population when assessing disease activity and remission.

T Lymphocytes—Accumulating evidence suggests that effector TH2 cells producing 

cytokines IL-4, IL-5, and IL-13 have central roles in EoE pathogenesis. T cells infiltrate the 

esophageal mucosa during active EoE, and their levels are elevated in individuals with active 

disease vs inactive disease or normal controls.30,122–124 Although levels of both esophageal 

CD4+ and CD8+ T cells increase,85,123–125 allergen-induced EoE models in mice revealed 

that CD4+ T cells were pathogenic but that CD8+ T-cells were dispensable.125

Wen et al85 analyzed human tissue-residing CD3+ T cells using scRNA-seq and revealed 

a prominent polyclonal memory CD4+ T cell population expressing IL-4, IL-5, and 

IL-13 that correlated strongly with esophageal tissue eosinophilia. Subsequently, Morgan 

et al126 used scRNA-seq and TCR sequencing to further characterize the esophageal T 

cell population during active EoE vs remission and confirmed that a pathogenic memory 

effector TH2 cell population was enriched in the esophagus of individuals with active EoE. 

This pathogenic TH2 population expressed distinct gene signatures associated with gene 

up-regulation of TH2 cytokines and eicosanoid prostaglandin D2 (PGD2) synthesis. Notably, 

PGD2 signals through the chemoattractant receptor-homologous molecule expressed on TH2 
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cells (CRTH2) expressed on TH2 CD4+ cells, eosinophils, and basophils and stimulates 

these cells’ recruitment into the tissue.127,128 Signaling through CRTH2 also stimulates 

eosinophil activation,128–130 proinflammatory cytokine production in TH2 cells,131 and 

basophil activation.132

Altogether, these data reveal that pathogenic effector TH2 cells infiltrate the esophagus 

during active disease and release inflammatory mediators capable of (1) promoting 

inflammation through the recruitment and activation of eosinophils, basophils, and 

additional pathogenic TH2 cells and (2) inducing epithelial cell changes that contribute to 

loss of barrier integrity.

Additional Allergic Effector Cells—Additional allergic effector cells with potential 

roles in EoE include basophils, type 2 innate lymphoid cells (ILC2s), and dendritic cells 

(DCs). Basophil levels are increased in the blood and esophageal biopsy specimens of 

human active EoE.69,107,133 Although the role of basophils in disease pathogenesis remains 

unclear, a mouse model of EoE-like disease revealed that allergic inflammation depended 

on TSLP and basophils,69 suggesting a possible TSLP-basophil axis in EoE pathogenesis. 

ILC2s are tissue-resident immune cells that are activated by the epithelial alarmins IL-33 

and TSLP and capable of robust IL-4, IL-5, IL-9, and IL-13 production.134 Doherty et 

al135 revealed that levels of esophageal ILC2s were increased in individuals with active 

EoE vs remission or controls and that tissue ILC2 levels correlated strongly with tissue 

eosinophilia. DCs normally reside in the esophageal epithelium,123,124 but DC levels 

increase during EoE.123 TSLP and IL-33 promote DC-mediated TH2 cell polarization,136 

suggesting that DCs may be involved in promoting TH2 cell accumulation and polarization 

in the esophageal mucosa. Additional research will be necessary to better understand the 

contributions of these allergic effector cells to the pathogenesis of EoE.

Immunoglobulins (Immunoglobulin E, Immunoglobulin G4)—EoE is associated 

with other atopic diseases with known IgE-mediated pathophysiology, including food 

allergy, allergic rhinitis, and asthma.39 Elevated total serum IgE level and specific 

IgE sensitization to food or environmental allergens are common in individuals with 

EoE.5,9,137,138 Moreover, IgE production in the esophageal mucosa has been observed in 

children with EoE.139 However, human studies treating EoE with omalizumab, a humanized 

anti-IgE mAb, have not supported a significant role for IgE in disease pathogenesis. In one 

non–placebo-controlled study, anti-IgE therapy significantly reduced esophageal tissue IgE 

levels but was only marginally effective at inducing remission (33% of subjects).140 In a 

double-blind, placebo-controlled study, omalizumab did not differ from placebo in inducing 

histologic remission or symptom improvement.141 Collectively, these data suggest that IgE 

sensitization associates with EoE but is not directly involved in pathogenesis.

