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Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic respiratory diseasein preterm infants caused by multifactorial 
etiology. Genetic factors areinvolved in the occurrence of BPD, but studies have found that candidate geneshave poor repro-
ducibility and are influenced by ethnic heterogeneity;therefore, more exploration is still needed. We performed whole-exon 
sequencingin 34 preterm infants with BPD and 32 non-BPD control neonates. The data wereanalyzed and interpreted by 
Fisher difference comparison, PLINK and eQTLassociation analysis, KEGG and GO enrichment analysis, STRING tool, 
Cytoscapesoftware, ProtParam tool, HOPE online software, and GEOR2 analysis on NCBI GEOdataset. BPD has a highly 
heterogeneity in different populations, and we found35 genes overlapped with previous whole-exon sequencing studies, 
such as APOBgene. Arterial and epithelial cell development and energy metabolism pathwaysaffect BPD. In this study, 24 
key genes were identified, and BIVM rs3825519mutation leads to prolonged assisted ventilation in patients with BPD. A 
novelDDAH1 mutation site (NM_012137: exon1: c.89 T > G: p.L30R) was found in 9 BPD patients.
Conclusion: BIVM gene rs3825519 mutation may play a role in the pathogenesis of BPD by affecting cilia movement, and 
the DDAH1 and APOB genes mutations may have a pathogenic role in BPD.

What is Known:
• Genetic factors are involved in the occurrence of bronchopulmonary dysplasia.
• The candidate genes have poor reproducibility and are influenced by ethnic heterogeneity, therefore, more exploration is still needed.
What is New:
• We identified the role of susceptible SNPs in BPD in Shenzhen, China, and identified 24 key genes that influence the pathogenesis of BPD, and 

also found 35 genes overlapped with previous whole exon sequencing studies, such as APOB gene.
• We found that BIVM and DDAH1 genes may play a pathogenic role in the pathogenesis of BPD.

Keywords  Bronchopulmonary dysplasia · Genetic susceptibility · Whole-exome sequencing · Single-nucleotide 
polymorphisms · BIVM gene
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Introduction

Bronchopulmonary dysplasia (BPD) is a common chronic 
respiratory disease in premature infants caused by com-
plicated pathogenesis. In recent years, the survival rate of 
preterm newborns is increasing; however, the incidence of 
BPD is also increasing. In the USA, 63% of extremely pre-
term infants (EPI) are complicated with BPD [1], which has 
become the leading cause of death in preterm infants after 
60 days [2]. In China, the incidence of BPD in EPI increased 
from 19.3 to 51.7% from 2010 to 2017 [3, 4]. Furthermore, 
BPD will cause a series of complications, such as airway 
hyperresponsive disease and recurrent infections in lower 
respiratory tract, which brings a heavy burden on society 
and families. Finding ways of early diagnosis for BPD is 
particularly important and urgent.

In twin studies, genetic factors were found to account for 
53–82% of susceptibility to BPD [5, 6]. Numerous studies 
have attempted to identify the key genes involved in BPD; 
however, due to many reasons, the reproducibility of the 
candidate genes is poor. Whole-exon sequencing (WES), as 
a means of gene sequencing, can be used to explore com-
mon and rare coding gene mutations that may directly affect 
protein structure and function. There were five studies using 
WES to identify BPD mutations [7–11] included infants in 
Italy, the USA, France, and Shanghai in China. Considering 
the differences in race and the research in Shanghai was a 
single-center study, it is necessary to validate the candidate 
genes in these five studies and to explore whether there are 
new key genes of BPD in Chinese preterm newborns.

Materials and methods

Participants

We recruited 34 BPD patients and 32 non-BPD infants from 
7 hospitals in Shenzhen from January 2020 to May 2022. 
The diagnostic criteria for BPD are based on the new con-
sensus at 2018 NICHD Symposium [12]: preterm infants 
(gestational age (GA) ≤ 32 weeks) at 36 weeks of post-
menstrual age were still dependent on FiO2 and respiratory 
support ≥ 3 days, and had interstitial lung disease (image 
confirmation). The exclusion criteria were as follows: (1) 
congenital inherited diseases and malformations, (2) lost to 
follow-up. Non-BPD premature infants who hospitalized in 
the same period and did not have BPD were selected. The 
clinical characteristics such as GA, feeding mode, day age, 
and birth mode were matched with the BPD group. The oral 
mucosal epithelium of participants and clinical data were 
collected. The study was approved by the Ethics Commit-
tee of Shenzhen University General Hospital (Approval No. 

