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Abstract 

Papillary thyroid cancer (PTC) is the most frequent subtype of thyroid cancer, but 20% of cases are indeterminate (i.e., 
cannot be accurately diagnosed) based on preoperative cytology, which might lead to surgical removal of a normal 
thyroid gland. To address this concern, we performed an in-depth analysis of the serum proteomes of 26 PTC patients 
and 23 healthy controls using antibody microarrays and data-independent acquisition mass spectrometry (DIA-
MS). We identified a total of 1091 serum proteins spanning 10–12 orders of magnitude. 166 differentially expressed 
proteins were identified that participate in complement activation, coagulation cascades, and platelet degranulation 
pathways. Furthermore, the analysis of serum proteomes before and after surgery indicated that the expression of 
proteins such as lactate dehydrogenase A and olfactory receptor family 52 subfamily B member 4, which participate 
in fibrin clot formation and extracellular matrix-receptor interaction pathways, were changed. Further analysis of the 
proteomes of PTC and neighboring tissues revealed integrin-mediated pathways with possible crosstalk between the 
tissue and circulating compartments. Among these cross-talk proteins, circulating fibronectin 1 (FN1), gelsolin (GSN) 
and UDP-glucose 4-epimerase (GALE) were indicated as promising biomarkers for PTC identification and validated in 
an independent cohort. In differentiating between patients with benign nodules or PTC, FN1 produced the best ELISA 
result (sensitivity = 96.89%, specificity = 91.67%). Overall, our results present proteomic landscapes of PTC before and 
after surgery as well as the crosstalk between tissue and the circulatory system, which is valuable to understand PTC 
pathology and improve PTC diagnostics in the future.
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Background
Thyroid cancer is the ninth most common malignancy 
worldwide [1]. In China, continuous increases in thy-
roid cancer have been reported; the incidence increased 
from 2.75/105 in 2000 to 19.42/105 in 2012 in the Zhe-
jiang Province of China [2, 3]. Papillary thyroid cancer 
(PTC) is the most prevalent form of thyroid cancer and 
therefore contributes the rapid increase in thyroid can-
cer [2, 4]. Oversurveillance and overdiagnosis of smaller 
differentiated cancers are attributed to increased inci-
dence and consequently accompanied by overtreatment 
[5]. Efforts are urgently needed to prevent overtreat-
ment of low-risk papillary thyroid cancers with the aim 
of improving quality of life and reducing the economic 
burden [5, 6]. Notably, there are limitations to preopera-
tive cytology by fine-needle aspiration (FNA) biopsy, as 
20% of cases are diagnosed as indeterminate [7]. Moreo-
ver, the majority of indeterminate cases are found to be 
benign nodules based on histopathology after surgery [7]. 
There are potential risks and side effects associated with 
overtreatment such as hypoparathyroidism and the need 
for lifelong thyroid hormone (levothyroxine) replacement 
therapy after total thyroidectomy. Therefore, there is an 
unmet need to identify which thyroid nodules are benign 
and do not require the FNA or surgery.

Molecular testing, such as that for the BRAF V600E 
mutation, has been suggested to distinguish aggres-
sive PTCs; the BRAF V600E mutation accounts for 60% 
of mutations in thyroid cancer [8]. Recent studies have 
shown that combining the BRAF V600E mutation and 
the Bethesda System for Reporting Thyroid Cytopathol-
ogy increased sensitivity (89.57%) for malignant nodules 
and the negative predictive value (45.45%) for benign 
nodules in patients who underwent ultrasound-guided 
FNA [9]. However, the genotyping of PTCs has not been 
established in routine practice and needs further longitu-
dinal large cohort studies.

We hypothesized that the incorporation of circulat-
ing tumor-specific functional proteomic markers holds 
promise to help determine a suspicious nodule. Previ-
ously, proteomics-based approaches have successfully 
identified subtypes of certain cancers, including gastric 
cancer, hepatocellular carcinoma and lung adenocarci-
noma [10–12]. Studies of PTC tissues and FNA samples 
have demonstrated that a spectrum of proteins or metab-
olites in thyroid tissue has the potential to differentiate 
malignant thyroid nodules [13, 14]. Although these can-
didate tissue biomarkers warrant further clinical valida-
tion, developing a minimally invasive test that allows 
blood-based biomarker discovery for early diagnosis of 
PTC and treatment monitoring would also be impor-
tant. Ideally, secretomes may temporally reflect the status 
of diseased and healthy cells. To test this hypothesis, we 

used an in-depth serum proteomics platform including 
customizable antibody microarrays and data independent 
acquisition mass spectrometry (DIA-MS) to detect the 
differential serum protein expression in paired serum and 
tumor tissues and their paired noncancerous adjacent 
tissues (NATs) for the same patient with PTC [15]. This 
platform enables us to detect low-abundance proteins by 
spanning 10 orders of magnitude in protein concentra-
tion. We demonstrate crosstalk between the serum and 
tissue proteomes and provide new insights into the onco-
biology of PTC. We conclude from these findings that the 
relatively noninvasive assay of these candidate circulating 
proteins, which could be performed frequently, may aid 
the clinical decision-making process and warrant further 
clinical validation for predicting malignancy.

