
Gene expression

pyInfinityFlow: optimized imputation and analysis of high-
dimensional flow cytometry data for millions of cells
Kyle Ferchen 1,2, Nathan Salomonis 3,4, H. Leighton Grimes 2,4,5*
1Cancer and Cellular Biology, University of Cincinnati, Cincinnati, OH 45229, United States
2Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States
3Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States
4Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, United States
5Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States

*Corresponding author. Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA. E-mail: lee.grimes@cchmc.org

Associate Editor: Janet Kelso

Abstract
Motivation: While conventional flow cytometry is limited to dozens of markers, new experimental and computational strategies, such as Infinity
Flow, allow for the generation and imputation of hundreds of cell surface protein markers in millions of cells. Here, we describe an end-to-end
analysis workflow for Infinity Flow data in Python.

Results: pyInfinityFlow enables the efficient analysis of millions of cells, without down-sampling, through direct integration with well-established
Python packages for single-cell genomics analysis. pyInfinityFlow accurately identifies both common and extremely rare cell populations which
are challenging to define from single-cell genomics studies alone. We demonstrate that this workflow can nominate novel markers to design
new flow cytometry gating strategies for predicted cell populations. pyInfinityFlow can be extended to diverse cell discovery analyses with flexi-
bility to adapt to diverse Infinity Flow experimental designs.

Availability and implementation: pyInfinityFlow is freely available in GitHub (https://github.com/KyleFerchen/pyInfinityFlow) and on PyPI
(https://pypi.org/project/pyInfinityFlow/). Package documentation with tutorials on a test dataset is available by Read the Docs (pyinfinityflow.-
readthedocs.io). The scripts and data for reproducing the results are available at https://github.com/KyleFerchen/pyInfinityFlow/tree/main/analy
sis_scripts, along with the raw flow cytometry input data.

1 Introduction

Flow cytometry enables single-cell proteomic profiling of mil-
lions of cells, using fluorescent-conjugated antibodies to extracel-
lular or intracellular proteins. The number of molecules that can
be profiled using antibody-based strategies has increased with
the development of new technologies, such as novel fluorescent
proteins, spectral deconvolution (Liechti et al. 2021), heavy-
metal-conjugated antibodies detected with mass spectrometry
(Bandura et al. 2009), and oligo-nucleotide-conjugated antibod-
ies detected with next-generation sequencing (Stoeckius et al.
2017). While approaches such as fluorescence-based Flow
Cytometry Activated Cell Sorting (FACS) provide the means to
effectively enrich for cell populations, they are limited by the
number of simultaneously measurable fluorophores. Thus, to
develop reliable flow cytometry panels to detect rare cell popula-
tions for diverse lineages, methods are required to simulta-
neously measure potentially hundreds of markers across millions
of cells.

Infinity Flow was originally developed as a low cost and ef-
ficient experimental protocol to scale conventional flow cy-
tometry from dozens to hundreds of markers, without
increasing the repertoire of simultaneously measured spectra

(Dutertre et al. 2019). The associated R package computa-
tional workflow, called infinityFlow, is able to integrate
markers (infinity markers) measured in individual flow cy-
tometry captures, as long as each capture shares a common
set of backbone markers (Becht et al. 2021). An optimal back-
bone panel consists of a sufficiently diverse and informative
set of antibodies that span all major evaluated cell lineages.
Cells are stained with backbone antibodies, split into individ-
ual wells and stained for the additional query target. The
query antibodies share a fluorochrome [e.g. phycoerythrin
(PE)]. Using nonlinear regression with machine learning,
infinityFlow imputes the expression of exploratory Infinity
markers in individual Flow Cytometry Stand (FCS) files (shar-
ing the backbone markers) to the pool. With this strategy, im-
puted flow cytometry datasets can span a diversity of features
to distinguish broad and subtle cell population differences,
comparable to high-throughput genomic assays. Thus,
Infinity Flow allows for the integration of hundreds of sepa-
rately profiled markers. While powerful, the existing R pack-
age infinityFlow workflow cannot be readily applied to
millions of cells and hundreds of imputed markers (down-
sampling required), is not flexible to new types of Infinity

Received: November 23, 2022. Revised: March 9, 2023. Accepted: April 24, 2023

VC The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(5), btad287
https://doi.org/10.1093/bioinformatics/btad287

Advance access publication 25 April 2023

Applications Note

https://orcid.org/0000-0002-3470-3623
https://orcid.org/0000-0001-9689-2469
https://orcid.org/0000-0001-8162-6758
https://github.com/KyleFerchen/pyInfinityFlow
https://pypi.org/project/pyInfinityFlow/
https://github.com/KyleFerchen/pyInfinityFlow/tree/main/analysis_scripts
https://github.com/KyleFerchen/pyInfinityFlow/tree/main/analysis_scripts


Flow study designs, has significant memory requirements, and
does not directly interface with downstream supervised or
unsupervised clustering approaches.