2020–001-02), and the Chinese Clinical Trial Registration 
(Registration No. ChiCTR2000033610) was completed. All 
participants’ guardians signed informed consent.

Exome sequencing

DNA were extracted by magnetic universal genomic DNA 
kit (TIANGEN DP705, Beijing, China), detected by Agi-
lent 5400 fragments analyzer system (NYSE: A, California, 
USA), randomly interrupted by Covaris crusher (M220, 
Massachusetts, USA), purified by AMpure XP Reagent 
(Beckman A63881, California, USA). Library concentration 
was determined by fluorometer (Qubit 2.0, Thermo Fisher, 
USA). Exons were captured using the SureSelect Human 
All Exon V6 (Agilent Technologies, 5190–8865, Califor-
nia, USA) and streptavidin magnetic beads. The library was 
sequenced on NovaSeq 6000 platform (Illumina, California, 
USA). Sequencing reads quality was evaluated by FastQC 
package and removed the connector by cutadapt (v1.18), 
and discarded reads with N > 10% or the base number (the 
quality value Q ≤ 10) proportion > 50%; then, reads were 
uploaded to the CHI cloud analysis platform based on 
FANSe3 and were mapped to the human reference genome 
(GRCh37) to search mutations. Annovar software, hg19 
refGene, the population frequencies of Exome Aggregation 
Consortium (ExAC, V.0.3.1), 1000g2015AUG and dbns-
fp42a were used to annotate the mutation sites.

Data analysis

Principal component analysis was used to detect outli-
ers and layered of group [13]. Five software (SIFT, Poly-
phen2_HDIV, Polyphen2_HVAR, Mutation Taster, and 
PROVEAN) were used to predict the harmfulness of 
mutations. Deleterious mutations were considered only if 
at least three software predictions were harmful. PLINK2 
(v2.00a3lm) software was used to analyze the association 
between mutation sites and disease. Three Gene Ontol-
ogy (GO) analysis, Kyoto Encyclopedia of Genes, and 
Genomes (KEGG) pathway enrichment analysis were used 
for the screened variant genes. Venn diagram was used to 
show coincidence genes with previous literature [14]. Gene 
expression and quantitative trait loci (eQTL) analysis used 
linear regression models to assess associations between the 
single-nucleotide polymorphisms (SNPs) and gene expres-
sion in 500-kbs upstream and downstream of those SNPs, 
and the data used in eQTL analysis were downloaded from 
the Genotype-Tissue Expression (GTEx) data portal. The 
SNP-set (sequence) kernel association test (SKAT-O) for 
R-package SKAT was used to obtain the association between 
mutations in a gene and disease.
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Protein interaction network construction 
and protein structure prediction

We used STRING (Search Tool for the Retrieval of Inter-
acting Genes Database, Version 11.5, https://​string-​db.​org) 
tool to predict the relationship between different genes. 
Cytoscape software (Version 3.10.0) was used to visual-
ize and analyze the interaction network. Degree ≥ 20 was 
set as the core gene. We used ProtParam tool (https://​web.​
expasy.​org/​protp​aram/) to calculate the physical and chemi-
cal parameters of protein, which based on protein sequences 
given in NCBI. We used HOPE online software (https://​
www3.​cmbi.​umcn.​nl/​hope) to analyze the structure of the 
mutations.

Expression of the mutated gene in the patient

We downloaded previously published sequencing data 
from the NCBI GEO dataset (http://​www.​ncbi.​nlm.​nih.​
gov/​gds). The GSE32472 dataset was from the peripheral 
blood of premature infants with GA ≤ 32 weeks and birth 
weight (BW) < 1500 g. There were 68 BPD patients and 
43 non-BPD infants. The GSE188944 dataset is sequenc-
ing data from umbilical cord blood of BPD patients (n = 6) 
and preterm infants without BPD (n = 17) in Argentina 
(GA ≤ 35 weeks and BW < 1500 g). After GEOR2 analysis, 
P < 0.05 and |logFC|> 1 were screened to obtain differen-
tially expressed genes, which were used to find the overlap-
ping genes with the candidate genes in this study.