Methods
Clinical samples and patient characteristics
Fresh frozen cancer tissues, paired NATs and serum 
samples before and after thyroidectomy were obtained 
from 26 patients with PTC. Serum samples from 23 
healthy controls (HCs) were also obtained. The patients 
and HCs participating in this study all signed an institu-
tional review board-approved informed consent form. 
This study was approved by the local Ethics Commit-
tee of Zhejiang Cancer Hospital (#IRB-2020–371) and 
Huzhou Central Hospital (#IRB-20180804–01). The 
patients and HCs were similar in age with a mean age of 
39.7 ± 12.8 years. The eighth edition of the tumor/lymph 
node/metastasis (TNM) staging system of the American 
Joint Committee on Cancer was used to assign the stage 
of all patients. Most PTC patients were staged as stage 
I (25 of 26) with a TI-RADS Score 6 (25 of 26) (Table 1, 
Additional file 1: Table S1-1). The BRAF V600E mutation 
was found in 13 patients. Our validation cohort included 
serum samples from 36 patients with benign nodules and 
61 patients with PTC (data not shown).

Screening of the serum proteome using antibody 
microarrays
The antibody microarrays were prepared as previously 
described [15]. Ten microliters of serum was diluted 1:10 
with phosphate buffered saline (PBS; pH 7.4) and then 
labeled with NHS-PEG4-Biotin (Thermo Fisher Scien-
tific, MA, USA). After removing the excess biotin mol-
ecules, the biotinylated serum was diluted with 400 μL of 
5% milk (w/v) and then incubated with antibody micro-
arrays that were blocked for 1  h at room temperature 
with 500 μL of 5% milk (w/v). Subsequently, the antibody 
microarrays were washed with PBS containing 0.05% 
(w/v) Tween 20 (PBST). The bound proteins on microar-
rays were detected by incubating with 2 µg/mL streptavi-
din–phycoerythrin (PE) (Jackson Immunoresearch, USA) 
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for 1 h at room temperature. After washing and drying, 
the microarrays were scanned using the GenePix 4300A 
microarray scanner.

Measurement of serum and tissue proteomes using 
DIA‑MS
Protein separation, peptide sample preparation and DIA 
analysis were performed as previously described [16]. 
Briefly, total protein was extracted from tumor tissues 
and their paired NATs using RIPA buffer containing 10% 
protease inhibitor cocktail. The protein concentration 
was quantified by the Bradford method. The serum sam-
ples were diluted with lysis buffer containing 6  M urea 
(Sigma, USA). Next, extracted tissue protein and diluted 
serum were reduced with 10 mM dithiothreitol (DTT) at 
37 °C for 60 min. After alkylating with 50 mM iodoaceta-
mide (IAA) at room temperature for 45 min in the dark, 
the protein was digested with trypsin. The concentrations 
of tryptic peptides were determined by absorbance meas-
urements with NanoDrop spectrophotometers (Thermo 
Scientific, USA). For construction of the spectral library, 
10  μg of peptide pool from each sample was separated 
into 10 fractions, and data-dependent acquisition (DDA) 
analysis was performed on a QE-HF mass spectrometer 
(Q Exactive HF Hybrid Quadrupole Orbitrap, Thermo 
Fisher). A human subset of the UniProt proteins FASTA 
database was used to generate a spectral library using 

Spectronaut Pulsar X 12.0 (Biognosys, Schlieren, Swit-
zerland) with the BGS factory setting. A 1% protein false 
discovery rate (FDR) and at least 2 peptides per protein 
were considered confident identification. For DIA analy-
sis, 1.5 µg peptides were separated on a 30 min LC gradi-
ent using an analytical column (150 µm × 250 mm; 2 µm, 
200 Å C18 particles) and analyzed by mass spectrometry 
as described above. The DIA acquisition scheme con-
sisted of 45 fixed windows ranging from 350 to 1500 m/z. 
The resolution distributions of MS1 and MS2 were 
60,000 and 30,000, respectively. The raw files were input 
into Spectronaut software for analysis using the default 
settings with quantification on the MS2 level of the top 
N (1–3) peptide spectra, and the results were filtered by 
a 1% FDR.

