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Abstract Identifying peptides directly from data-independent acquisition (DIA) data remains challenging due to
the highly multiplexed MS/MS spectra. Spectral library-based peptide detection is sensitive, but it is
limited to the depth of the library and mutes the discovery potential of DIA data. We present here, DIA-
MS2pep, a library-free framework for comprehensive peptide identification from DIA data. DIA-
MS2pep uses a data-driven algorithm for MS/MS spectrum demultiplexing using the fragments data
without the need of a precursor. With a large precursor mass tolerance database search, DIA-MS2pep
can identify the peptides and their modified forms. We demonstrate the performance of DIA-MS2pep
by comparing it to conventional library-free tools in accuracy and sensitivity of peptide identifications
using publicly available DIA datasets of varying samples, including HeLa cell lysates, phosphopeptides,
plasma, etc. Compared with data-dependent acquisition-based spectral libraries, spectral libraries built
directly from DIA data with DIA-MS2pep improve the accuracy and reproducibility of the quantitative
proteome.

Keywords DIA-MS, Spectral library-free, Spectrum demultiplexing, Large precursor mass tolerance, Mass spectro-
metry

INTRODUCTION

Data-independent acquisition (DIA), an alternative to
data-dependent acquisition (DDA), has been an
increasingly attractive method applied to mass
spectrometry (MS)-based label-free proteomics due to
its advantages in terms of quantification
reproducibility, accuracy, and sensitivity (Chapman et
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al. 2014; Gillet et al. 2012; Hu et al. 2016; Zacchi and
Schulz 2019; Zhang et al. 2020). In a DIA experiment,
rather than with the precursor intensity-triggered
mode in DDA, a mass spectrometer performs tandem
MS/MS scans by fragmenting all the precursor ions
within a series of predefined mass-to-charge (m/z)
windows, so DIA MS theoretically records all the
information of analytes in an unbiased way and is
particularly beneficial for the detection and
quantification of low-abundance peptides. However,
identifying peptides and proteins from DIA data is not
as straightforward as identifying them from DDA data
due to the highly multiplexed MS/MS spectra and
uncertain precursor-fragment relationships, which are

253 | December 2022 | Volume 8 | Issue 5-6


https://doi.org/10.52601/bpr.2022.220011

METHOD

J. Hou et al.

not compatible with conventional DDA data search
engines.

Developing more elaborate strategies for
interpreting DIA data is imperative. Library-based
search strategy has been widely adopted to detect
peptides from DIA data (Rost et al. 2014). The spectral
library can be either a sample-specific library from DDA
experiments of the pooled sample, a species-specific
library from the public peptide atlas resource
(Rosenberger et al 2014), or an in silico library
constructed by predicting spectra from peptide
sequences (Gessulat et al 2019). However, these
libraries can be expensive in terms of the time and
amount of sample required, not reusable across
laboratories or instrument platforms, or still immature
for in silico spectra of the peptide with post-
translational modifications (PTMs). Moreover, library-
based peptide queries are limited to the depth of the
library and cannot identify peptides with unexpected
modifications or sequence variants.

Complementarily, several library-free tools, such as
DIA-Umpire (Tsou et al. 2015), PECAN (Ting et al. 2017),
directDIA (Bekker-Jensen et al. 2020a), PASS-DIA (Mun
et al. 2020) and MaxDIA (Sinitcyn et al. 2021) have
been developed to identify peptides from DIA data with
no need of spectra library by directly searching the data
against protein database. DIA-Umpire, a spectrum-
centric tool, detects covarying precursor-fragment
groups from DIA data to generate pseudo MS/MS
spectra, which are then submitted to a conventional
DDA search tool for peptide identification. DIA data are
typically acquired by a single injection experiment, so
the precursors, which are poorly detected or interfered
with coeluting signals, are commonly observed,
especially when analysing complex samples with
limited chromatographic separation or samples with
highly dynamic ranges of detectable concentrations.
These will leverage the quality of pseudo-spectra
generated by DIA-Umpire, as the spectra may contain
insufficient peptide-specific fragments or ambiguous
precursor masses and charges, leading to a low
identification rate. PECAN, a peptide-centric method,
performs the peptide query from DIA data against a
background proteome database and reports the best
evidence of detection and associated retention time.
However, false positive detection evidence reported by
PECAN may be introduced when the putative elution
peak(s) of one peptide is shared by other peptides that
have fragment(s) with an overlapping dot product
distribution. In addition, PECAN does not provide
scores for site-specific modifications and variant
peptides. With a gas-phase fractionation (GPF) strategy
(Ting et al. 2017), the peptide detection capability of
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library-free tools can be improved because the
precursors in the MS1 scan are fragmented within
narrower precursor isolation windows than those in a
single-injection DIA experiment. However, GPF
experiments require multiple injections of pooled
samples, which may be impractical for cases with
limited sample quantities, such as rare clinical samples.

To meet the above challenges, we present here a
spectrum-centric framework, DIA-MS2pep, to identify
peptides and their modified forms from DIA data in a
library-free fashion. DIA-MSZpep uses a data-driven
strategy for spectrum demultiplexing based on
fragments data itself, which allows to effectively
deconvolve the multiplexed spectra even when the
signal of precursors is interfered or poorly detected.
With a large precursor mass tolerance database search,
DIA-MS2pep significantly improves the identification
rate of pseudo-spectra generated from DIA data, and
enables to identify the peptides containing post-
translational modifications (PTMs). Using varying types
of DIA datasets, we compare the performance of DIA-
MS2pep with DIA-Umpire and PECAN in terms of
accuracy and sensitivity of peptide identifications.
Using the dataset of mixed proteome with a well-
defined quantitative composition, we illustrate that,
with DIA-MS2pep, the spectral library generated
directly from DIA data allows to quantify the peptides
and proteins with better precision than the DDA-based
sample-spectral library. Lastly, when revisiting a real
biological DIA dataset from HeLa cell proteome in
response to serum starvation (Searle et al. 2018), using
DIA data-specific DIA libraries built with DIA-MS2pep,
we can quantify 25%-47% more differentially
expressed proteins (g-value < 0.01) than that
quantified using sample-specific DDA spectral library,
and report hundreds of peptides with either chemical,
biological modifications, or amino acid variants,
offering a potentially valuable data resource for the
further follow-up study.