To improve upon and expand the original workflow, we in-
troduce pyInfinityFlow, a Python implementation of
infinityFlow with improved efficiency in speed and memory,
and support for advanced unsupervised and supervised
anndata-dependent single-cell analyses (Scanpy, pytometry,
MarkerFinder, cellHarmony) (Wolf et al. 2018; DePasquale
et al. 2019; Büttner et al. 2022). pyInfinityFlow is more flexi-
ble to the options applied, and is extensible to more complex
study designs that include multiple Infinity markers per panel
(see Supplementary Information).

2 Design

Similar to the original R package infinityFlow workflow,
pyInfinityFlow was developed to impute new surface markers
into an existing flow cytometry backbone panel using
XGBoost regression. XGBoost (Chen and Guestrin 2016) has
been well-demonstrated to provide optimal balance of perfor-
mance time and prediction accuracy (Becht et al. 2021). The
predictors of the model are referred to as “Backbone
markers” and the response variable is referred to as an
“Infinity marker.” The pipeline processes one or more sets of
Infinity marker FCS files to train the regression model. The

model is then used to predict the Infinity marker signal on ei-
ther a single FCS reference file or a pool of events from the
Infinity marker FCS files to build a final dataset with all fea-
tures (held in memory as an AnnData object). Each FCS file
records the light emitted after an event of a cell, multiplet, or
debris moving over the detectors is recorded in multiple chan-
nels. Isotype background correction can optionally be used in
pyInfinityFlow and was re-implemented with a linear model
as previously described (Supplemental Methods) (Becht et al.
2021).

In addition to these options, pyInfinityFlow includes addi-
tional options for data scaling and normalization; flexibility
for more complex study designs; and downstream analyses
for dimensionality reduction, clustering, and cell-type marker
identification (Fig. 1A). These include both new interfaces
(MarkerFinder, cellHarmony) and calls to existing interfaces
where possible (Supplemental Methods). Specifically, the user
can pool events from the Infinity marker FCS files or supply a
separate FCS file to serve as the Backbone data for the final
Infinity Flow object. The workflow can be run as a full pipe-
line (single command) or as independent steps, making it us-
able by both data scientists and biologists. Alternative
normalization and correction strategies are introduced to im-
prove data imputation. These include Isotype background
correction and logicle normalization. The final Infinity Flow

Figure 1. pyInfinityFlow: overview of features and performance. (A) Graphical abstract of pyInfinityFlow package. (B–D) Comparison of pyInfinityFlow and

R infinityFlow packages using the mouse lung dataset with varying numbers of Infinity markers. pyInfinityFlow required a lower CPU time (B), lower Peak

Memory (C), and had similar accuracy in regression as measured by mean squared error on a log10 scale (D).

2 Ferchen et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data


object can be stored as sparse data objects (h5ad) or as a data
frame stored in a binary feather file format, enabling direct
manipulation with Scanpy, or other tools, to identify broad
and rare cell populations with Leiden clustering (Traag et al.
2019) and run UMAP dimensionality reduction on millions of
cells (McInnes et al. 2018). The MarkerFinder algorithm
(Venkatasubramanian et al. 2020) is used in pyInfinityFlow
to identify unique distinguishing cell surface markers for
Leiden-defined cell populations. Finally, this package provides
both an API for fine tuning of the analysis pipeline parameters
as well as command line utilities for simple execution. The
API is split into four modules (fcsio, Transformations,
Plotting Utilities, and Debugging Utilities) that handle differ-
ent aspects of processing Flow Cytometry data with Python.