Interestingly, several lines of evidence implicate the antibody subclass IgG4 in EoE 

pathogenesis. Adults with EoE had a 45-fold increase in esophageal IgG4 levels vs controls, 

with no significant increase in other IgG subclasses.141 IgG4 deposits were noted in 

the esophageal tissue in 76% of adults with EoE vs 0% of controls.142 Furthermore, 

adults with EoE had elevated levels of serum total IgG4 and food-specific IgG4 vs 

controls.143 Children with active EoE had increased esophageal levels of IgG4-positive 
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plasma cells,144 and elevated esophageal IgG4 levels correlated with disease activity as 

assessed by histopathology and transcriptomic features.145 Finally, individuals with EoE 

who were treated with topical steroids or responsive to 6-food elimination diet therapy had 

reduced serum and esophageal IgG4 levels.143,146 Additional studies are necessary to clarify 

the specific role of IgG4 in disease pathogenesis.

Interferons (Interferon Alfa, Interferon Gamma)—As noted previously, studies of 

EoE immunopathology strongly support a critical role for type 2 inflammatory networks. 

However, levels of type 1 inflammatory signals, including IL-1 and IL-6, and type I and II 

interferons (IFNs) are elevated in the esophagus of individuals with EoE.82,147,148 Ruffner et 

al147 found a strong IFN-responsive gene signature (IFN-α– and IFN-γ–responsive genes) 

in transcriptomic analyses of esophageal biopsy tissue from both adult and pediatric patients 

with EoE and revealed that blood CD4+ T cells from children with EoE produce IFN-γ on 

activation with EoE-causal allergens. Previous studies have also detected IFN-γ expression 

in CD8+ T cells that are enriched in EoE biopsy tissues,85,148 suggesting that they could 

also contribute to the increased IFN-responsive gene signature in EoE esophageal tissue. 

Together, these data highlight a potential role for non–type 2 inflammatory networks in EoE 

immunopathology, but additional studies using animal models and human tissue are needed 

to clarify the cellular participants in the IFN response and the role that these cytokines may 

play in pathogenesis.

Tissue Fibrosis and Remodeling and Transforming Growth Factor Beta

Natural history studies suggest that EoE progresses from an early eosinophil-rich, 

inflammatory disease to a fibrostenotic disease associated with subepithelial collagen 

deposition, smooth muscle hypertrophy, and angiogenesis.4,23 Indeed, endoscopic features 

of fibrostenotic disease and histopathologic fibrosis increase with age, which is associated 

clinically with worsening dysphagia, stricture formation, and food impactions.4,6,7,149 

However, tissue remodeling is variable; not all adults with longstanding inflammation 

develop fibrostenotic disease, whereas some children with EoE develop tissue fibrosis at 

a young age.5,7,150 Consequently, which individuals will develop fibrostenosis remains 

unclear, although a fibrostenotic endoscopic phenotype has been associated with a distinct 

EoE endotype by esophageal gene expression.4,113

TGF-β promotes esophageal remodeling by inducing fibroblast activation and secretion of 

extracellular matrix (ECM) proteins (eg, collagen, fibronectin),151–153 including smooth 

muscle proliferation, hyperplasia, and contractility.154 TGF-β level is increased in EoE 

esophageal biopsy specimens and produced by infiltrating eosinophils and mast cells.103,115 

TGF-β also promotes epithelial-mesenchymal transition (EMT), during which epithelial 

cells acquire myofibroblast characteristics and lose certain epithelial cell features,155,156 

allowing these cells to participate in ECM synthesis and deposition. Treatment of adult 

patients with EoE using an anti–IL-13 antibody significantly reduces EMT markers in the 

esophageal tissue, suggesting that targeting this immune pathway may reduce the fibrotic 

response in patients with active EoE.157 In a retrospective study in children with EoE, EMT 

markers correlated strongly with eosinophil counts and were reversible after treatment.156
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Recent studies have begun to shed light on some of the molecular components involved 

in EoE fibrostenosis. Shoda et al158 used a set of 94 esophageal mRNAs dysregulated in 

EoE to compare children and adults with fibrostenotic vs nonfibrostenotic EoE phenotypes 

and associated loss of esophageal tetraspanin 12 (TSPAN12) expression in endothelial cells 

with EoE tissue fibrostenosis. Notably, IL-13 reduces TSPAN12 expression, which promotes 

endothelial production of profibrotic mediators (eg, endothelin-1) capable of increasing 

ECM production by fibroblasts. A proteomic study revealed that fibroblasts from human 

EoE secrete a unique ECM proteome, identifying thrombospondin-1 (TSP-1) expression 

specifically in the EoE ECM.159 Notably, TSP-1 was capable of inducing fibroblast collagen 

I production,159 suggesting a profibrotic role in EoE.