EXPERIMENTAL SECTION

Workflow of MS2pep

MS2 spectrum self-demultiplexing

The Thermo MS. RAW files are converted into .mzML
format using MSConvert (part of ProteoWizard
(Chambers et al. 2012), v3.0.9974) with MS1 and MS2
vendor peak picking enabled, 64-bit binary precision

and other default options. The .ms1 and .mgf files are
subsequently converted from .mzML files using
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MSConvert or an in-house Perl script.

DIA-MS2pep extracts the chromatographic features
of fragments using a fixed number of MS2 spectra data,
which is calculated as the average time that one certain
precursor is consecutively observed as a base peak in
MS1 scan. After obtaining the information of the
isolation window setting from the .mzML file, DIA-
MS2pep then reads the MS2 spectra from .mgf files to
carry out data processing for self-demultiplexing:

1 A data matrix of the fragment ion intensity (/) and
scan cycle (C) is constructed from the fixed number
of MS2 spectra (S) acquired by the same isolation
window. Here, we take five fixed numbers (S = 5) as

an example,
c., C, Co C C,
bo M T T Tha e
Fao| Ipea  Iper  Ipw  lpa  lpe
F30| Inca  Ipe1 I Ipa Ipe
Fn—Z,cO Ifn—2,c—2 Ifn—Z,c—l Ifn—Z,cO Ifn—2,cl If—Z,cZ
Fn—l,cO 1fn—1,c—2 Ifn—l,c—l Ifn—l,cO Ifn—l,cl Ifn—l,cZ
Fn,cO Ifn,c—Z Ifn,c—l Ifn,cO Ifn,cl Ifn,CZ

where C, is the spectrum to be demultiplexed, and
C.4, C,, C; and C, represent the spectra of the
preceding and following two cycles, respectively.
F, .0 represents the Nth fragment in the spectrum
(Co)- In the spectrum (C,), the fragments with m/z
values less than 140 or within the m/z range of the
isolation window are excluded as the default. Given
that there are 100 fragments in C, DIA-MS2pep
individually extracts the fragment signal of the
same m/z within the mass tolerance from the
spectrum of C_;, C_,, C; and C,, and finally builds a
data matrix containing 5 x 100 intensities as above,
where I is the intensity of a given fragment (f) in
the spectrum of the scan cycle (c).

2 The detection of the base peak in the spectrum (Cj).
Apart from the highest intensity, one fragment
considered by DIA-MS2pep as the base peak should
also meet three additional criteria: (1) the peak has
an m/z value larger than 300; (2) it has a non-zero
intensity in at least three consecutive spectra
including Cy; and (3) it has an intensity higher than
1% of the intensity of the base peak in the raw MS2
data.

3 The Pearson correlation coefficient (PCC) of the
intensity profiles between the base peak and the
other fragments (base peak-fragment correlations)
is calculated. If the correlation vector of fragments

© The Author(s) 2022

with a PCC above 0.9 is more than ten, DIA-MS2pep
will continue the following steps of spectrum
demultiplexing. Otherwise, DIA-MS2pep will stop
the step of demultiplexing.

4 Theresulting data points of PCC are submitted to one-
dimensional kernel density estimation (KDE),
which is performed using the Perl module
“Statistics::KernelEstimation”. A Gaussian kernel is
used for the distribution estimation of the PCC data,
and the kernel bandwidth is set to 0.05 by default.
DIA-MS2pep enables to find the boundary between
the Gaussian distributions and determine the
corresponding PPC (p), and determine the
threshold of the PCC value (p,) as MAX{p, 0.8},
where 0.8 is the minimal PCC value of base peak-
fragment correlations required by DIA-MS2pep
(supplementary Fig. S1a and S1b).

5 Generation of the pseudo-spectrum in a two-step
way (supplementary Fig. S1c). First, the fragments
with a PCC value above p, are considered as the 1st
collection of fragments (F-1st) in the pseudo-
spectrum. Second, DIA-MS2pep performs another
round of PCC calculations between the fragments in
F-1st and the others. Fragments with a PCC above
Do are considered as the 2nd collection of fragments
(F-2nd). Finally, F-1st and F-2nd are together
reported as a pseudo-spectrum.

6 The remaining fragments (F-rest) are treated as the
input for Step Two in the next iteration unless the
number of F-rest is smaller than ten.

7 If no pseudo-spectrum is generated by the above
steps (1-6), then we still report the raw data as a
pseudo-spectrum.

All the pseudo-spectra are stored in .mgf format, in
which the center m/z value of the precursor isolation

window is assigned as the pseudo-precursor m/z.

Large precursor mass tolerance database searching

DIA-MS2pep performs a large precursor mass tolerance
database search using MSFragger (v.2.4), a DDA search
engine used for open search. The pseudo-spectra are
repeatedly searched by assigning different charge
states (1-5 as default) to the precursor. DIA-MS2pep
sets the precursor mass tolerance for the MSFragger
database search in two ways:

1 Charge-dependent

w*x Z
> +3),

* Z

precursor_mass_lower = — (

w

precursor_mass_upper = +3,
where w is the isolation window size (Da), z is the
pseudo-charge state, and the addition of 3 Da aims to

cover putative precursor isotopes that might be
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splitting between isolation windows.
2 Charge-independent

precursor_mass_lower = -100,

precursor_mass_upper = 400.

These two modes are user-defined in a mutually
exclusive way. Normally, compared with the charge-
independent mode, the charge-dependent mode
reports slightly more peptide identifications with less
running time due to smaller database searching space.
It is recommended to choose a charge-dependent mode
for the DIA data from PTM-enriched samples.

Search data refinement

DIA-MS2pep performs the following steps to
sequentially check the confidence of peptide
identification and remove false-positive peptide hits.

1 It is determined whether a real precursor signal
matches the theoretical mass of the peptide hit
(within the mass tolerance of the instrument) in the
MS1 scan. If so, then the number of isotopic peaks is
traced as an auxiliary peptide feature. If multiple
peptide hits share the same precursor, then DIA-
MS2pep keeps the one with a search score (Expect
score reported by MSFragger) of higher confidence.

2 If no precursor evidence is found in the above step,
then DIA-MSZ2pep determines whether the peptide
can be interpreted as having a potential
modification by performing a putative modification
search (for details, see the “Putative modification
analysis” section below).