3 Performance

To assess the performance of pyInfinityFlow, we analyzed a
prior mouse lung Infinity Flow dataset using the same parame-
ters as previously described (Becht et al. 2021) (Supplementary
Information). For each Infinity marker, an FCS file was captured
with at least 20 000 events. These events are first split into train-
ing and validation sets by randomly sampling 50% for training
and using the remaining 50% for validation. Thus, for each indi-
vidual capture, half of the cells were used to train the XGBoost
regression model and the other half were used to compute the
validation metrics. To build the final dataset, 10 000 events
from the validation sets are randomly selected and concatenated
into a single expression matrix. We find that pyInfinityFlow out-
performs the R implementation in terms of computational speed
and memory efficiency with increasing panel size (Fig. 1B and
C). The increased performance does not impact the regression
accuracy, as measured by mean absolute error (Fig. 1D). We
were able to observe similar performance improvements with
pyInfinityFlow for increasing cell numbers relative to the R ver-
sion (Supplementary Fig. S1). pyInfinityFlow is compatible with
datasets of over 332 imputed markers (Dutertre et al. 2019) and
>3 million input cells for imputation, without down-sampling
(32 504 s with 40 GB of RAM). In contrast, the R implementa-
tion encountered a memory error when given 800 GB of RAM.
The calculation of the MSE values to compare accuracy between
the R-package infinityFlow and pyInfinityFlow was done on the
10 000 events that are pooled into the final Infinity Flow object.
This ensures that MSE values are not biased by changes in the
number of input cells. The output of pyInfinityFlow consists of
the concatenated backbone channels, imputed Infinity marker
channels, and original channels not imputed and not part of the
backbone. This single-cell dataset, stored as an AnnData object
in memory, was dimensionally reduced and clustered using
wrapper functions in pyInfinityFlow to Scanpy methods for
principal component analysis (PCA), UMAP, and Leiden cluster-
ing. The embedded pyInfinityFlow MarkerFinder implementa-
tion was then used to identify markers for these Leiden clusters.

Z-score normalization has been noted as a necessary feature
of the R-package infinityFlow method but has not been previ-
ously assessed to determine its requirement. To assess the neces-
sity of z-score normalization, we profiled over 2 million murine
hematopoietic progenitors with 21 backbone markers with
Infinity Flow. We selected 11 out of the 21 backbone markers as
a surrogate backbone to evaluate prediction of the remaining
10. Using the established ground-state truth, we find that z-score
normalization (designed to reduce batch effects between sam-
ples), introduces significant artifacts in the regression predictions

(Supplementary Information, Supplementary Fig. S2). Hence,
while z-score normalization is included in the method, by de-
fault, it is not applied.

To illustrate the utility of high-dimensional datasets gener-
ated by pyInfinityFlow, we mapped scRNA-seq defined popu-
lations from the mouse lung cell atlas to the surface protein
expression using an embedded call to the cellHarmony
(DePasquale et al. 2019) module of pyInfinityFlow. The gene
names encoding the surface proteins defined in the
pyInfinityFlow dataset were used to rename the protein fea-
ture labels to provide links between the scRNA-seq and
Infinity Flow dataset features. We find that the cellHarmony
mapping of labels to the pyInfinityFlow dataset identifies
challenging-to-detect rare lung cell populations that can be re-
solved through sub-clustering of tens of thousands of cells
(Supplementary Fig. S3, Supplementary Text). While the map-
ping RNA to antibody profiles has been shown to be highly
inferential (Triana et al. 2021; Dou et al. 2022), lineage pre-
dictions broadly matched to those made by the original
authors, while highlighting potential novel cellular subsets
(Becht et al. 2021). These novel populations included highly
similar mesenchymal alveolar fibroblasts (AF1, AF2), smooth
muscle (VSMC, ASMC), pericytes, and secondary crest myofi-
broblasts (SCMF). To determine whether pyInfinityFlow
could resolve these rare predicted subtypes, we further sub-
clustered our initial predicted fibroblasts cluster, to define
multiple new sub-clusters (Supplementary Fig. S4A and B).
This analysis confirms the presence of fibroblast and smooth
muscle cell populations that could previously only be resolved
through extensive single-cell genomics and functional studies
and nominates new cell-surface markers for their isolation
(Guo et al. 2022) (Supplementary Fig. S4C–E). Such analyses
open the door for gating and isolating these other rare cell
populations, with a novel repertoire of distinguishing marker
antibodies (Supplementary Figs S3 and S4).