Phenotypic Variability and Eosinophilic Esophagitis Endotypes—EoE is 

increasingly recognized as a heterogeneous disease with phenotypic variability in clinical 

presentation by age, race, sex, symptoms, endoscopic and histologic abnormalities, 

comorbidities, disease triggers, and treatment response.160–162 Males have a higher risk 

for active disease, food impactions, and strictures, and African Americans exhibit classic 

EoE endoscopic findings but are less likely to present with dysphagia.163–167 Although most 

individuals with EoE have atopy,39,168 a subset of patients have no allergic comorbidities, 

and several non-atopic diseases associate with EoE, including inflammatory bowel disease 

and connective tissue disorders.169,170 Furthermore, differential responses to therapy 

have been recognized (eg, response to proton pump inhibitors, swallowed steroids, or 

dupilumab).90,171

Greater understanding of the disease pathogenesis and clinical heterogeneity has driven 

efforts to begin characterizing EoE cases by the distinct molecular mechanisms driving 

disease development and progression (ie, endotypes). Using a machine-learning approach 

to evaluate histologic, endoscopic, and molecular disease features, Shoda et al113 identified 

3 discrete EoE endotypes. EoE endotype 1 (EoEe1) is associated with a normal-appearing 

esophagus, relatively mild histologic and molecular changes, and steroid responsiveness. 

EoE endotype 2 (EoEe2) is associated with pediatric onset, the highest degree of endoscopic 

and histologic severity for inflammation, highest expression of inflammatory cytokines 

(eg, IL-4, TSLP), and steroid-refractory disease. EoE endotype 3 (EoEe3) is associated 

with adult onset, the highest degree of endoscopic and histologic severity for fibrostenotic 

components, and lowest expression of epithelial differentiation genes. Using unsupervised 

clustering of transcriptional responses from tissue biopsy specimens, Dunn et al172 found 

heterogeneity in genes associated with type 2 immunity among EoEe1-e3, suggesting 

that these endotypes could be further subdivided. Notably, none of the endotypes were 

differentiated by tissue eosinophil levels, reaffirming that the underlying differences in 

pathophysiology extend beyond eosinophil-directed immunopathogenesis. Longitudinal 

studies are necessary to determine whether these endotypes associate with distinct disease 

mechanisms or represent a disease continuum. Aligning specific molecular signatures to 

individuals with distinct clinical phenotypes and longitudinal outcomes may eventually 

enable physicians to begin targeting specific effector pathways to individualize therapeutic 

approaches for EoE.
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Conclusion

EoE is a chronic inflammatory disease of the esophagus associated with clinical and 

molecular heterogeneity and characterized by epithelial barrier defects, eosinophilic TH2-

predominant inflammation, and tissue remodeling leading to progressive esophageal 

dysfunction (Fig 2). Dysregulated epithelial and immune cell responses are central to 

disease pathogenesis and generate a feed-forward cycle leading to chronic inflammation. 

Although research efforts in the past 2 decades have drastically improved understanding of 

EoE, many knowledge gaps remain, including the precise steps underlying development of 

EoE and how the different elements of pathogenesis influence one another and the natural 

history of disease. Additional basic and clinical research is necessary to develop methods 

that efficiently identify allergen exposures that are clinically relevant in individual patients, 

further understand the underlying mechanisms by which food and possibly aeroallergens are 

driving disease pathogenesis, and determine the role of the gastrointestinal microbiome in 

establishing, furthering, and/or mitigating EoE pathophysiology, as Benitez et al173 revealed 

that the microbiome was altered by the presence and activity of EoE (microbiota in EoE 

further reviewed in Busing et al174 and Mennini et al175). Prospective studies will be needed 

to further define how specific therapeutic interventions modulate disease pathogenesis over 

time and determine which molecular components drive the disease in specific individuals. 

Ultimately, an improved understanding of EoE pathogenesis will lead to identification of 

molecular pathways important for the disease that will improve biomarker development, 

assignment of disease endotypes, and novel treatments for the disease.
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Key Messages

• Eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the 

esophagus associated with clinical and molecular heterogeneity.

• EoE pathophysiology is characterized by epithelial barrier defects, 

eosinophilic TH2-predominant inflammation, and tissue remodeling leading 

to progressive esophageal dysfunction.