3  DIA-MS2pep estimates the mass accuracy by
calculating the mean value (m) and standard
deviation (s) of the precursor in ppm using the
verified peptide hits with an expect score of less
than 0.01 and then using the mass deviation (m * 3s)
as a filter to remove the false-positive peptide hits.

4 Not all the mass shifts reported using open search
by MSFragger represent true modifications due to
possible artifacts from unaccounted missed
cleavages or co-fragmentation (Chang et al. 2020).
For the situation in which one spectrum reports
multiple peptides, using the basic idea of Crystal-C
(Chang et al 2020), DIA-MSZpep will check
whether the difference among these peptide hits is
caused due to the missed enzymatic cleavage. If so,
DIA-MS2pep only keeps the one scored with the
highest confidence.

5 If two or more peptide hits are identified by the
same  pseudo-spectrum, with  homologous
sequences with no more than two different amino
acids, then DIA-MS2pep only retains the one with a
search score of higher confidence.
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FDR estimation

DIA-MS2pep employs a target-decoy approach to
control the false discovery rate using Percolator. DIA-
MS2pep calculates the auxiliary peptide features to
improve the performance of the Percolator for the
discrimination of target and decoy peptide hits
(supplementary Fig. S2). For PTM-enriched data, such
as the phosphoproteome, DIA-MS2pep performs FDR
estimation of peptides with or without modifications
separately. The peptide scores of modified peptides,
such as phosphopeptides, are normally lower than
those of unmodified counterparts (Du et al. 2008).

Putative modification analysis

DIA-MS2pep performs a putative modification search
against the Unimod database (Creasy and Cottrell
2004). By default, DIA-MS2pep considers all the
modifications listed in the Unimod database, and also
allows users to define their own modifications of
interest into Unimod.xml files. The basic idea of this
search is to determine the probability of interpreting
the MS1 signals detected within the isolation window
as a precursor of a peptide with a putative modification,
in which the mass matches the difference between the
theoretical mass of the peptide and the mass of the
signal in MS1 within the precursor mass tolerance.

Precursor signal filtering

Because the signals in the MS1 scan are highly complex,
before considering them as candidates for putative
modification analysis, they should pass the following
stringent criteria: (1) a signal-to-noise ratio above 10;
(2) observation of at least two consecutive MS1 spectra;
(3) a number of isotopic peaks greater than 3; and (4) a
Pearson correlation coefficient of the intensity patterns
between the theoretical and observed isotopic peaks
larger than 0.8. Here, theoretical isotope peak patterns
(Kubinyi 1991) are calculated using stripped peptide
sequences.

Modification score calculation

DIA-MS2pep searches the potential modification
candidates against the Unimod database and calculates
the modification score and site localization probability
by implementing a similar algorithm as ptmRS (Taus et
al. 2011). A site probability score > 0.75 is required for
data processing in the next step.

© The Author(s) 2022
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Precursor-fragment correlation

To remove as many false-positive matches as possible,
DIA-MS2pep further calculates the PCC of the intensity
profile between the candidate precursor and at least
four matched fragments (from the top five candidates
ranked by intensity). A candidate is required to have a
median PCC greater than 0.9.

Rank of candidates

DIA-MS2pep ranks candidates with putative
modifications based on: (1) the length of the sequences
consecutively matched b- and y- ions; (2) the intensity
of the precursor isotopes; and (3) the median of the
PCC in the last step. The top-ranked candidate is finally
reported as a peptide with a corresponding putative
modification.

Phosphorylation site analysis

For comparison with the phosphorylation site
confidence calculated by DIA-MSpep, DDA data (and
pseudo-spectra generated by DIA-Umpire) were
searched using Sequest HT (Eng et al 1994) in
Proteome Discoverer (PD) 1.4 software, which used
Percolator to report peptide identifications with a
g-value < 0.01. The site localization confidence was
evaluated by PhosphoRS (Taus et al. 2011) Node
embrace in PD 1.4. Sites with a localization probability
> 0.75 were considered confident results.

DIA dataset and protein sequence databases

All the DIA datasets used in this study are previously
published data, of which the detailed information is
listed in supplementary Table S1. The protein
sequences used for the database search were
downloaded from the UniProt proteome (access date:
2020.03.10): H. sapiens (44,254 entries), C. elegans
(26,927), S. cerevisiae (6,049 entries) and E. coli
(4,391). Decoy protein sequences are generated by
randomizing target protein sequences using the shuffle
strategy.

Parameters setting of library-free tools

For DIA-MS2pep, the entire pipeline of DIA-MS2pep
contains four components: DIA/SWATH_pesudo_MS2,
MSFragger_runner, DIA/SWATH_data_refinement and
percolator_runner. The pseudo-spectra are first
generated by DIA/SWATH_pesudo_MS2, and then
searched by MSFragger runner, which implements

© The Author(s) 2022

MSFragger v2.4 in the current study. The precursor
mass range is automatically determined based on the
isolation window setting in DIA experiment. The
resulting PSMs are refined by DIA/SWATH_data_
refinement as described in the supplementary Methods.
The refined peptide hits from both target and decoy
proteins are stored in a PIN-format file as input of
Percolator (v3.02.1) for the validation at the 1% FDR of
PSM, peptide and protein levels. For phosphopeptides,
DIA-MS2pep automatically calculates the site
confidence score as PhosphoRS (Taus et al. 2011), and
localized phosphopeptides are filtered with a
localization probability > 0.75.

For DIA-Umpire, if available, we directly used the
pseudo-spectra from the original manuscript, including
the HeLa DIA and PhosphoHeLa_DIA datasets.
Otherwise, for the Plasma_GPF_DIA and PhosphopPep_
DIA datasets, we generated pseudo-spectra via DIA-
Umpire (v2.1.3) with its sample parameter file by the
default  option, which is  deposited into
ProteomeXchange (Vizcaino et al. 2014).

For PECAN, we use its alternative method Walnut,
which is an implementation of the PECAN scoring
system in EncyclopeDIA (Searle et al. 2018) (version
0.9.5). The search parameters were set as described in
PECAN’s manuscript: precursor and fragment tolerance:
10 ppm; fragmentation: HCD (Y-Only); Percolator
version: v3-01; enzyme: trypsin; DIA acquisition type:
non-overlapping DIA; Target/Decoy Approach: Normal;
and charge range: 2 to 3.

