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Abstract

Beckwith-Wiedemann syndrome (BWS),
a disorder associated with neonatal hypo-
glycaemia, increased growth potential,
and predisposition to Wilms’s tumour
(WT) and other malignancies, has been
mapped to 11pl5. The association with
11p15 duplications of paternal origin, of
balanced translocations and inversions
with breakpoints within 11p15.4-p15.5 of
maternal origin, and the demonstration
of uniparental paternal 11pl1S5 isodisomy
in some sporadic cases point towards the
involvement of genomic imprinting. In
agreement with this, we show the pater-
nal origin of a de novo 9;11 translocation
in a phenotypically normal mother,
whose carrier daughter developed BWS.
This supports the fact that BWS associ-
ated with balanced chromosome muta-
tions is transmitted in the same sex
dependent pattern as non-cytogenetic
forms of familial BWS.

(F Med Gener 1993;30:958-61)

Beckwith-Wiedemann syndrome (BWS) is a
generalised overgrowth disorder characterised
by large size at birth, neonatal hyperinsulinae-
mia and hypoglycaemia, macroglossia, umbili-
cal abnormalities, visceromegaly, hemihyper-
trophy, and a highly increased risk of Wilms’s
tumour, adrenocortical carcinoma, and other
malignancies. Although sporadic in many
cases, the segregation in familial cases suggests
autosomal dominant inheritance, with incom-
plete penetrance! or variable expressivity.?? In
many families only female carriers have affec-
ted offspring.*> This apparent sex dependent
transmission has recently been explained by
the demonstration of uniparental paternal dis-
omy in association with sporadic cases of
BWS, suggesting that genomic imprinting is
involved.®

The cytogenetic abnormalities which have
been found in association with BWS include
two cases with interstitial deletion of the proxi-
mal part of 11p,’® several cases with duplica-
tion of the distal part of 11p, either as de novo
rearrangements or as a result of familial

Figure 1 Facial appearance of the proband at the age of 6% years.
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Figure 2 Front view
showing bilateral femoral
hypertrophy.
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translocations/inversions,>'® and apparently
balanced chromosomal rearrangements associ-
ated with BWS (five reciprocal translocations,
one inversion).'®!”

The involvement of genomic imprinting in
BWS is also supported by the parental origin
of the different types of associated chromoso-
mal rearrangements. All cases analysed with
duplications of 11p with a known parental
origin have been paternally derived,*'¢ and all
the balanced rearrangements have been of
maternal origin.'®'” Furthermore, all the
mothers who carried the same balanced trans-
locations/inversions as their affected offspring
have been phenotypically normal. In the con-
text of genomic imprinting this could be
explained if these maternal rearrangements
were of paternal origin.

We show here the paternal origin of a de novo
reciprocal translocation, t(9;11)(pl11;pl5.5),
associated with BWS in a subsequent genera-
tion.

Materials and methods

CASE REPORT

The proband was the first child of a 29 year old
healthy woman who had had a previous spon-
taneous abortion in the 10th gestational week.
Paternal age was 31 years. She was delivered
by caesarian at 30 weeks because of pre-
eclampsia. Birth weight was 1233 g and length
40 cm. Apgar scores were 2/1, 5/5, 7/10, and 9/
20. Neonatally she developed hypoglycaemia,
which was treated adequately, and respiratory
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Figure 3 High resolution RBA banding of chromosomes 9 and 11. Arrows indicate
the breakpoints on the two dertvative translocation chromosomes.

Figure 4 C banding of
(a) normal chromosome 9,
(b) derivative 9, and (c)
derivative 11.

distress syndrome. At the age of 2 months she
was readmitted to hospital with failure to
thrive and sucking difficulties and macroglos-
sia was observed. One month later an umbilical
hernia was diagnosed.

At the age of 51 years her height was 126 cm
(+3S8SD) and her weight 23kg (+1SD).
Slight facial dysmorphism included reduced
bitemporal diameter, frontal bossing, high
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vaulted palate with paresis of the soft palate,
and macroglossia. There were bilateral ear
creases/grooves and ear pits on the right side
(fig 1). A 5 cm umbilical hernia was observed.
Her right leg was approximately 1 cm longer
than the left, and she had a lumbar scoliosis
convex to the left. There was bilateral hyper-
trophy of the femoral muscles (fig 2). Mentally
she was only slightly retarded. There was no
evidence of visceromegaly. She is now fol-
lowed up every six months by abdominal
ultrasound and urinary 17-ketosteroids.

Clinical examination of the mother and
father shows no signs of BWS.

CYTOGENETICS

Routine Q banding, C banding, and high reso-
lution RBA banding of the proband, both
parents, and the maternal grandparents was
performed essentially as described pre-
viously.'® For staining of the heterochromatic
region on chromosome 9, the methyl green/
DAPI method'® was applied.

