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abstract

The radiotherapy (RT) process from planning to treatment delivery is a multistep, complex operation involving
numerous levels of human-machine interaction and requiring high precision. These steps are labor-intensive
and time-consuming and require meticulous coordination between professionals with diverse expertise. We
reviewed and summarized the current status and prospects of artificial intelligence and machine learning
relevant to the various steps in RT treatment planning and delivery workflow specifically in low- and middle-
income countries (LMICs). We also searched the PubMed database using the search terms (Artificial Intelli-
gence OR Machine Learning OR Deep Learning OR Automation OR knowledge-based planning AND Ra-
diotherapy) AND (list of Low- and Middle-Income Countries as defined by the World Bank at the time of writing
this review). The search yielded a total of 90 results, of which results with first authors from the LMICs were
chosen. The reference lists of retrieved articles were also reviewed to search for more studies. No language
restrictions were imposed. A total of 20 research items with unique study objectives conducted with the aim of
enhancing RT processes were examined in detail. Artificial intelligence and machine learning can improve the
overall efficiency of RT processes by reducing human intervention, aiding decision making, and efficiently
executing lengthy, repetitive tasks. This improvement could permit the radiation oncologist to redistribute
resources and focus on responsibilities such as patient counseling, education, and research, especially in
resource-constrained LMICs.
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INTRODUCTION

The anticipated increase in cancer burden over the next
few years could potentially overwhelm the oncology care
system, especially in resource-constrained low- and
middle-income countries (LMICs).1,2 Although radio-
therapy (RT) is an indispensable component of cancer
care, access to it worldwide is very inequitable, with the
current density of RT machines per million population
ranging from 0 to 11.6, depending on the economic
situation of a country.3 The RT process starts with a
series of visits to radiation oncology (RO) clinic, culmi-
nating in the final diagnosis, staging, and prognostica-
tion after which a radiation treatment protocol is
assigned. Once a protocol is assigned, the subsequent
RT treatment process can be categorized into imaging,
target and organs-at-risk (OARs) segmentation, treat-
ment plan generation, onboard imaging, treatment de-
livery, and quality assurance (QA) checks. These steps
are labor-intensive and time-consuming, requiring
multiple levels of human-machine interaction and a high
degree of precision.4 The patient continues to visit the
clinic on conclusion of therapy for toxicity management
and follow-up. This workflow is summarized in Figure 1.

The RT workflow requires meticulous coordination
between trained medical professionals with diverse
expertise, i.e., radiation oncologists, medical physicists,
dosimetrists, and radiation therapists.5 Understaffing
and workforce burnout is, unfortunately, a common
problem plaguing RO in LMICs heightened by the
ongoing COVID-19 pandemic.6 Training the highly
specialized RO workforce requires a high cost and time
commitment. The role of artificial intelligence (AI) and
machine learning (ML) in optimizing RT processes to
achieve the best human, technological, and financial
resource utilization is worth exploring.

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Russell and Norvig7 have defined AI as “the designing
and building of intelligent agents that receive precepts
from the environment and take actions that affect that
environment.” A more perceptive definition given by
Goel is “the science of building artificial minds by un-
derstanding how natural minds work and understanding
how natural minds work by building artificial minds.”ML
is a branch of AI that allows computer systems to
progressively learn, train, and improve on the knowledge
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gained from a variety of input data without being overtly
programed.8 AI and ML can improve the accuracy, robust-
ness, and speed of RT processes by reducing or eliminating
human interference, aiding in decision making, and effi-
ciently executing lengthy, repetitive tasks.9 Using ML can free
up time for more rewarding tasks such as education, re-
search, patient counseling, and quality checks. The following
review focuses on the potential use of ML and AI to transform
the existing RT workflow and create a sustainable model that

can be adopted in LMICs to supplement human efforts in
labor-intensive tasks: segmentation, planning, and QA.