RNA‑seq analysis
Gene count data (RNA-seq) of thyroid carcinoma 
samples were downloaded from The Cancer Genome 
Atlas database (TCGA; https://​portal.​gdc.​cancer.​gov/​
repos​itory). The annotation information was down-
loaded from the GENCODE (GRCh38.p13) catalog 
(https://​www.​genco​degen​es.​org/). Averaged values 
were taken for multiple probes sharing the same gene. 
Next, the “edgeR” package was utilized to perform dif-
ferential expression analysis (adjusted P value < 0.05 
and |Log (fold change)|> 1). After standardizing the 
quantified data with the “scale” function, the heat-
map was generated by using the “pheatmap” package. 
Twenty-nine differentially expressed genes, consist-
ent with the results of proteomic analysis, are shown 
in the heatmap. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analy-
ses were conducted using the “clusterProfiler”, “org.
Hs.eg.db”, and “enrichplot” packages in R to provide 
functional annotation and analyze pathway enrich-
ment [17]. An adjusted P < 0.05 was considered statis-
tically significant. GO enrichment analysis included 
the molecular function (MF), biological process (BP), 
and cellular component (CC) categories. The top 15 
KEGG pathways and top 5 GO terms were visualized 
using the “GOplot” package.

Validation of biomarker candidates by IHC and ELISA
After deparaffinization in xylene, hydration with graded 
alcohol, and antigen retrieval, the tissue sections were 
placed in 3% hydrogen peroxide (H2O2) for 10  min at 
room temperature to inactivate endogenous peroxidases. 
The slides were washed three times in phosphate-buff-
ered saline (PBS), blocked with 2% bovine serum albumin 
(BSA) for 30  min at room temperature and incubated 
with primary antibodies at 4 °C overnight. On the second 
day, after washing with PBS, the slides were incubated 

Table 1  Clinicopathological characteristics of patients with 
papillary thyroid cancer (n = 26)

Variables N %

Age, y, mean ± SD (range) 26 39.7 ± 12.8

Sex

  Male 7 26.9

  Female 19 73.1

T stage

  T1/T2 21 80.8

  T3/T4 5 19.2

LNM

  N0 14 53.8

  N1 12 46.2

TNM stage

  I 25 96.2

  III 1 3.8

TI-RADS Score

  4 1 3.8

  6 25 96.2

BRAFV600E

  Mutant 13 50.0

  Wild 2 7.7

  Unknown 11 42.3

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://www.gencodegenes.org/
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with HRP-conjugated secondary antibodies for 60 min at 
37  °C. The slides were then washed in PBS followed by 
detection with DAB staining solution and counterstain-
ing with hematoxylin.

The levels of gelsolin and fibronectin in the serum of 
the different groups were measured by their respective 
enzyme-linked immunosorbent assay (ELISA) kits. The 
optical density of each sample was measured at 450 nm 
using a Thermo Scientific Varioskan Flash Spectral Scan-
ning Multimode Reader.

Statistical and bioinformatics analysis
For the antibody-array data, the intensities of identified 
proteins were corrected by subtracting the background 
signal, and the values were then log2 transformed and 
interarray normalized with quantile normalization fol-
lowed by mean centering. After background correction 
and signal normalization, the intensities could be used 
for the downstream analysis. For the MS data, the quan-
tification values of identified proteins were log2 trans-
formed and mean normalized (Figure S1).

To test for significant differences in the expression of 
proteins between serum samples from healthy controls 
and PTC patients before and after thyroidectomy, mul-
tiple comparisons were performed with the R package 
Limma (V3.38.3) [18]. The differentially expressed serum 
proteins between the two groups were analyzed using 
Limma with a P value < 0.05. To identify differential pro-
teins in tumor versus NAT, a modified t test was applied 
to tissue proteomic data. The P values were then adjusted 
by the Benjamini‒Hochberg method. Proteins with an 
adjusted P value < 0.05 were considered to be statistically 
significant.

Volcano plots and heatmaps of significant proteins were 
generated using the R packages “ggplot2” and “Complex-
Heatmap” (distance, Pearson; linkage, complete) [19]. The 
distribution of serological protein concentrations was 
detected by our DIA-MS and microarray platform using 
the reference concentrations from the human plasma 
proteome database (http://​www.​plasm​aprot​eomed​ataba​
se.​org/). The online tool DAVID (https://​david.​ncifc​rf.​
gov/) was used to annotate proteins according to GO and 
KEGG pathway analyses [20]. The protein interactome 
network was built using Cytoscape (version 3.7.1) [21], 
and the protein‒protein interactions were retrieved from 
the STRING database [22]. The common differentially 
expressed proteins from serum and tissue were subjected 
to in-depth analysis based on ingenuity pathway analysis 
(IPA).

The area under a ROC curve and graphs of the true 
positive rate (sensitivity) and the false-positive rate 

(specificity) were used to determine the diagnostic accu-
racy of the ELISA test.