Protein quantification analysis
Library generation

We used the confident peptides reported by Percolator
(g-value < 0.01) to create a BiolioSpec-supporting input
file (Frewen et al. 2006). SSL (spectrum sequence list)
containing file, scan, charge and sequence information.
Then, with the .SSL files as the input, DIA data-specific
spectral libraries for MultiOrg_DIA and
HeLa_Serum_DIA datasets were created from DIA raw
data using the BlibBuild tool embraced in Skyline
software (MacLean et al. 2010) (v19.1.0.193). For the
HeLa_Serum_DIA dataset, four DIA libraries were
generated: DIA-MS2pep_Lib from 36 wide-window
(24 Da) DIA data and DIA-MS2pep_GPF_Lib from 6x
GPF narrow-window (4 Da) DIA data plus DIA-
MS2pep_Lib.

Quantification with EncyclopeDIA

The resulting BLIB library was converted into a
chromatogram library by EncyclopeDIA (Searle et al
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2018) (version 0.9.5) and used to search the mzMLs to
quantify peptides and proteins. The search parameters
of EncyclopeDIA were configured as follows: precursor,
fragment, and library tolerance: 5 ppm for
MultiOrg DIA and 10 ppm for HeLa_Serum_DIA;
fragmentation: both b- and y-ions; the number of
quantitative ions: 5; minimum number of quantitative
ions: 3; Percolator version: v3-01; enzyme: Trypsin;
DIA acquisition type: non-overlapping DIA for
MultiOrg_DIA and overlapping DIA for
Serum_HeLa_DIA; Target/Decoy Approach: Normal;
and background: the mixed four species protein
database for MultiOrg DIA and the human protein
database for HeLa_Serum_DIA. Protein quantities were
calculated as the sum of peptide quantities. Specifically,
for the HeLa_Serum_DIA dataset, we followed the same
criteria for data filtering as described in the original
manuscript (Searle et al. 2018): the peptides need to be
measured in every replicate of at least one time-point
and with cross experiment CVs less than 20%. For the
quantitative data from the HeLa-specific DDA library
(DDA_Lib), we used supplementary Data 1 from the
original manuscript of EncyclopeDIA (Searle et al
2018).

Bioinformatics analysis

Hierarchical clustering analysis (by the “pheatmap” R
package), protein quantification data normalization of
HeLa_Serum_DIA using the method of Remove
Unwanted Variation Using Residues (RUVr (Risso et al.
2014), by the “RUVSeq” R package) followed by
differential gene expression analysis (by the “edgeR” R
package (Lund et al. 2012)) and gene set enrichment
analysis (GSEA) with the Reactome pathway database
(by the “fgsea” R package (Sergushichev 2020)) were
performed in R, Windows Rx64, version 3.5.2.

Data and code

The pseudo-spectra (.mgfs) generated by DIA-MS2pep
from the DIA datasets; the resulting files, .pepXML from
MSFragger, .msf from Proteome Discover 1.3, and .pin
from DIA-MS2pep, and the Percolator-reported
peptides and proteins files (.pin.target.pep.tsv and .pin.
protein.tsv); and the spectrum library (.dlib and .elib) of
MultiOrg_DIA and HeLa_Serum_DIA dataset have been
deposited to the ProteomeXchange Consortium
(Vizcaino et al 2014) (http://proteomecentral.
proteomexchange.org) via the iProX partner repository
(Ma et al. 2019) with the dataset identifier PXD032253.
The DIA-MS2pep source code and its documentation
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are freely available at https://github.com/SS2pro-
teome/DIA-MS2pep.

RESULTS AND DISCUSSION
Framework of DIA-MS2pep

DIA-MS2pep comprises two main components for
peptide identification from DIA data: MS2 spectrum
self-demultiplexing (Fig. 1A) and large precursor mass
tolerance database search (Fig.1B). In brief, after
extracting the chromatographic profiles of fragments,
DIA-MS2pep demultiplexes the MS2 spectrum in a
recurrent way: the algorithm iteratively performs data
modelling of base peak-fragment correlation (Pearson
correlation coefficient of the intensity profile between
the peak of the highest intensity and the remaining
peaks in the MS2 data) with one-dimensional kernel
density estimation (KDE), “pops-out” fragments with a
chromatography profile close to that of the base peak as
pseudo-spectra, and keeps the remaining fragments as
the input for the next iteration. Each resulting pseudo-
spectrum is assigned with the centre mass of the
isolation window as pseudo-precursor mass, and then
searched using a large precursor mass tolerance
strategy by MSFragger (Kong et al 2017).
Subsequently, DIA-MS2pep performs the data
refinement of search results to keep the peptide
identifications that are either verified by the evidence
of supporting precursors in MS1 scan or annotated as
the modified peptides. DIA-MS2pep also includes the
step for modification site localization scoring. Finally,
Percolator (Spivak et al. 2009) is employed to rank the
resulting collection of peptide spectrum matches
(PSMs), using both peptide scores reported by the DDA
search engine and additional auxiliary peptide features
(supplementary Table S2) computed by DIA-MS2pep,
and it reports the peptide identifications with a false
discovery rate (FDR) of 1% at the unique peptide and
protein level.

The rationale of spectrum self-demultiplexing

One of the key steps for a spectrum-centric method is to
extract sufficient peptide-specific fragment ions from
multiplexed spectra of DIA data. For current spectrum-
centric tools, such as DIA-Umpire, the detection of
covarying precursor-fragment ion groups is the main
principle for demultiplexing DIA MS2 spectra. However,
poor precursor-fragment correlations caused by the
lack of a detectable precursor signal or signal
interference from co-eluted peptides are common

© The Author(s) 2022
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Fig. 1 Framework of DIA-MS2pep. A DIA-MS2pep iteratively generates the pseudo-spectra from DIA data by spectrum self-
demultiplexing using MS2 data only. B The pseudo-spectra are assigned with the center m/z of the isolation window and searched with
the DDA search engine using a large precursor mass tolerance strategy. With rigorous data refinement, including verification precursor
evidence, searching for modified forms and computation of auxiliary peptide scores, all the target and decoy peptide hits are submitted
to the Percolator to estimate the false discovery rate and report peptide and protein results with a g-value < 0.01

phenomena in DIA MS, and this is further amplified for
short chromatographic gradients or samples containing
highly abundant protein/peptides, such as plasma or
serum. DIA-MSZ2pep addresses this bottleneck using a
data-driven method based on MS2 data itself without
the need of precursor information.