ROLE OF ML IN IMAGE SEGMENTATION

Manual segmentation (or contouring) of the target and OARs
is a time-consuming and highly subjective task that lies at the
core of RT planning. Historical solutions offered by tech-
nology to this conundrum include edge- and region-based
methods and atlas-based methods of autosegmentation.10

CONTEXT

Key Objective
We review the role of artificial intelligence (AI) and machine learning (ML) in improving the efficiency of various radiotherapy

processes and the challenges in their clinical integration.
Knowledge Generated
AI and ML can improve the accuracy, robustness, and speed of radiotherapy processes by reducing or eliminating human

interference, aiding in decision making, and efficiently executing time-consuming, repetitive tasks. As its clinical utility
remains yet to be proven, multi-institutional collaborative effort between various stakeholders is urgently needed, before the
revolutionary impact of AI and ML bears fruition.
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FIG 1. Utility of AI/ML in RT processes. AI, artificial intelligence; CNN, convolutional neural networks; ML, machine learning; QA, quality assurance;
RT, radiotherapy.
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Deep learning (DL), a subset of ML, is essentially a neural
network with three or more layers. These can comprise
simple feed-forward models such as artificial neural network
or complex models such as convolutional neural networks
(CNN) and recurrent neural networks. CNN has been in-
creasingly used to learn complex nonlinear relationships
within the imaging data to speed up and improve OARs
delineation in mediastinum, pelvis, thorax, brain, and head/
neck.11 Image segmentation on the basis of DL uses either
patches or regions of an image or the entire image as input to
estimate the likelihood that a given image sample belongs to
the object being segmented. The likelihood map can be
further enhanced by methods combining DL and deformable
models.12 Multiple papers published using ML for auto-
segmentation of OARs have demonstrated no clinically
meaningful difference between segmentation by model and
clinicians or radiographers with very high values of dice
similarity coefficient, while recording a significant reduction in
time needed for the segmentation.13-17 For example, the
average segmentation time for abdominal OARs liver,
stomach, duodenum, and kidneys was 7.1 minutes with
automation versus 22.6 minutes when done manually.13

Lesion segmentation is more complex than OARs segmen-
tation because of the heterogeneity in shape, size, and lo-
cation of the target and, therefore, is still in nascent stages.12

Computer-aided diagnosis methods, including conventional
radiomics and CNN-based algorithms that enhance lesion
detection in diagnostic radiology, can potentially be used in
lesion segmentation during RT planning.18

ROLE OF ML IN RADIOTHERAPY TREATMENT PLAN
GENERATION AND ADAPTIVE PLANNING

The advent of intensity-modulated RT and volumetric
modulated arc therapy that offer exceptionally conformal RT
delivery has increased manifold the intricacy and complexity
of RT planning. High-precision treatment procedures such
as stereotactic body ablative RT often consume hours or
even days of human effort for planning.19 Knowledge-based
planning (KBP), which uses data from previous good cases
to inform current patient planning parameters, has emerged
as a powerful tool to accelerate the process of RT planning.19

Efforts are ongoing to establish indigenous KBP models for
cancers common in LMICs, such as cervical cancers, and
validate them in various geoethnic populations to test effi-
cacy in patients with different anatomies on the basis of
geographical locations.20,21 Supervised DL algorithms have
been used for beam direction optimization, where the
possible subsequent beam distribution is predicted on the
basis of patient anatomy.22 Use of DL in the prediction of
spatial dose distribution has been extensively explored, with
different architectures of CNN being used to predict the
geometric and planning parameters of historical patients.22 A
significant gain in time has been reported with ML over non-
ML methods such as column generation to select beam
orientations, calculate the dose influence matrices, and fi-
nally solve the fluence map optimization with comparable

dosimetry.23 ML algorithms have also been used to enhance
KBP further to generate treatment plans.24 Recent studies
have even attempted to emulate the decision-making
strategy of human planners when solving a specific dosi-
metric trade-off problem, thereby potentially reducing the
element of subjectivity.25

Another unique approach is the use of Pareto surface–based
techniques for multicriteria optimization, where a database of
plans is created for a single patient and the plan that achieves
the best balance between different treatment planning goals
is chosen by the planner and the physician.26,27 The Erasmus
i-cycle (created in an academic university) is a vendor-neutral
algorithm usingmulticriteria optimization that is in clinical use
for external beam therapy and is being developed for
CyberKnife, proton therapy, and brachytherapy (BiCyle).28-32

ROLE OF ML IN RADIOTHERAPY ONBOARD IMAGING AND
TREATMENT DELIVERY

ML techniques, including DL approaches, have dealt with
intra- and interfraction patient and organ motion during RT
treatment delivery to aid tumor gating and motion tracking.33