Random forest‑based machine learning model
Based on the proteomic data of serum and tissue sam-
ples, we developed a new random forest (RF)-based 
classifier to identify potential biomarkers and clas-
sify HCs cases (Figure S2A). The computational pipe-
line development contains the following four steps: (i) 
dataset preprocessing, (ii) feature selection, (iii) model 
training, and (iv) model evaluation.

The log2-transformed and mean-normalized data 
from healthy and PTC patient serum samples and 
the tumor tissues and their paired NAT samples were 
retained. We then used the R package “caret” (v.6.0–93) 
to sample 70% of the serum cohort (HCs, n = 26; PTC, 
n = 22) and tissue cohort (NAT, n = 21; tumor, n = 21) 
as a training set; the remaining samples of the serum 
cohort and tissue cohort were used as an independ-
ent testing set. The codifferentially expressed proteins 
in serum and tissue were selected as features to distin-
guish HCs from PTC tumors. We tuned the parameters 
using a grid search algorithm with threefold cross-val-
idation implemented in the “caret” package. We then 
retrained the RF model using the optimal parameters. 
Finally, the performances of the RF models were further 
evaluated based on the independent testing sets. The 
corresponding confusion matrices and receiver operat-
ing characteristic (ROC) plots were generated to assess 
performances using the “caret”, “plotROC” (v.2.2.1), and 
“ggplot2” packages.

Results
Serum proteomic analysis shows dysregulation in multiple 
biological processes in PTC patients
The workflows of in-depth serum proteomics and tis-
sue proteomics of papillary thyroid cancer are shown 
in Fig.  1A. The antibody microarray detected 637 pro-
teins, and DIA-MS detected 613 proteins for a total of 
1091 serum proteins with an overlap of 159 proteins by 
both platforms (Fig.  1B, Additional file  2: Table  S2-1, 
Table  S2-2) distributed across approximately 10 orders 
of magnitude of abundance in plasma (Fig. 1C). Quality 
control demonstrated that the r correlations for array-to-
array and slide-to-slide were 0.70 and 0.94, respectively, 
for antibody microarrays (Supplementary Fig.  1). The 
Pearson correlation analysis demonstrated a clear group-
ing of proteins among all samples acquired by DIA-MS 
(Fig.  1, Supplementary Fig.  1). Proteins acquired from 
antibody microarrays and DIA-MS belong to the same 
cellular components (Fig. 1D). In particular, a spectrum 
of proteins was associated with signaling pathways such 

http://www.plasmaproteomedatabase.org/
http://www.plasmaproteomedatabase.org/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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as integrin signaling pathways, angiogenesis, blood 
coagulation, glycolysis, inflammation mediated pathway, 
interleukin and the CCKR-pathway (Fig. 1D).

We first sought to define the serum proteomics of 
PTC patients and HCs. We found 166 significantly dif-
ferentially expressed proteins between the two groups 
(P value < 0.05) (Fig.  2, Additional file  3: Table  S3) of 

which 54 proteins were detected by antibody microar-
ray, 117 were detected by DIA-MS, and 5 were detected 
by both antibody microarray and DIA-MS. For the dif-
ferentially expressed proteins that could be detected by 
both methods, those with high significance were retained 
for further analysis. These dysregulated proteins mainly 
belonged to the complement and coagulation cascades 

Fig. 1  Study design using in-depth serum proteomics and tissue proteomics of papillary thyroid cancer (PTC). A work flow. B a total of 1091 serum 
proteins with an overlap of 159 proteins was detected through customizable antibody microarrays and DIA-MS. C Distribution of serum proteins 
detected by DIA-MS and antibody microarray two-pronged approach. D Proteins acquired from antibody microarrays and DIA-MS are belonged to 
the same cellular components
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and platelet degranulation pathways (Fig. 2D, E). In addi-
tion, PTC patients had activated pathways, including 
extracellular matrix (ECM)-receptor interactions, pro-
teoglycans, cell adhesion molecules and focal adhesion, 
whereas the high-affinity immunoglobulin E receptor 
(FcεRI)-mediated signaling pathways were downregu-
lated compared with normal controls (Fig. 2D). Notably, 
increased serum C3 and deceased serum apolipoprotein 
A4 in PTC patients were shown in our study and in other 
studies using mass spectrometry and ELISA validation 
[23].