4 Conclusions

pyInfinityFlow represents an optimal workflow for the analysis
of millions of flow cytometry profiles in Python, significantly
extending the repertoire of analyses of the original implementa-
tion. This allows users to build datasets with larger numbers of
cells, which is necessary to profile rare and transitional cell pop-
ulations. To this point, we have shown that pyInfinityFlow in
combination with label transfer using cellHarmony can be used
to identify rare populations that were not previously found in
scRNA-seq from mouse lung (e.g. SVEC, respiratory airway se-
cretory cells). Additionally, the user has more flexibility to spec-
ify a separate FCS reference file, to use the pipeline without
isotype controls, to generate AnnData structured outputs, to
cluster the flow cytometry data, and to find markers for popula-
tions. The AnnData data structure allows for the quick and sim-
ple application of single-cell analysis tools built into Scanpy,
such as dimensionality reduction and clustering. Extensions of
Scanpy such as pytometry, a package built for analyzing cytome-
try data, can also be quickly applied to datasets generated using
pyInfinityFlow (Büttner et al. 2022). The package provides both
a command line tool, enabling wide adoption by users without
programming experience, as well as an API to provide precise
control of analysis parameters. While approaches for normaliza-
tion were shown to be more deleterious than advantageous, it
will be necessary to assess alternative approaches to further opti-
mize the imputation of antibody signals in extremely large

pyInfinityFlow 3

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data


datasets. Looking forward, we hope to develop extensions to
this approach to improve the identification of rare cell popula-
tions similarly reflected in emerging single-cell genomics studies.

Acknowledgements

The authors thank M. Carlino and G. Li for testing
pyInfinityFlow. Flow cytometric data were acquired using
Aurora analyzers maintained by the Research Flow Cytometry
Core in the Division of Rheumatology at Cincinnati Children’s
Hospital Medical Center.

Supplementary data

Supplementary data are available at Bioinformatics online.

Conflict of interest

None declared.

Funding

This work was supported by the National Institutes of Health
[S10OD025045 to K.F., U24HL148865 to N.S.; and
R01DK121062, RC2DK122376, and R01HL122661 to H.L.G.
and by U54 DK126108 Hematology Center of Excellence].

References

Bandura DR, Baranov VI, Ornatsky OI et al. Mass cytometry: technique

for real time single cell multitarget immunoassay based on induc-

tively coupled plasma time-of-flight mass spectrometry. Anal Chem

2009;81:6813–22.

Becht E, Tolstrup D, Dutertre C-A et al. High-throughput single-

cell quantification of hundreds of proteins using conventional

flow cytometry and machine learning. Sci Adv 2021;7:

eabg0505.
Büttner M, Hempel F, Ryborz T. et al. Pytometry: flow and mass cytom-

etry analytics in Python. bioRxiv, 2022.10.10.511546.
Chen T, Guestrin C. .XGBoost: a scalable tree boosting system. In:

Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. Seattle, WA, USA:

University of Washington. p. 10, 2016.

DePasquale EAK, Schnell D, Dexheimer P et al. cellHarmony: cell-level

matching and holistic comparison of single-cell transcriptomes.

Nucleic Acids Res 2019;47:e138.
Dou J, Liang S, Mohanty V et al. Bi-order multimodal integration of

single-cell data. Genome Biol 2022;23:112.
Dutertre C-A, Becht E, Irac SE et al. Single-cell analysis of human mono-

nuclear phagocytes reveals subset-defining markers and identifies cir-

culating inflammatory dendritic cells. Immunity 2019;51:

573–89.e578.

Guo M, Morley MP, Wu Y. et al. Guided construction of single cell ref-

erence for human and mouse lung. bioRxiv, 2022.05.18.491687.

Liechti T, Weber LM, Ashhurst TM et al. An updated guide for the per-

plexed: cytometry in the high-dimensional era. Nat Immunol 2021;

22:1190–7.

McInnes L, Healy J, Melville J. UMAP: uniform manifold approxima-

tion and projection. arXiv, 2018.

Stoeckius M, Hafemeister C, Stephenson W et al. Simultaneous epitope

and transcriptome measurement in single cells. Nat Methods 2017;

14:865–8.
Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guarantee-

ing well-connected communities. Sci Rep 2019;9:5233.
Triana S, Vonficht D, Jopp-Saile L et al. Single-cell proteo-genomic refer-

ence maps of the hematopoietic system enable the purification and

massive profiling of precisely defined cell states. Nat Immunol 2021;

22:1577–89.
Venkatasubramanian M, Chetal K, Schnell DJ et al. Resolving single-

cell heterogeneity from hundreds of thousands of cells through se-

quential hybrid clustering and NMF. Bioinformatics 2020;36:

3773–80.
Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene ex-

pression data analysis. Genome Biol 2018;19:15.

4 Ferchen et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad287#supplementary-data