Frameworks have been built using neural networks trained
on collected patient breathing data to predict the breathing
pattern while delivering RT.34ML has been used to aidmotion
tracking by assisting in the detection of the tumor (marker-
less tracking) or surrogate markers.35 ML has been used to
help avert setup errors and patient safety hazards by tracking
the treatment room components and the patient’s body in
real time using 3D cameras to fine tune a CNN for object
recognition.36 A group of scientists have developed a com-
puter vision–based pneumatic soft robot actuator to better
estimate a patient’s head pitch motion and to manipulate the
patient head position on the basis of sensed head pitch
motion, thereby potentially eliminating the need for immo-
bilization with a thermoplastic mask.37

The role of ML in online adaptive RT planning has been
extensively explored, mainly in deformable registration and
dose warping, facilitating high registration accuracy and
efficient execution even if graphical processing units are
unavailable.38 A proof-of-concept study investigates online
multileaf collimator tracking to generate appropriate safety
margins for online adaptation of the treatment plan on the
basis of the patient’s motion and the ability of the machine to
follow these excursions.39 Algorithms can assist physicians in
supervising variations during treatment course by evaluating
daily setup variations and anatomic changes, for early
identification of adaptive replanning requirement.40

ROLE OF ML IN RADIOTHERAPY QUALITY ASSURANCE

Implementing regular and meticulous QA in RT is expected to
lead to more accurate treatment delivery and better clinical
outcomes. ML has excellent potential to enhance the efficacy
and efficiency of RT QA processes as they are often repetitive
and time-consuming. ML techniques have been used to
predict gamma passing rates and the probability of the plan
failing patient-specific intensity-modulated RT QA by
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analyzing plan complexity; multiple components of the de-
livery system such as multileaf collimator, imaging system,
andmechanical and dosimetric parameters, and plan delivery
log files over time.41-43 Another approach has identified RT
treatment delivery errors using radiomics-based feature ex-
traction from patient-specific gamma images.44 A study has
applied artificial neural network–based time series prediction
modeling to predict the performance of beam symmetry of
linear accelerators over time.45 Although these in silico ap-
proaches of various ML tools have augmented RT QA pro-
cedures, it is pertinent to establish its real utility in the clinical
context before implementation.

OTHER APPLICATIONS OF AI IN RADIATION ONCOLOGY

Data Annotation, Radiomics, and Response Prediction

Radiomics is a method that extracts a large number of fea-
tures from medical images using data characterization
algorithms.46 Many institutions and health networks, including
from India, are working to create repositories of annotated
medical data and medical images including outcomes of
treatment for furthering radiomic research in large image data
sets.47,48 Distributed learning approaches with AI support have
been used to conduct population-based studies on routine
data and build decision support models.49,50 Image banking
combinedwith predictive/prescriptive AI is a cost-effective and
efficient alternative to identify signatures for response, toxicity,
and outcome prediction after cancer treatment.51-53

Natural Language Processing

Natural language processing (NLP) is a branch of AI that
enables computers to interpret human language. NLP has
already found application in themedical world to facilitate data
extraction from free text in electronic medical records. The
specific utility of NLP being explored in RO is standardization
of contours and plans nomenclature to enable efficient data
extraction.54

ORIGINAL RESEARCH FROM LMICS USING AUTOMATION
AND ML TO OPTIMIZE RT PLANNING, TREATMENT
DELIVERY, AND QA PROCESSES

We searched the PubMed database using the search term
(Artificial Intelligence[tw] OR Machine Learning[tw] OR Deep
Learning[tw] OR Automation[tw] automated[tw] OR
knowledge-based planning[tw] AND Radiotherapy[tw]) AND
(list of Low- and Middle-Income Countries as defined by the
World Bank at the time of writing this review). The search
yielded a total of 90 results, of which results with first authors
from the LMICs were chosen. The reference lists of retrieved
articles were also reviewed to search for more studies. No
language restrictions were imposed. A total of 20 research
items with unique study objectives conducted with the aim of
enhancing RT processes were studied in detail and are
presented in Table 1.