We further analyzed the data to identify the asso-
ciation between proteomic changes and clinical data 
(Fig.  3). Pearson correlation analysis demonstrated 
that APBA3 was positively correlated with serum lev-
els of thyroglobulin (Tg) and negatively correlated with 
serum levels of Tg antibodies (TgAb). Tg is an iodogly-
coprotein made by thyroid cells and serves as a pre-
cursor for triiodothyronine (T3) and thyroxine (T4) 
hormones. Although serum levels of Tg cannot predict 
disease stage for PTC, small thyroid remnants can be 
detected by serum levels of Tg during follow-up after 
total thyroidectomy [24]. However, following lobec-
tomy in patients with thyroid cancer, Tg levels are influ-
enced by lobe size, TSH levels, lymphocytic thyroiditis, 
thyroid nodules and other factors. It is challenging to 
detect Tg levels produced by persistent/recurrent can-
cer tissue when the total amount of Tg produced by the 
remaining lobe is measured. Thus, there is an unmet 
need for identifying other indicators for persistent 
cancer tissue and disease recurrence with regard to Tg 
dynamics. APBA3 is an activator of hypoxia inducible 
Factor 1 (HIF-1) and can mediate metastasis niche for-
mation by recruiting monocytes and inducing E-selec-
tin in endothelial cells [25]. Its correlation with Tg and 
the underlying mechanism in thyroid cancer warrant 
further investigation.

There is substantial interest in the potential of pro-
teomic profiling to aid in risk stratification after 
surgery and to optimize treatment decisions. We 
identified an additional 58 significantly differen-
tially expressed serum proteins between PTC patients 
before and after tumor removal (Fig. 4). We found that 
dysregulation of complement and coagulation cas-
cades are the main pathway differences between the 
two states. The intrinsic pathway of fibrin clot forma-
tion and the intrinsic prothrombin activation pathway 

were activated in primary PTC patients without treat-
ment, and pathways such as the intrinsic pathway of 
fibrin clot formation and ECM-receptor interaction 
were downregulated after tumor removal. Notably, the 
serum level of lactate dehydrogenase A (LDHA) was 
decreased after tumor removal. This may reflect the 
change in tumor burden, as seen in a previous study 
showing that LDHA is overexpressed in PTC tissue 
and represents aggressive PTC behavior [26]. LDHA 
functions as an enzyme that converts pyruvate to lac-
tate in the final step of glycolysis. These findings war-
rant further investigation in the follow-up of PTC 
patients in an independent cohort.

Proteomic features in PTC tumor tissues compared 
with NATs
We compared tumors vs. paired NATs to identify PTC-
associated alterations in proteins. A total of 5648 total 
quantified proteins were identified, and 4826 proteins 
were included in the final analysis after filtering with the 
missing value (Additional file  4: Table  S4). Differential 
protein expression analysis resulted in 612 significantly 
dysregulated proteins between PTC tissues and NATs, 
which accounted for 12.7% of the total quantified tissue 
proteome (Fig.  5, Additional file  5: Table  S5). Among 
these, 344 were upregulated and 268 were downregulated 
in PTC tumor tissues. The representative proteins are 
shown in Fig. 5D. Notably, the number of proteins identi-
fied in the PTC tissues was significantly higher than that 
identified in the NATs. This finding is consistent with the 
common enriched pathways seen in the functional path-
way annotation and enrichment analysis of the dysregu-
lated PTC proteomes, which revealed that tissue-specific 
biological networks belonged to protein translation and 
the immune system. Specifically, proteins were involved 
in signal recognition particle (SRP)-dependent cotrans-
lational protein targeting to the membrane, peptide 
chain elongation, MHC class II antigen presentation and 
metabolism-related pathways (Fig. 5F). For example, SRP 
is essential for delivering the proteome to the proper cel-
lular membrane as integral membrane proteins or secre-
tions [27].

We next compared the represented tumor-enriched 
proteins at the transcriptional level with TCGA data 
from PTC tumor and paracarinoma transcriptomes 
(Fig.  6). The expression data of 568 thyroid carci-
noma samples, including 510 tumor tissues and 58 

(See figure on next page.)
Fig. 2  Serum proteome detection consisting of healthy controls (HCs) and patients with papillary thyroid cancer (PTC). A Classification of HCs and 
PTC patient groups based on differentially expressed proteins and unbiased clustering analysis. B Scores plot for Partial least square-discriminant 
analysis (PLS-DA). Score plot shows TB in red and controls in blue polygon. C Identification of PTC-associated proteins in serum using volcano 
plot analysis. Box plot analysis of represented PTC-associated serum proteins. D are the comparison of protein classes and signaling pathways for 
PTC-associated proteins and HCs. E The complement cascade



Page 7 of 18Ye et al. BMC Cancer          (2023) 23:412 	

Fig. 2  (See legend on previous page.)
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paracarinoma tissues, were downloaded from TCGA. 
After differential expression analysis, 2781 differentially 
expressed genes (DEGs) were screened, and 29 DEGs, 
consistent with the results of proteomic analysis, are 
shown in the heatmap. The results of GO and KEGG 
pathways showed 2781 DEGs were involved in neuro-
active ligand‒receptor interaction, cytokine‒cytokine 
receptor interaction, complement and coagulation 
cascades, ECM-receptor interaction and organization, 
collagen-containing extracellular matrix and receptor 
ligand activity, and tyrosine metabolism. Our analysis 
indicated similar clusters at the transcriptional level 
and protein level.