We first validate the rationale of MS2 spectrum self-
demultiplexing using four previously published DIA
datasets: HeLa_DIA, Plasma_GPF_DIA,
HeLa_gradient_DIA and MultiOrg_DIA (supplementary
Table S1). These datasets were collected by different
DIA experiment settings or sample properties, where
HeLa_DIA for different isolation windows,
Plasma_GPF_DIA for high dynamic content in the
sample, HeLa_gradient_DIA for different lengths of LC
gradient and MultiOrg DIA for complex peptides
mixture from different species. We first compute the
data points per peak of both precursors and fragments
from the peptides identified in each DIA dataset
(supplementary Fig. S3a and S3b). The results show
that fragment ions can be detected with more data
points across chromatographic peaks than precursor
ions and are not affected by the sampling rate of the

© The Author(s) 2022

DIA methods (HeLa_DIA), the dynamic range of sample
quantity (Plasma_DIA), the length of LC gradient
(HeLa_gradient_DIA) or complex proteome sample
(MultiOrg_DIA). These findings indicate that even
though no precursor is detected in the MS1 scan,
fragment ions are still detectable in the MS2 scan. We
next compare the distribution of the precursor-
fragment correlations and intra-fragment correlations
(supplementary Fig. S3c and S3d). Here, for intra-
fragment correlation, we calculate the Pearson
correlation coefficient (PCC) of the LC elution profiles
between the base peak and the rest of the peaks
matched to the peptide in an MS2 spectrum, namely,
the base peak-fragment correlation. For the HeLa_DIA
dataset, the base peak-fragment correlation is
significantly higher than the precursor-fragment
correlation, especially for data with fewer data points
per peak (5 Da). For the Plasma_DIA dataset, even with
the GPF strategy, by which the median data points per
peak of the precursor is 13, the median precursor-
fragment correlation is still less than 0.9, while the
median base peak-fragment correlation is as high as
0.99. These results indicate that coeluted highly
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abundant peptides could interfere/suppress the MS
signal of the target peptide more significantly at the
MS1 level than at the MS2 level, thus leading to an
inconsistent precursor MS signal. For
HeLa_gradient_DIA and MultiOrg DIA datasets, we also
observe that base peak-fragment correlations
consistently are higher than precursor-fragment
correlations. Taken together, the base peak-fragment
correlation has great potential for DIA MS2 spectrum
demultiplexing.

Performance evaluation of spectrum self-
demultiplexing

Using a HeLa cell lysates DIA dataset containing 15 MS
runs from five different DIA experiments with different
isolation window sizes (HeLa_DIA dataset (Tsou et al
2016)), we first test the capability of peptide
identification of DIA-MS2pep relative to DIA-Umpire.
For DIA-Umpire, we adopt the pseudo-spectra in the

original manuscript (Tsou et al. 2016), and keep both
the search setting and peptide FDR estimation method
as close as possible to DIA-MS2pep. With a 1% FDR of
unique peptides evaluated by either PeptideProphet or
Percolator (supplementary Fig. S4 and Fig. S5). DIA-
MS2pep can identify more peptides than DIA-Umpire
from DIA data (Fig. 2A), particularly those collected
using the narrow isolation window size (5 Da and
10 Da).

The performance of spectrum demultiplexing by DIA-
MS2pep is next evaluated by calculating the fraction of
peptide fragment ions matched in pseudo-spectra, raw
DIA spectra and DDA spectra (Fig. 2B). Not surprisingly,
compared with DIA spectra, DDA spectra contain a
higher fraction of peptide-specific fragments due to
MS2 data collected with the narrowest isolation
window (1.4 Da). The pseudo-spectra generated by
DIA-MS2pep contains the peptide-specific ions closer to
the raw DIA spectra than those generated by DIA-
Umpire. Furthermore, we investigate the identification
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Fig. 2 Performance evaluation of spectrum self-demultiplexing. A The comparison of the number of unique peptides identified from the
HeLa_DIA dataset using DIA-MS2pep and DIA-Umpire with 1.0% of FDR estimated using either PeptideProphet or Percolator. B The
fractions of matched fragments in DDA spectra, DIA spectra and pseudo-spectra generated by DIA-MS2pep and DIA-Umpire, are calcu-
lated as the longest peptide sequence covered by consecutive b- or y-ions divided by the peptide length. The peptide ions for violin plot-
ting are identified from DDA data and pseudo-spectra generated DIA-MS2pep and DIA-Umpire in common (n = 8556). C The identifica-
tion rate as a function of cosine similarity of pseudo-spectra generated by DIA-MS2pep and DIA-Umpire from one given DIA spectrum
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rate as a function of cosine similarity between the
pseudo-spectra that are generated by either DIA-
MS2pep or DIA-Umpire from one given DIA spectrum.
As illustrated in Fig. 2C, for two types of pseudo-
spectra, their identification rates are very close when
their cosine similarities are high; in contrast, if their
cosine similarities are low, pseudo-spectra generated
by DIA-MS2pep yield a significantly higher
identification rate than those generated by DIA-Umpire.
Therefore, these results demonstrated that DIA-
MS2pep outperforms DIA-Umpire in the spectrum
demultiplexing of DIA data.

Peptide identification with large precursor mass
tolerance database search

For the spectrum-centric approach, such as DIA-
Umpire, either precursor ions in MS1 scan, that are
highly correlated with fragments, or unfragmented
precursor ions in MS2 scan are used for the database
search using the DDA search tool with the strict
precursor mass mode. However, DIA data lack of a
direct relationship between the precursor and its
fragment ions, and the accuracy of the peptide
precursor including both m/z and charge, especially for
low-abundance peptides, is still a critical aspect that
requires thorough investigation. To address this issue,
DIA-MS2pep performs the database search of pseudo-
spectra using the center m/z in the isolation window as
a pseudo-precursor with a large precursor mass mode,
and then verifies the precursor evidence of each PSM
during the post-refinement of search data. It is
important to note that the step of verifying the
precursor signal is necessary to reduce the false-
positive peptide hits (supplementary Fig. S6).