The majority of studies have focused on the utilization of CNN
and other networks for autosegmentation.55-62 The striking
reduction in time burden seen with incorporating these

algorithms while maintaining the accuracy of contours can
prove to be pivotal in resource allocation in LMICs. The studies
on autoplanning have mainly used KBP.20,21,62,63 Developing
indigenous models with local data rather than adopting
western models to fit into the local workflow seems to be the
standard approach, which is undoubtedly remarkable.
Studies from LMICs using AI/ML to assist in online adaptive
planning, treatment delivery, and QA are few and far between,
and more work in this area must be encouraged.64,66-68

CHALLENGES OF INTEGRATING AUTOMATION AND ML INTO
CLINICAL PROCESSES

Although AI has already become pervasive in our day-to-
day activities and has the potential to influence how
medicine is practiced, many challenges remain before its
complete integration into RT processes, as listed below.69

1. Clinical utility yet to be determined: Most ML-based
solutions are still in the stage of technological incuba-
tion, with the onus on the RO team to establish their
clinical value.

2. Risk analysis of automation and AI: QA studies for au-
tomated treatment planning tools have been conducted,
which stress the need for comprehensive manual review
of the plans by physicians and physicists before
implementation.70

3. Black-box nature of AI algorithms: In the case of failure
of AI-based solutions, there is no straightforward
framework to fix the outcome or predict errors. This lack
of transparency and difficulty in understanding the
outputs and predicting failures may make physicians
hesitant and distrustful to rely on AI in patient-related
decisions, further delaying the adoption of AI into clinical
practice. It is essential to train the RO staff to correctly
use the ML model and accurately interpret the intended
utility, scope, and limitations.

4. Interpretation: It is necessary to remember that even if
some algorithms can perform at near-human ability, the
way they perceive and interpret the inputs differs from
the human mind.

5. Training data: A machine learning algorithm’s accuracy
and generalizability are influenced heavily by the
quality and quantity of the training data more than the
mathematical parameters. Since individual institutional
data sets are bound to be minor, data sharing across
multiple institutions can make the ML/DL algorithms
more robust. Distributed learning is an emerging
approach to securely transferring data sets between
institutions.71

6. Patient privacy and anonymity: The potential of dis-
tributed learning to provide evidence-based personal-
ized care in LMICs is immense. However, care should be
taken to uphold the rules of ethics, standardization, and
stringent privacy regulations.72

In conclusion, integrating AI and ML in RT processes may
allow radiation oncologists to spend more time on patient
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TABLE 1. Original Research From LMICs Using Automation and ML to Optimize RT Planning, Delivery, and QA Processes

S.
No.

Author(s),
Country, and

Year of
Publication

RT Process
Optimized Purpose of the Study Study Design

Automation Tool/AI
Framework/ML

Algorithm/Network
Architecture Used Significant Findings

Limitations
of the Study

1 Liu et al,
China
202155

Segmentation Automatic segmentation of
CTV and OARs after breast
conservation surgery

Processing time measured for
AI tool and pre- and post-AI
assistance

Network architecture: CNN Contouring time 20 and
30 minutes for CTV and OAR,
respectively, reduced to 10 and
5 minutes with AI assistance

Single center, ground truth
approved by only two
oncologists, subjective
scoring system, CT images
with pacemaker and
contrast not used

2 Diniz et al,
Brazil
202056

Segmentation Esophagus segmentation
from planning CT images
using an atlas-based DL
approach

Training and testing of
residual U-Net

Network: U-Net: a type of
deep CNN

Efficiency and accuracy
surpassing all earlier reports in
the literature

Technical concerns as
enumerated by authors,
dissimilarity in training data

3 Men et al,
China
201757

Segmentation Automatic segmentation of
target and OARs in rectal
cancer

Comparison of performances
of two networks

Network: Deep dilated CNN
v U-Net

45 seconds per patient for
segmentation of CTV and all
OARs with good accuracy

Segmentation of intestine and
colon not as good as other
organs

4 Xue et al,
China
202058

Segmentation DL-based automatic
detection and
segmentation of brain
metastases

Evaluation of a new DL model Network: Cascaded 3D fully
convolution network

Detection accuracy of 100% and
strong correlation of
segmentation with manual
segmentations. Can simplify
stereotactic RT planning and
follow-up