• Dysregulated epithelial and immune cell responses are central to disease 

pathogenesis and generate a feed-forward cycle leading to chronic 

inflammation.

• Improved understanding of EoE pathogenesis has led to identification of 

disease pathways that have identified novel pathways for disease treatment.
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Figure 1. 
EoE is an allergen-driven, chronic inflammatory disease of the esophagus. Impaired 

epithelial barrier function and dysregulated immune cell responses influenced by genetic 

polymorphisms are central to EoE pathogenesis, generating a feed-forward cycle leading 

to loss of immunologic tolerance to exogenous allergens and chronic eosinophilic 

inflammation. Created with BioRender.com. EoE, eosinophilic esophagitis; HPF, high-

power field; IL, interleukin; TH2, T helper 2 cells; TSLP, thymic stromal lymphopoietin.
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Figure 2. 
EoE pathophysiology model. Exogenous allergens trigger epithelial-derived cytokine TSLP 

and IL-33 production, the latter through activating the intracellular allergen sensor RIPK1-

caspase-8 ripoptosome. An impaired mucosal barrier from dysregulated endogenous 

proteases and an abnormal epithelium allow translocation of food antigens to the dendritic 

cells, which process and present them to the CD4+ T cells. TSLP and IL-33 influence the 

dendritic cells to mature TH2-biased effector T cells and stimulate ILC2s; both populations 

secrete cytokines IL-4, IL-5, and IL-13, which recruit and activate mast cells, eosinophils, 

and basophils. Mast cells and eosinophils propagate allergic inflammation through cytokine 

and inflammatory mediator production (eg, PGD2, leukotrienes, granule enzymes), leading 

to immune cell activation and epithelial changes that further impair barrier function. A feed-

forward cycle develops, causing chronic inflammation that stimulates tissue remodeling/

fibrosis through the cytokine TGF-β, epithelial-mesenchymal transition, and pro- and 

anti-fibrotic mediator (TSPAN-12, TSP1) modulation. Created with BioRender.com. EoE, 

eosinophilic esophagitis; IL, interleukin; ILC2, type 2 innate lymphoid cell; PGD2, 

prostaglandin D2; TGF-β, transforming growth factor beta; TH2, T helper 2 cells; TSLP, 

thymic stromal lymphopoietin.
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Table 1

Statistically Significant EoE Genetic Risk Loci Identified by GWAS

EoE Risk Locus 
(chromosome 
location)

Candidate genes 
at or near risk 
variants

Known function/putative mechanism in EoE pathogenesis References

Established risk loci using independent 
cohorts

2p23.1 CAPN14 CAPN14 is an intracellular calcium-activated protease 
specifically expressed in the esophagus. CAPN14 expression 
is increased during active EoE and is upregulated by IL-13. 
Overexpression and silencing of CAPN14 in cultured esophageal 
cells have a disruptive effect on epithelial barrier function.

Kottyan et al,25 2021
Chang et al,26 2022
Kottyan et al,27 2014
Sleiman et al,28 2014

5q22.1 TSLP
WDR36

TSLP is an epithelium-derived alarmin cytokine that induces 
allergic Th2 immune responses and has direct effects on multiple 
allergic effector cells, including eosinophils, mast cells, and 
basophils.

Rothenberg et al,24 2010
Kottyan et al,25 2021
Chang et al,26 2022 
Kottyan et al,27 2014
Sleiman et al,28 2014

11q13.5 LRRC32
c11orf30/EMSY

LRRC32 encodes a TGF-β-binding protein that is involved 
in regulatory T-cell-mediated suppression of colitis. LRRC32 
is upregulated by IL-13. EMSY is involved in epithelial cell 
differentiation. Both LRRC32 and EMSY are expressed in 
esophageal epithelial cells.

Kottyan et al,25 2021
Chang et al,26 2022
Sleiman et al,28 2014

16pl3.13 CLEC16A
DEX1

CLEC16A and DEX1 are expressed in esophageal epithelial 
cells. Many cells of the immune system also express CLEC16A. 
Expression of CLEC16A is upregulated by IL-13. The function of 
CLEC16A and DEX1 proteins in EoE remains unclear.

Kottyan et al,25 2021
Chang et al,26 2022
Kottyan et al,176 2019

Suggestive risk loci identified by single 
GWAS

8p23.1 XKR6 Unknown Kottyan et al,27 2014

15ql3.3 between 
LOC283710 and 
KLF13

Unknown

12q13.3 STAT6 STAT6 is a transcription factor activated by IL-4 and IL-13 and 
has a role in the development of TH2 cells and promotes type 2 
immune responses. STAT6 also induces CAPNI4 expression.