Integration of the blood‑thyroid proteome reveals 
an integrin‑mediated signature in blood‑tumor crosstalk
We analyzed the overlapping 23 proteins present in both 
the serum and thyroid tumor tissue proteomic data-
sets (Fig. 7). To gain insight into the biological pathways 
related to molecular signals that may mediate blood-
tumor tissue crosstalk, we used the GO term finder to 
classify the pathways. We found that mitogen-activated 
protein kinase (MAPK) signaling for integrins and ECM 
proteoglycans was upregulated in PTC patients. Integrins 
are a family of transmembrane glycoprotein signaling 
receptors, and their subunits can be found in platelets and 
tumor cells [28, 29]. Notably, the extracellular domain of 

Fig. 3  Correlation network of serum proteome and clinical data. A Positive and (B) negative correlations between serum proteome and clinical 
data using circus, respectively. Reprehensive examples for positive (C) and (D) negative correlations
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integrin αvβ3 on the plasma membrane of tumor cells 
contains the receptor for thyroid hormone analogs [30]. 
It has been demonstrated that L-thyroxine (T4) binds the 
cell surface receptor on integrin αvβ3 and subsequently 

regulates cancer cell proliferation, angiogenesis and 
metastasis via the MAPK (ERK1 and ERK2 cascade) 
pathway [30]. Additionally, the BRAFV600E mutation is a 
risk factor for PTC and is related to poor clinical outcome 

Fig. 4  Serum proteome detection consisting of serums before and after surgery for the same patient with papillary thyroid cancer (PTC). A 
Classification of PTC patient before and after surgery based on differentially expressed proteins and unbiased clustering analysis. B Scores plot for 
Partial least square-discriminant analysis (PLS-DA). Score plot shows TB in red and TA in blue polygon. C Identification of differentiated proteins in 
serum of PTC patient before and after surgery using volcano plot analysis. Box plot analysis of represented serum proteins. D are the comparison of 
protein classes and signaling pathways for PTC patient before and after surgery
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[31]. It has been demonstrated that the BRAF mutation 
can activate the MAPK pathway, which is reversed by 
MAPK pathway inhibitors such as the mitogen-activated 
protein kinase inhibitor trametinib [32]. We identified 13 
of 26 patients harboring the BRAFV600E mutation. In 
addition, platelet-tumor cell interactions have been pro-
posed to participate in tumor metastasis [29]. Figures  8 
and 9 demonstrates an IPA network of integrin-medi-
ated pathways indicating the potential protein‒protein 
interactions in PTC. It would be interesting to further 
research T4 hormone-platelet/tumor cells via integrin 
signaling in a PTC model.

Potential biomarkers that can distinguish PTC tumors 
from HCs
We built an RF-based classification model based on the 
23 overlapping proteins presented in both the serum and 
thyroid tumor tissue proteomic datasets. Using these 
proteins and the RF algorithm, we obtained a mean AUC 
of the ROC curves of 0.990 on the combination training 
set of serum and tissue cohorts with the cross-validation 
scheme (Supplementary Fig. 2B-C). For the test sets, we 
obtained a mean AUC of the ROC curves of 1.000, 0.974 
and 0.972 on the serum, tissue and combination cohort, 
respectively (Supplementary Fig.  2D). When we trained 
the model on one of the cohorts and tested it on the 
other, we obtained AUCs of 0.944 or 0.857 (Supplemen-
tary Fig.  2E). The results show that the 23 overlapping 
proteins have considerable potential to distinguish PTC 
tumors from HCs.

Serum fibronectin 1, gelsolin and UDP‑glucose 
4‑epimerase have the potential to differentiate patients 
with benign nodules and PTC
Specifically, 23 overlapping proteins were signifi-
cantly correlated between PTC tissue and serum across 
patients. We observed higher expressions of fibronec-
tin 1 (FN1), gelsolin (GSN) and UDP-glucose 4-epime-
rase (GALE) at the circulating and tissue levels of PTC 
patients compared with controls, as acquired by antibody 
microarrays and DIA-MS. We also observed high expres-
sions of FN1, GSN and GALE in PTC tissue compared 
with normal tissues based on IHC (Fig. 7E). The mRNA 
levels of FN1, GSN and GALE were also highly expressed 

in PTC tissues based on RNA-seq in the TCGA dataset 
(Fig. 6 B-D).