Fixed size of the located nidus
region used—more flexibility
of method needed

5 Yang et al,
China
201459

Segmentation ML algorithm for
autosegmentation of
parotids on MRI

Validation of the automated
parotid segmentation
algorithm

ML algorithm: Support
vector machine training

Potential to perform longitudinal or
large-scale clinical studies to
understand toxicity of parotid
gland and treat radiation-
induced xerostomia

CT-based method might have
been more practical than
MRI in LMICs

6 Liu et al,
China
202060

Segmentation Autosegmentation of CTV for
post-MRM RT in breast
cancer

Construction and validation
model for
autosegmentation of chest
wall CTV

Network: CNN It took 3.45 seconds to delineate
chest wall CTV using the model

Single center, ground truth
approved by only two
oncologists, subjective
scoring system

7 Pan et al,
China
202161

Segmentation Autosegmentation of
hippocampi on MRI

Validation of the new DL
model

Network: CNN Positive impact on improving
delineation accuracy and
reducing work load

Selection bias inherent to
retrospective studies

8 Xia et al,
China
202162

Segmentation +
plan
generation

AI-based full-process
solution for rectal cancer
RT

Combination of knowledge-
based and script-based
planning

Network: CNN Total time for full-process
planning without contour
modification = 7 minutes,
physician accepted 80% of
autoplans without further
operation

Solution may not be suitable for
sites with complex target
segmentation and beam
angle selection protocols

9 Sarkar et al,
India
201963

Plan generation Non-DVH predictive method
of KBP for VMAT SRS and
SRT

Validation of the library plan-
based model in new cases

ML algorithm: Not specified
(commercial)

Model completes SRS/SRT plans
in 1.5 runs

Plan quality dependent on
quality of library plans

(Continued on following page)
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TABLE 1. Original Research From LMICs Using Automation and ML to Optimize RT Planning, Delivery, and QA Processes (Continued)

S.
No.

Author(s),
Country, and

Year of
Publication

RT Process
Optimized Purpose of the Study Study Design

Automation Tool/AI
Framework/ML

Algorithm/Network
Architecture Used Significant Findings

Limitations
of the Study

10 Swamidas
et al, India
202120

Plan generation KBP for VMAT of cervical
cancer

KBP model configured from
institutional database
compared with CP

ML algorithm: DL-based
autosegmentation
algorithm (commercial)

Comparable and for some organs,
superior performance than CP

Modifications to the model not
possible: Would need
reconfiguration and
revalidation for a set of dose
constraints

11 Huang et al,
China
202073

Plan generation Develop an autoplanning
platform to be interfaced
with a commercial
treatment planning
system

Comparison of autoplans with
manual VMAT plans for
head and neck and
prostate

ML algorithm: MCO Autoplans clinically acceptable
with better OAR sparing

Manual check needed to avoid
system being trapped in a
dead loop to achieve all
dosimetric goals

12 Swamidas
et al, India
202121

Plan generation Geoethnic validation of KBP
models for image-guided
VMAT in locally advanced
cervical cancer

Compare and validate KBP
models developed in two
geoethnic patient
populations

ML algorithm: DL-based
autosegmentation
algorithm (commercial)

Protocol compliance good in both
clinical and KBP plans, across
the institutions

Only abstract available

13 Li et al, China
202074

Plan generation Automated estimation of
BED

Comparison of dose
parameters between pre-
and post-programed
models

NestNet, a variant of U-Net
used to predict the BED
distribution

Model predicts biologic dose
distributions accurately—may
pave the way for completely
automated BED-based planning

Only anatomic information
used for optimization; beam
data, and calculation
parameters not used

14 Wang et al,
China
201375

Plan evaluation Treatment plan quality
evaluation

Semiautomated plan quality
evaluation program
compared with manual
recording

Automation tool: JAVA and
MATLAB-based

Evaluation time reduced from 10-
20 to 2 minutes while
maintaining accuracy

Difference of 0.2% in volume or
0.6 Gy in dose between the
semiautomated program
and manual recording

15 Jiang et al,
China
202076

Plan evaluation CNN-based dosimetry
evaluation of esophageal
RT planning

Model predicting DVH from
DTH

DL: 1D-CN Average prediction error on the
planned target volume, left lung,
right lung, heart, and spinal cord
is 2.94%