To investigate the performance of peptide
identification with a large precursor mass tolerance
search by DIA-MS2pep, we design a simulation
experiment as illustrated in supplementary Fig. S7a. In
brief, the pseudo-spectra generated by DIA-Umpire
from the HeLa_DIA dataset are searched by MSFragger
with either strict precursor mass or large precursor
mass. For the latter mode, the pseudo-spectra are first
modified by replacing the precursor mass originally
assigned by DIA-Umpire as the center m/z of the
isolation window to mimic the pseudo-spectra
generated by DIA-MS2pep. To facilitate a fair
comparison, the data resulting from two search modes
are submitted to DIA-MS2pep pipeline for the data
refinement and FDR estimation with Percolator.
Compared with the strict precursor mass search, a large
precursor mass tolerance search dramatically improves
the identification rate of the pseudo-spectra

© The Author(s) 2022

(supplementary Fig. S7b). In addition, looking into the
details of the search results, we find that those pseudo-
spectra are not identified as PSMs using strict
precursor mass search but rescued by large precursor
mass search, commonly contained sufficient fragment
ions but they contain the incorrect precursor m/z or
charge state assigned by DIA-Umpire (supplementary
Fig. S7c). Therefore, a large precursor mass search is an
effective strategy for the peptide identification from
pseudo-spectra generated from DIA data.

Performance evaluation of DIA-MS2pep on GPF DIA
data

It was demonstrated that improved precursor
selectivity with the GPF strategy dramatically improves
the performance of both DIA-Umpire and PECAN in
peptide detection from DIA data (Ting et al. 2017). We
also evaluate the performance of DIA-MS2pep using
GPF DIA datasets (HeLa_GPF_DIA). In total, DIA-
MS2pep identifies 17,853, 28,615 and 41,217 unique
peptides from the 1xGPF, 2xGPF and 4xGPF datasets,
which are 3,999, 5,852, and 6,916 more than PECAN,
and 5576, 11565 and 19630 more than DIA-Umpire,
respectively (Fig. 3A). Of the 16,596 common peptides
identified in three GPF DIA data, 0.3% of peptides
(close to 0.2% reported by PECAN) show a discrepancy
of the retention time in either the 2xGPF or 4xGPF
dataset compared with the 1xGPF dataset
(supplementary Fig. S8).

To evaluate the accuracy of peptide identifications,
using the same idea of the “Entrapment” strategy
(Granholm et al. 2011), we challenge DIA-MS2pep, DIA-
Umpire and PECAN by searching the HeLa_GPF_DIA
dataset against a more complex protein database
containing four species, H. sapiens, E. coli, C. elegans and
S. cerevisiae. The results show that, on average, PECAN
reports a higher percentage of non-human peptides
than DIA-MS2pep and DIA-Umpire (Fig. 3B). Moreover,
searching with a complex database leads to more
decrease in peptide identification reported by PECAN
than that reported by either DIA-MS2pep or DIA-
Umpire (Fig. 3C). These results demonstrate that DIA-
MS2pep outperforms PECAN in terms of sensitivity and
accuracy of peptide identification from DIA data.

Identifying the peptides with PTMs from DIA data

With the benefit of a large precursor mass tolerance
search strategy, DIA-MS2pep is able to identify the
peptides with un-predefined PTMs. For peptide hits for
which the theoretical precursor was not found in MS1
scan, DIA-MS2pep attempts to determine the
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al. 2020a)

probability that one certain precursor signal can be
annotated as the peptide with a putative modification,
from a user-defined list or the Unimod database
(Creasy and Cottrell 2004), and localize the
modification site with a confidence score using the
algorithm adapted from ptmRS (Taus et al 2011),
which is a site localization tool for DDA data (more
details in Methods).

Using the DIA datasets of synthetic phosphopeptides
(200 species) spiked with a stable background of
tryptic yeast phosphoproteome samples at different
concentrations  (Bekker-Jensen et al 2020a)
(PhosphopPep_DIA dataset), we first test the accuracy
of the pseudo-spectra generated by DIA-MS2pep for the
localization of modification sites. Consistent with
previous criteria (Taus et al 2011), DIA-MS2pep
reports the phosphopeptides with at least 0.75 site
confidence as correct localization. Compared with DIA-
Umpire, DIA-MS2pep identifies more correctly localized
phosphorylation sites from synthetic phosphopeptides
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on average, which is also more than that identified from
DDA data. DIA-MS2pep reports on average 0.97% of
incorrectly assigned sites, lower than 1.29% for DIA-
Umpire and 1.18% for DDA data (Fig.3D and,
supplementary Table S3). When analysing more
complex phosphopeptides from serum-stimulated HeLa
cells (Searle et al. 2019), DIA-MS2pep identifies 70%
more phosphopeptides in total and localizes 78% more
phosphopeptides than DIA-Umpire (supplementary Fig.
S9). These results demonstrate that the pseudo-spectra
extracted from DIA data by DIA-MS2pep contain
sufficient fragment ions for the identification of
peptides with PTMs, such as phosphorylation, and are
compatible with the DDA localization tool for the
evaluation of site localization.

Motivated by the above results, we further explored
the discovery potential of DIA-MS2pep using a
nondepleted, pooled plasma MS dataset collected by 12
GPF DIA runs (Ting et al. 2017) (Plasma_GPF_DIA
dataset). In total, DIA-MS2pep identifies 5,200 unique
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peptides (from 565 protein groups), which is 41%
more than PECAN and 140% more than DIA-Umpire,
respectively (Fig.4A), of which 355 peptides are not
included in the PeptideAtlas Human Plasma spectral
library (2013-08 release).

Interestingly, 15 peptides from five proteins are
identified with confidently localized glycation (Hex[K])
(Fig. 4B), which is a non-enzymatic modification of
proteins by glucose biologically relevant in the context
of obesity and type 2 diabetes (Rhee and Kim 2018). By
performing in vitro glycation experiment coupled with
DDA MS (supplementary Methods), we successfully
validate five glycation sites of albumin (ALBU), which
are not reported in the UniProt database. As expected,
of all five glycated peptides, the DIA-MS2pep pseudo-
spectra are highly consistent with the corresponding
DDA spectra (Fig.4C and supplementary Fig. S10),

demonstrating the high accuracy of glycation sites
identified by DIA-MS2pep. Additionally, DIA-MS2pep
detects 332 peptides with putative amino acid variants,
of which 64 exist in the UniProt Swiss-Prot human
natural variant database (supplementary Table S4). By
re-searching the pseudo-spectra generated by DIA-
MS2pep from Plasma_GPF_DIA dataset using Mascot
with automatic error tolerant search (Mascot-ETS), 290
variants are identified as either consistent (280
peptides) or homologous (10 peptides) sequences
(supplementary Table S4).