We further observed that serum levels of FN1 and GSN 
were higher in PTC patients than in patients with benign 
nodules in an independent cohort based on ELISA. The 
results showed that the expression of FN1 and GSN were 
significantly higher in the PTC group than in the con-
trol group patients (p < 0.05, Supplementary Fig.  3A). 
The AUC of the FN1 biomarker was 0.9224, with a sen-
sitivity of 96.89% and a specificity of 91.67%. The AUC 
of GSN was 0.637, with a sensitivity of 83.33% and a lim-
ited specificity of 50% (Supplementary Fig. 3B, Table 2). 
FN1, a glycoprotein, is an important component of the 
extracellular matrix. The biological role of FN1, particu-
larly FN1-beta1 integrin signaling, in cancer progression, 
metastasis and therapy resistance has been explored in 
cancers such as lung cancer and breast cancer. GSN is a 
cytoskeletal protein that can promote epithelial-to-mes-
enchymal transition (EMT) signaling and subsequent 
tumor invasion. GALE is a glycosyltransferase involved in 
galactose metabolism. It has been shown that the mRNA 
levels of GALE and FN1 were overexpressed in PTC com-
pared with benign nodules as acquired by RT-PCR [33]. 
These observations support a potential role for serum 
FN1, GSN and GALE in differentiating patients with 
benign nodules versus PTC. We did not validate GALE 
and other proteins due to the lack of commercial ELISA 
kits. It would be interesting to further validate them as 
potential biomarkers independently or in combination 
for PTC differential diagnostics in a large cohort.

Discussion
Blood-based liquid biopsy has shown advantages in 
clinical settings as a minimally invasive, safe, and alter-
native or complementary approach for tissue biopsies. 
Importantly, tumor-derived secretomes or cancer degra-
domes in the TME play central roles in tumor progres-
sion, recurrence and metastasis [34]. Although DNA or 
RNA sequence data have been utilized to guide cancer 
treatment, a recent study demonstrated that the cancer 
proteome complements the DNA/RNA status and has 
the potential to refine treatment options [35]. In addi-
tion, proteome-wide depiction of interactomes across 
cancer and host responses at the tissue and circulating 

Fig. 5  Tissue proteome detection consisting of tumor tissues (labeled as TC) and their paired non-cancerous adjacent tissues (NATs) (labeled as 
TP) for the same patient with papillary thyroid cancer (PTC). A The average intensity of the identified proteins was plotted with rank to illustrate the 
dynamic range of the tissue proteome. Points in red are the proteins from TC sample and points in orange are the proteins form TP. B Overview of 
the protein identifications in TC samples. The pairwise samples are annotated by grey straight lines. The dashed curves fitted by lasso regression 
show the distribution of protein identifications in TC (red) and TP (orange) samples. The shading that underlies the las-so curves denotes the 95% 
confidence intervals. C Scores plot for Partial least square-discriminant analysis (PLS-DA). Score plot shows TC in red and TP in blue polygon. D 
Classification of tumor tissues and their paired NATs based on differentially expressed proteins and unbiased clustering analysis. E Identification 
of differentiated proteins in tumor tissues and their paired NATs using volcano plot analysis. Box plot analysis of represented proteins. F are the 
comparison of protein classes and signaling pathways for tumor tissues and their paired NATs

(See figure on next page.)
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Fig. 6  Characterization of the transcriptomes data of patients with papillary thyroid cancer. A The heatmap of 34 selected genes in TCGA database. 
B-D, The boxplots indicate the genes expression levels between Normal and Tumor group. B represents FN1, C represents GSN and D represents 
GALE, respectively. Red boxplots refer to normal group, while green boxplots are for tumor group. E, F The results of functional enrichment analysis. 
Size of the dots represent the number of enriched genes, and the color of the dots represent the adjusted P value in GO (E) and KEGG (F) analyses
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Fig. 7  Characterization and validation of the integrated serum and tissue proteomics of patients with papillary thyroid cancer (PTC). A the 
overlapping 23 proteins presented in both serum and thyroid tumor tissue proteomic dataset. B Classification of integrated serum and tissue 
proteomics based on differentially expressed proteins and unbiased clustering analysis. C Differential expressions of represented proteins by 
DIA-MS and Antibody microarray. D are the comparison of protein classes and signaling pathways for 23 overlapped proteins. E, IHC demonstrates 
represented proteins expressions in PTC tissues
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Fig. 8   Extracellular matrix (ECM)-receptor interaction and MAPK pathway
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levels remains elusive. Here, we performed a compre-
hensive analysis of tissue and serum proteomes from 
PTC patients and healthy controls. We applied a strategy 
employing antibody microarrays and DIA-MS to quan-
tify a total of 1091 serum proteins, which resulted in a 
much improved depth of the serum proteome.