Sleiman et al,28 2014

19q13.11 ANKRD27 ANKRD27 inhibits the activity of the SNARE complex, which 
could impact vesical trafficking and wound healing. May have a 
role in mucosal barrier integrity.

10p14 ITIH5 ITIH5 is a serine protease inhibitor from a class of protease 
inhibitors that have been implicated in mucosal protease 
dysregulation and decreased epithelial barrier function in the 
esophagus.

Kottyan et al,25 2021

2q12.1 TMEM182 Unknown Chang et al,26 2022

5q31.1 RAD50 Unknown

6p22.3 SOX4 Unknown; involved in immune-associated pathways.

8q22.1 MATN2 Involved in inflammatory responses, macrophage M2 
polarization, and T cell differentiation.

10q21.1 PRKG1 PRKG1 is involved in inflammatory signaling pathways.

11p15.4 RHOG Ras homolog gene family, member G (Rho G) is a member of 
the Rac subfamily of Rho GTPases that are highly expressed in 
lymphocytes.

11q13.4 SHANK2 Unknown

13q12.13 GPR12 Unknown

15q22.2 RORA Unknown; involved in immune-associated signaling pathways.

15q23 SMAD3 Unknown; involved in immune-associated signaling pathways.
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EoE Risk Locus 
(chromosome 
location)

Candidate genes 
at or near risk 
variants

Known function/putative mechanism in EoE pathogenesis References

18q12.2 GALNTI Unknown

Abbreviations: CAPN14, calpain 14; EoE, eosinophilic esophagitis; GWAS, genome-wide association study; ITIH5, inter-alpha-trypsin inhibitor 
heavy chain 5; PRKG1, protein kinase CGMP-dependent 1; TH2, T helper 2 cell; TGF-β, transforming growth factor beta; TSLP, thymic stromal 

lymphopoietin.
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Table 2:

Additional EoE Genetic Risk Loci Identified by Phenotype Association

Gene 
associated 
with EoE risk

Known function/putative mechanism in EoE pathogenesis Reference

CCL26 CCL26 encodes eotaxin-3, which is a chemokine that promotes eosinophil chemotaxis and 
recruitment into the tissue and is induced by IL-13.

Blanchard et al,30 2006

CRLF2 CRLF2 encodes the TSLP receptor Sherill et al,177 2010

FLG FLG is important for maintenance of esophageal barrier function. Blanchard et al,31 2010

DSG1 DSG1 is a major constituent of desmosomes; important for maintenance of esophageal barrier 
function.

Samuelov et al,32 2013
Sherill et al,33 2014

IL5 IL-5 is a cytokine important for eosinophil development and function, promoting eosinophil 
maturation, proliferation, activation, and survival.

Namjou et al,29 2014

IL13 IL-13 is a cytokine with central role in EoE pathogenesis, directing eosinophil-predominant 
inflammatory responses and characteristic histologic changes to the esophageal epithelium 
associated with barrier dysfunction.

Namjou et al,29 2014

STAT3 STAT3 is a transcription factor involved in signaling pathways for multiple cytokines. 
Abnormalities in STAT3 signaling can lead to dysregulated responses to IL-6 and possibly IL-5, 
leading to enhanced type 2 immune responses.

Arora et al,37 2017

SPINK5 SPINK5 is a serine peptidase inhibitor downregulated in EoE. SPINK5 targets serine proteases 
and inhibits their proteolytic function. Loss leads to unrestricted protease activity, impaired 
epithelial barrier function and proinflammatory immune responses.

Paluel et al,36 2017

DSP DSP is a member of the plakin protein family and a critical component of desmosome structures 
in the epithelium; DSP is highly expressed in the esophagus and is important for maintenance of 
esophageal barrier function.

Shoda et al,35 2021

PPL PPL is a member of the plakin protein family and a critical component of desmosome structures 
in the epithelium; PPL is highly expressed in the esophagus and is important for maintenance of 
esophageal barrier function.

Shoda et al,35 2021

Abbreviations: DSG1, desmoglein 1; DSP, desmoplakin; EoE, eosinophilic esophagitis; FLG, filaggrin; IL, interleukin; PPL, periplakin; SPINK5, 
serine peptidase inhibitor kazal type 5; TSLP, thymic stromal lymphopoietin.
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