Building spectral library from DIA data with DIA-
MS2pep

Spectral library for quantitative analysis of DIA data is
commonly generated by DDA experiment of pooled

A
DIA-MS2pep (5200) alirclg;;iocfn HexSite Peptide P '{m%?)re Reg,?{;ﬁgtby Name
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Fig. 4 Comprehensive analysis of Plasma_GPF_DIA dataset. A The unique peptide number identified by DIA-MS2pep, DIA-Umpire and
PECAN from the Plasma_GPF_DIA dataset. B Fifteen glycated peptides (Hex[K]) were identified by DIA-MS2pep from the
Plasma_GPF_DIA dataset. The sites reported in the UniProt database are marked as “Y”; otherwise, the sites are marked as “N” (red).
PTMScores, including site probability as indicated in parentheses, are calculated by DIA-MS2pep to evaluate the site localization confid-
ence. C,D An example of the DIA-MS2pep pseudo-spectra from Plasma_GPF_DIA dataset (Panel C) vs DDA spectra (Panel D) from the
sample of in vitro glycation experiment (supplementary Methods). In the spectra, b- and y-ions are denoted using purple and blue col-
ors, respectively. In addition, the neutral loss peaks of glycation (H¢O3, —=54 Da) are also denoted with b* and y* ions
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samples, while it may be impractical for the case like
rare sample quantities in a clinical study. Here, we also
explore the potential of the spectral library generated
directly from DIA data with DIA-MS2pep using a
published DIA dataset of high-complexity proteomes
from hybrid species samples 22 (H. sapiens, E. coli, C.
elegans and S. cerevisiae) with defined quantitative
compositions (two samples S1 and S2, 1:1 for H.
sapiens, 1:1.1 for C. elegans, 1:1.2 for S. cerevisiae, 1:0.7
for E. coli). As a benchmark, we adopt the quantitative
data of peptides and proteins reported by using DDA
spectral library (DDA_Lib) from the original study 22.
From six runs of DIA data, DIA-MS2pep totally
identifies 59,365 peptides and 9,134 proteins with g-
value less than 0.01 at both the peptide and protein
levels (supplementary Fig. S11a). Using these peptide
identifications, DIA data-specific spectral library
(DIA_Lib) is created by Skyline. With EncyclopeDIA
(Searle et al. 2018), 48,114 peptides and 8,552 proteins
are finally quantified (supplementary Fig. S10a). The
average changes in the peptides and proteins between
S1 and S2 from three replicates are calculated, as
illustrated in supplementary Fig. S11b. Comparatively,
DIA_Lib can quantify changes in proteins and peptides
closer to the theoretical values, while the protein
changes of S. cerevisiae and E. coli are underestimated
by DDA_Lib.

Application of DIA-MS2pep to real biological DIA
data

Further, we revisit a real biological study that aims to
measure HeLa cell proteome changes in response to
serum starvation over six-time points
(HeLa_Serum_DIA dataset (Searle et al. 2018)). In total,
DIA-MS2pep identifies 78,265 peptides from six GPF
DIA data with narrow windows (52 overlapping 4 m/z)
and 44,233 peptides from DIA data with wide windows
(25 x 24 m/z), and generates two DIA spectral libraries
DIA Lib (wide-window DIA data only) and DIA-
MS2pep_GPF_Lib (six GPF DIA plus wide-window DIA
data) using Skyline. With the same criteria described in
the previous study (Searle et al. 2018), we refine the
quantitative results as (1) each peptide produced at
least three quantitative transition ions without
interference, (2) had <20% study-wide CVs, and
(3) were measured in every replicate of at least one-
time point. Finally, 4,338 and 4,390 proteins are
confidently quantified using DIA-MS2pep_Lib, DIA-
MS2pep_GPF_Lib, respectively. By comparison, the
HeLa-specific DDA library (DDA_Lib) quantifies more
proteins (5,781, from the original manuscript of
EncyclopeDIA (Searle et al. 2018)), but produces less
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reproducible quantitative data with a higher median
coefficient of variation (CV) than the above DIA spectral
libraries, as illustrated in (Fig. 5A). The reason for this
is likely that, when building the chromatogram library
via EncyclopeDIA, peptide information identified by
DIA-MS2pep is internally from DIA data itself, while
peptide information from DDA data by offline
fractionation is different from the real scenario in DIA
data, due to the differences of sample matrix and
isolation window setting. Using EDGE (Lund et al
2012) to perform differential expression analysis, it is
not surprising to observe that the quantitative
proteome of all DIA spectral libraries reports more
differentially expressed (DE) proteins (g-value < 0.01)
than that of DDA_Lib (Fig.5B). Among them, DIA-
MS2pep_Lib and DIA-MS2pep_GPF_Lib report more DE
proteins, especially those of moderate abundances
(supplementary Fig. S12a). Further gene set
enrichment analysis (GSEA) (Sergushichev 2020) of the
quantitative proteome shows that DIA libraries enable
us to reveal more starvation-relevant biological events
with significant enrichment than DDA_Lib, such as “Cell
Cycle Checkpoints”, “Chromatin modifying enzymes”
and “HATs acetylate histones” (Fig. 5C).

In addition, DIA-MS2pep identifies 1,683 peptides
with chemical or biological modification or amino acid
variants (supplementary Fig. S12b), such as protein N-
terminal acetylation, phosphorylation, carbamylation
and deamination.

Protein N-term acetylation

The most abundant modification identified from the
HeLa_Serum_DIA dataset by DIA-MS2pep is protein N-
terminal acetylation. In total, 236 unique sequences
(based on the first six amino acids in the peptide
sequence) with N-terminal acetylation containing a 190
N-terminal methionine acetylation (+42 Da) and a 46
N-terminal methionine cleavage (-89 Da) are identified,
of which 196 have been reported in previous literature
(Helbig et al. 2010). Not surprisingly, we find that most
of the acetylated N-terminal amino acids are considered
substrates of N-terminal acetyltransferase A (NatA)
(supplementary Fig. S13). From the quantitative
analysis, 53 N-terminal methionine acetylation and 14
N-terminal methionine cleavage show significant
changes over time (g-value < 0.01).