The proteomic data from both serum and tumor tis-
sue in PTC patients allowed us to identify the potential 
crosstalk between them. Our analysis demonstrates that 
the EMT markers FN1, GSN and GALE are strongly 
expressed in PTC tissues and at the circulating level. We 
further showed higher expression levels of FN1, GSN 
and GALE in PTC tissues than those in NATs. This find-
ing is consistent with the transcriptional levels of FN1, 
GSN and GALE expression in the TCGA dataset of thy-
roid cancer. In particular, integrin αvβ3 contains an Arg-
Gly-Asp (RGD) recognition binding site, particularly 
for ECM proteins such as FN1, and thyroid hormones 
bind the receptor near the RGD site to serve as a recog-
nition and binding motif for ECM proteins [36, 37]. A 
previous study demonstrated that lncRNA NEAT1 can 
modulate miR-491 levels to regulate transglutaminase 2 
(TGM2) and promote the transcriptional activation of 
FN1 through nuclear factor kappa B (NFkb) p65 nuclear 
translocation, consequently leading to PTC invasion and 
metastasis [38]. In addition, overexpression of FN1 is also 
found in radioactive iodine (RAI)-resistant PTC tissues, 
where the lncRNA-NEAT1/miR-101-3p/FN1 axis and 
PI3K/AKT signaling pathway are involved [39]. Impor-
tantly, downregulation of NEAT1 can reverse the RAI 
resistance of PTC [39]. GALE mRNA expression was also 
found to be increased in PTC tissues, but its role in PTC 
remains to be explored [33]. Additionally, using ELISA 
tests, we validated serum FN1 and GSN as differentiating 
patients with benign nodules versus patients with PTC. 
The best ELISA result was from FN1 (sensitivity = 96.89% 
and specificity = 91.67%). Thus, we believe that additional 
studies are warranted to validate the serum levels of FN1, 
GSN and GALE as potential biomarkers for PTC in inde-
pendent datasets from a large prospective clinical study. 
These findings improve our knowledge of thyroid cancer 
biology and hence potentially aide the clinical decision-
making process.

Integrative analyses revealed that integrin-mediated 
pathways are at the nexus of crosstalk between blood and 
tumor, and complement activation and coagulation cas-
cades at the circulating level may promote tumor growth. 
This finding adds to recent discussions on the roles of 
thyroid hormones (THs) in thyroid cancer proliferation, 
metastasis, angiogenesis, and radio-resistance via integrin, 
which is overexpressed in cancer cells [40]. Additionally, 
the human complement system consists of approximately 
50 serum proteins and membrane-bound regulators and 
receptors [41]. It has been widely demonstrated that imbal-
anced complement activation contributes to regulating the 
functions and tumor-suppressing immune responses and 
therapeutic targeting of the complement system has also 
been discussed [42]. As seen in studies on thyroid cancer, 
for example, higher levels of a fragment of complement 
C4A/B were detected in papillary thyroid cancer patients 
compared to tumor-free controls by matrix-assisted laser 
desorption/ionization-time of flight mass spectrometry 
[43]. Higher expression of plasma complement factor B 
(CFB) in thyroid carcinoma is correlated with a better sur-
vival [44]. The median serum levels of complement factor 
H-related protein 1 were significantly higher in the med-
ullary thyroid cancer and follicular thyroid cancer than 
in the PTC patients and control groups [45]. Surgery is a 
standard strategy for PTC treatment. Thus, the changes 
of proteins in the complement and conjugation cascade 
before and after tumor removal may reflect the tumor bur-
den or other unknown mechanisms and have the potential 
to be validated in further studies.

In summary, the work presented here identifies a 
resource comprising proteomic regulation in the PTC 
tumor and circulation, highlights that integrin-mediated 
pathways as well as complement activation and coagu-
lation cascades are regulated, and distinguishes FN1, 
GSN and GALE as promising biomarkers to achieve the 
diagnostics for indeterminate cases. Notably, thyroid 
hormones can also regulate thyroid cancer cell prolif-
eration through molecular and signaling pathways. The 
therapeutic targeting impinging on these signaling path-
ways should thus be explored. For example, the T4 analog 
tetraiodothyroacetic acid (tetrac) can block the actions 
of T4-integrin αvβ3 in thyroid cancer [40]. In addition, 
T3 signaling through thyroid hormone receptor beta 
(TRβ) in the nucleus has a tumor-suppressive effect [40]. 
Furthermore, thyroid hormone levels are regulated by 
thyroid stimulating hormone (TSH) released from the 
pituitary. Sulaieva et al. showed that TSH levels are not 
associated with PTC aggressiveness, including LNM, 
TNM stage, and the BRAFV600E mutation [46]. Given 
the complexity of thyroid hormone regulation, future 
studies should also address their relation to thyroid 
cancer.

Table 2  Area under the curve (AUC) and its 95% confidence 
interval (CI), sensitivity and specificity values of the ELISA tests

FN1 GSN

AUC (95% CI) 0.924 (0.867–0.98) 0.637 (0.493–0.78)

Sensitivity (%) 86.89 83.33

Specificity (%) 91.67 50
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