Model takes multiple steps to
predict DVH instead of end-
to-end prediction, beam
orientation not taken into
account

16 Osman and
Tamam,
Sudan
202264

Dose distribution
prediction

KBP for IMRT in head and
neck cancer

KBP model used to generate
model to predict dose
distribution, which was
compared with ground-
truth plan

Attention-gated 3D U-Net
architecture model

Attention-gated convolutions
technique reduces network’s
redundancy and improves
prediction performance
compared with a baseline
standard U-Net model

Model trained on a fixed beam
configuration making it less
generalizable to other sites
and techniques

17 Nouri et al,
Iran 201765

Treatment
delivery

Evaluates accuracy of the
neural network estimating
tumor positions in real-
time RT

Comparison of neural
network training methods

AI algorithms: Neural
network, GA, and PSO

Neural network algorithm can
precisely trace the location of
tumor. Accuracies of 0.8%,
12%, and 14% in the neural
network, GA, and PSO,
respectively

Clinical implication not
enumerated

(Continued on following page)
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TABLE 1. Original Research From LMICs Using Automation and ML to Optimize RT Planning, Delivery, and QA Processes (Continued)

S.
No.

Author(s),
Country, and

Year of
Publication

RT Process
Optimized Purpose of the Study Study Design

Automation Tool/AI
Framework/ML

Algorithm/Network
Architecture Used Significant Findings

Limitations
of the Study

18 Liang et al,
China
202066

Onboard
imaging

To evaluate and quantify
intrafraction target motion
in liver

A fully automated framework
for analyzing intrafraction
motion using orthogonal kV
X-ray projections

U-Net to segment the
fiducial markers

Precision and recall of the fiducial
detection model were in excess
of 95% demonstrating high
model performance

Only select tumor locations
were studied limiting
generalizability

19 Li et al, China
201967

QA Assess accuracy of ML to
predict and classify QA
results for VMAT plans

GPR prediction accuracy of
PL and classification
performance of PL and RF
were evaluated

ML algorithms: PL
regression model to
predict GPR, RF model
to classify QA as pass or
fail

ML can assist VMAT QA and
reduce QA workload

Exploratory study: Only GYN
and head and neck VMAT
plans used to train the ML
model

20 Abubakar
et al,
Nigeria
202168

Offline image
guidance
protocols

Develop automated method
for optimization and
reduction of PTV margin
using logged setup errors

Extract setup errors in three
translational directions

Automated algorithm:
MATLAB-based

Algorithm calculates weekly offline
setup error correction values
automatically: PTV margins can
be accordingly reduced up to
48% for head and neck cancers

Does not consider rotational
errors

Abbreviations: 1D-CN, one-dimensional convolutional network; AI, artificial intelligence; BED, biologically equivalent dose; CNN, convolutional neural networks; CP, clinical plans; CT, computed
tomography; CTV, clinical target volume; DL, deep learning; DTH, distance to target histogram; DVH, dose volume histogram; GA, genetic algorithm; GPR, gamma passing rate; GYN, gynecological; IMRT,
intensity-modulated RT; JAVA and MATLAB, computer programing languages; KBP, knowledge-based planning; LMICs, low- and middle-income countries; MCO, multicriteria optimization; ML, machine
learning; MRI, magnetic resonance imaging; MRM, modified radical mastectomy; OARs, organs at risk; PL, poisson lasso; PSO, particle swarm optimization; PTV, planning target volume; QA, quality
assurance; RF, random forest; RT, radiotherapy; S. No., serial number; SRS, stereotactic radiosurgery; SRT, stereotactic radiotherapy; VMAT, volumetric modulated arc therapy.
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consultation, teaching, and research in resource-constrained
setups with a heavy workload. Given the transformative im-
pact that AI-based technology can bring to clinical processes
and workflow, it is essential to integrate these concepts early
in medical education and RO residency to facilitate a better
understanding of themethods and encourage innovation. We

have in front of us a means to revolutionize the practice of
RT as we know it. It is our responsibility toward the future
generation to understand, plan, prioritize, conduct mean-
ingful research, integrate and constantly improve AI and ML
in RTwithout bias or prejudice, and deliver it to settings where
the impact would be maximum.
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