Phosphorylation
We identify 139 localized phosphopeptides, of which 43

quantitatively responded to serum starvation (g-value
< 0.01, supplementary Table S5). Using NetworKIN
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Fig. 5 Spectral library built directly from DIA data. Quantitative analysis of the HeLa_Serum_DIA dataset using five different spectral
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et al. 2012). C Heat map of Reactome pathway enrichment analysis using the differentially expressed proteome from the
HeLa_Serum_DIA dataset. Pathways with a p-value < 0.01 are indicated by asterisks. The Stat. mean values represent the average mag-
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(Horn et al. 2014) to predict potential upstream kinases
(NetworKIN score > 2.0 and NetPhorest score > 0.1), it
is reasonable that eight phosphorylation sites on six
proteins are recognized as substrates of CDK1, a key
cyclin-dependent  kinase participating in the
progression of cell mitosis (Enserink and Kolodner
2010). In addition, phosphorylation of T366 on the

© The Author(s) 2022

NDRG1 protein (supplementary Fig. S14a), which is
predicted as the substrate of SGK1 (serum and
glucocorticoid inducible kinase 1), is a known site of
cell cycle dependence (supplementary Fig. S14b).
Compared with the upregulated abundance at the
protein level in response to serum starvation, the
opposite changes of phosphorylation likely represent
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its functional association with the regulation of protein
stability, increasing interest in further follow-up
validation.

Dimethylation

Three Arg dimethylation sites on three proteins are

identified: HNRNPAO
(SNSGPYR[+28.0313]GGYGGGGGYGGSSF), ~HNRNPA1
(SGSGNFGGGR[+28.0313]GGGFG

GNDNFGR), and RBM3

(SYSR[+28.0313]GGGDQGYGSGR) (supplementary Fig.
S15a, S15c and S15e). All three sites are associated with
repeated RGG motifs, known as RNA-binding motifs
(Kiledjian and Dreyfuss 1992). The quantitative
changes over time are either coordinated with protein
changes or not (supplementary Fig. S15b, S15d and
S15f), likely indicating the functional diversity of
regulation by protein methylation.

Myristoylation

Interestingly, one myristoylation site
(G[+210.2]QSQSGGHGPGGGK)  (supplementary Fig.
S16a) is identified on the protein PSMC1 (26S
proteasome regulatory subunit 4), and the upregulated
quantitative changes over time of this site are very
close to the protein changes (supplementary Fig. S16b),
suggesting that this myristoylation site may act as a
constitutive modification for PSMC1 in protein-protein
and protein-membrane interactions (Wang et al. 2007).

Amino acid variants

In total, 292 peptide variants are identified, of which 42
variants are reported in the UniProt Natural Variant
database. For example, the peptide KEEENASVI-
[-12.0]DSAELQAYPALVVEK of the DNA-dependent
protein Kkinase catalytic subunit (PRKDC) acts as a
molecular sensor for DNA damage and has an identified
known amino acid variant Ile3434Thr (rs7830743), as
observed by a mass shift of -12.0 Da and localized by
MS/MS manual inspection (supplementary Fig. S17a).
Quantitative time-course changes of PRKDC at the
peptide level are highly coordinated with those at the
protein level (supplementary Fig. S17b). Likewise, one
known amino acid variant (Asp490Glu, rs1049434) of
monocarboxylate transporter 1 (SLC16A1) is identified
as the peptide AAESPDQKDTD[+14.0]GGPKEEESPV
(supplementary Fig. S17c), which also quantitatively
changes over time with the same trend as the protein
(supplementary Fig. S17d).

266 | December 2022 | Volume 8 | Issue 5-6

CONCLUSION

We have demonstrated that DIA-MS2pep is a library-
free tool for comprehensive peptide identifications and
their modified forms from DIA data. DIA-MS2pep
introduces three main methodologies specific to
improving peptide identification ability: (1) DIA-
MS2pep offers a new data-driven algorithm, in which
DIA MS/MS spectra can be effectively demultiplexed by
learning from fragment data itself (base peak-fragment
correlation) without the need of precursor data. More
generally, the strategy of spectrum self-demultiplexing
is expandable to any type of DIA data including dia-
PASEF (Meier et al. 2020) and FAIMS-DIA (Bekker-
Jensen et al. 2020b), and the concept of intra-fragment
correlation in principle can be introduced to
quantitative analysis of DIA data as well. (2) DIA-
MS2pep interprets pseudo-spectra using a large
precursor mass tolerance database search by simply
assigning center mass of the isolation window as
precursor without the need of one specific precursor
mass. We demonstrate that this strategy coupled with
rigorous data refinement dramatically improves the
identification rate of the pseudo-spectra generated
from DIA data. Since an uncertain precursor signal for
detectable fragments is a common scenario for DIA
data, we think our strategy represents an efficient
strategy for data interpretation of pseudo-spectra
generated from DIA data. (3) DIA-MS2pep allows to
identify the peptides with PTMs without the need to
pre-define the modifications, and it also confidently
localizes the modification position using the high-
quality pseudo-spectra. Currently, our strategy allows
one modification, and high quality detectable precursor
is required; therefore, the next development phase will
be dedicated to expanding the suitability of DIA-
MS2pep for PTM analysis.

We have evaluated the performance of DIA-MS2pep
in the application of building a spectral library directly
from DIA data. The number of peptides and proteins
quantified by the DIA data-specific library is lower than
that quantified by the DDA spectral library, but the
accuracy and reproducibility of quantification for the
peptides and proteins are higher, which is particularly
beneficial for differential expression analysis. More
importantly, spectral library building directly from DIA
data is straightforward and economic compared with
that building with DDA data, and there is no bias of
instrument type or fragmentation mode compared with
in-silico spectral library building by deep learning
(Gessulat et al. 2019; Yang et al. 2020), thus, it is
promising for analysing DIA MS-based studies on large
cohorts of samples.

© The Author(s) 2022
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METHOD

DIA-MS2pep is an open-source tool and is well
compatible with DIA data from a variety of acquisition
modes, instrument types, and downstream DIA
quantification tools (for example, EncyclopeDIA and
Skyline). The methodological and computational
framework introduced in DIA-MS2pep may be feasibly
adapted to take advantage of new approaches and
technological improvements to DIA data. Taken
together, we think DIA-MS2pep, acting as a spectrum-
centric method, enables to expand the current library-
free toolbox for DIA MS.
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