PCR ANALYSIS OF FLOW SORTED

TRANSLOCATION CHROMOSOMES

Flow analysis and sorting of the derivative
translocation chromosomes and of the normal
chromosome 11 from a lymphoblastoid cell
line established from the mother was per-
formed on a FACStar Plus (Beckton Dickin-
son) essentially as described previously.? Each
PCR analysis involving a specific primer set
and chromosome fraction was performed a
minimum of four times on 200 sorted template
chromosomes. After analysis of genomic DNA
from the family, primer sets of two informative
chromosome 11 loci were chosen for PCR
analysis of flow sorted chromosomes: D11S35
located at 11922 (ACAATTGGATTAC-
TACTAGC and TGTATTTGTATCGAT-
TAACC) and D11S436 located at 11pl11.22-
pl2 (CTCAATCATAGCAGGGGAC and
CACACCTGGCAATTTGCAA). The PCR
conditions (94°C, one minute; 55°C, one
minute; 72°C, one minute) for 30 cycles run on
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Figure 5 Methyl green/DAPI staining of chromosome
9 and derivative 9 in the proband (open arrow), the
parents, and the maternal grandparents. Large arrows
indicate the segregation of the large heterochromatic
block from the maternal grandfather.
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Figure 6 Flow karyotype of the maternal translocation carrier. The sorted fractions

are boxed.
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Figure 7 Illustration of paternal origin of t1(9;11) by PCR analysis of sorted
chromosomes. The lanes below the pedigrees show the PCR pattern of genomic DNA.
Arrowheads indicate the paternal alleles.

Tommerup, Brandt, Pedersen, Bolund, Kamper

a Perkin Elmer GeneAmp 9600) were identical
for the two primer sets used.

Results

Chromosome analysis of the proband showed a
female karyotype with a reciprocal transloca-
tion, 46,XX,t(9;11)(p11.2;p15.5). Thus, part
of the most distal subband 11p15.5 has been
translocated to a position just above the C
band region on the short arm of chromosome
9, and almost all of 9p has been positioned on
top of 11p, with the breakpoint somewhere in
the middle of subband 11p15.5 (figs 3 and 4).
The father had a normal karyotype, but the
same apparently balanced reciprocal 9;11
translocation was observed in the mother.

The phenotypically normal maternal grand-
parents both had normal chromosomes,
indicating that the mother was a de novo
translocation carrier. The breakpoint on 11p
has recently been mapped by in situ hybridisa-
tion to be proximal to the insulin and insulin
growth factor 2 (IGF2) locus, and distal to
D11S12 (ref 16, cases 7 and 7a).

Methyl green/DAPI staining showed the
presence of a large block of MG/DAPI posit-
ive heterochromatin on the long arm of the
derivative translocation chromosome 9. This
large block could be traced back to the mater-
nal grandfather of the proband (fig 5).

The derivative translocation chromosomes
could be clearly separated and sorted from
each other and from the cluster of C group
chromosomes containing the normal chromo-
some 11 (fig 6). At both loci tested, the allele
corresponding to the derivative chromosome
11 originated from the father (fig 7), indicating
a paternal origin of the de novo translocation in
the mother of the affected child.

Discussion

A likely candidate locus for BWS is insulin
growth factor 2 (IGF2). In previous reports
only the paternal allele of IGF2 was trans-
cribed in most tissues in the mouse,?! duplica-
tion of the chromosomal segment containing
the paternal IGF2 allele resulted in abnormal
large mice,?? and maternal transmission of a
defective IGF2 locus resulted in small mice.?
Along with this it has been suggested that an
increased dosage of paternally derived IGF2
alleles, by duplication or by paternal disomy,
may be involved in BWS.*

However, a preferential loss of heterozygo-
sity of maternal 11p15 alleles in BWS associ-
ated tumours also supports the involvement of
a maternally imprinted recessive tumour sup-
pressor locus.” Two clusters of breakpoints
associated with the balanced translocation and
inversion chromosomes associated with BWS
have been identified, one at 11p15.5 near IGF2
as found in the present translocation, and one
at p15.4.'° This led to the suggestion that there
may be an additional, proximal locus in the
11p15.4 region involved in BWS, which may
be maternally imprinted and which may regu-
late (suppress) a growth promoting locus in the
region.'® The observation of loss of heterozy-
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gosity within the 11p15.4-15.5 region in BWS
associated tumours supports that lack of func-
tion also may be a mutational mechanism
involved in BWS. If so, deletions involving the
distal part of 11p15 would also be expected to
occur in BWS. However, cytogenetically
visible deletions involving the distal part of
11p15 seem to be incompatible with fetal sur-
vival.? In the absence of deletions, the types of
chromosome rearrangements which will be
compatible with loss of function, without gross
deletion, would be balanced translocations and
inversions.

The large majority (85%) of cases with BWS
are sporadic,! and only a small fraction is
associated with a visible chromosomal aberra-
tion.!3!¢!" The present study supports that the
sex dependent transmission pattern seen in the
non-cytogenetic forms of BWS also applies to
the cases associated with balanced chromo-
some mutations. Since de novo structural
chromosome rearrangements are of predomi-
nantly paternal origin,?”?® it would be expected
that the mode of transmission of BW'S associ-
ated with such rearrangements will either fol-
low a pattern with unaffected mothers who are
de novo carriers, or a transmission pattern like
father-de novo carrier father-carrier mother-
affected carrier child. The latter mode of trans-
mission might be suspected in a family with
BWS associated with a pericentric inversion of
chromosome 11.1°

This study was supported by The Danish
Cancer Society, The Norwegian Cancer
Society, and The Danish Biotechnological Re-
search and Developmental Programme 1991-
95. Lymphoblastoid cell lines from the two
translocation carriers (1812-891./1813-89L)
are available upon request.
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