Statistical analyses

Approximately normally distributed data were described 
using mean ± standard deviation (SD) and evaluated 
using T-test analysis. Non-normally distributed data were 
described using medians and interquartile range (IQR) 
and evaluated using Fisher’s exact test. P values were 
adjusted using the Benjamini–Hochberg false discovery 

rate (FDR-BH), and P < 0.05 was considered statistically 
significant.

Results

Clinical characteristics of the patient

There were 34 BPD infants and 32 in non-BPD infants in 
the study. BPD patients’ GA and BW were statistical smaller 
and lighter than non-BPD infants, but there were no differ-
ences in gender, singleton, and multiple birth composition 
(Table 1). And, the results of principal component analysis 
showed there was no inherent diversity between these two 
groups (Fig. 1).

Preliminary findings from WES data

After stratification and annotation of gene mutation, there 
were 861,620 gene mutations (Fig. 2) and 27,745 were del-
eterious mutations. We compared the mutated genes between 
the two groups by Fisher’s exact test and screened out 457 
differential SNPs, of which 336 (73.5%) were substitu-
tion mutations, 86(18.8%) were deletion mutations, and 37 
(8.1%) were insertion mutations. Most of those SNPs were 
heterozygous mutations.

Few gene mutations consistent with previous 
research

In order to explore whether there are SNPs in line with previ-
ous reports, we searched databases (Phenopedia, DisGeNet, 
MalaCards, and GWAS catalog), and found 50 genes that 
have been studied for the relationship between SNP and BPD. 
There are 128 mutation sites in these 50 genes in our study 
(Supplementary Table 1). We through the interaction net-
work to find the core genes were IL6, EGFR, MMP9, CD44, 

Table 1   Clinical characteristics 
of 66 premature infants

Characteristic BPD (n = 34) No BPD (n = 32) P-value

Gestational age (week, mean ± S.D.) 27.6 ± 2.1 28.8 ± 1.9 0.021
Birth weight (g, mean ± S.D.) 948.5 ± 200.0 1206.2 ± 299.2 0.0002
Gender (%) 0.988
  Boy 18 (52.9%) 17 (53.1%)
  Girl 16 (47.1%) 15 (46.9%)

Multiple births, no.(%) 12 (35.3%) 10 (31.5%) 0.728
BPD grades (%)
  I 21 (61.8%)
  II 7 (20.6%)
  III 4 (11.8%)
  IIIA 2 (5.9%)
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SERPINE1, and TLR4, which are inflammatory mediators, 
epidermal growth factor receptors, matrix metalloproteinase 
families, cell adhesion molecules, serine protease inhibitors, 
and toll-like receptors respectively (Fig. 3). In our study, IL6 
(rs2069832, rs1474347), EGFR (rs11506105, rs17336919) 
and MMP9 (rs3787268), CD44 (rs34986068, rs7639388, 
rs3215691), and SERPINE1 (rs2227692, rs2854236) SNPs 
were more common to non-BPD group, suggesting these 
SNPs are not risk factors of BPD (Supplementary Table 2).

In this study, the SNPs found only in the BPD group were 
SOD2 (superoxide dismutase 2) rs5746091 (10 cases, 29%), 
rs5746090 (9 cases, 26%), rs28662077 (6 cases, 19%), and 
DDAH1 (NM_012137:exon1:c.89 T > G:p.L30R, 9 cases, 
26%), of which SOD2 SNPs were in intron regions, and BPD 

patients with SOD2 rs5746091 mutation had a larger GA 
(P = 0.015, 28.9 ± 1.8 weeks vs 27.0 ± 1.9 weeks) and heavier 
BW (P = 0.002, 1108 ± 235.0 g vs 882.1 ± 136.5 g) than non-
mutated BPD patients, BPD patients with SOD2 rs5746090 
mutation had a heavier BW than non-mutated BPD patients 
(P = 0.01, 1093.3 ± 243.3 g vs 896.4 ± 151.0 g), suggesting 
those two SOD2 mutations may be related to child’s GA and 
BW. DDAH1 (dimethylarginine dimethylaminohydrolase 1, 
NM_012137: exon1: c.89 T > G: p.L30R) SNP is a non-syn-
onymous mutation and located in exon region, whose residue 
larger and more hydrophilic than the wild-type and residual 
charge changes from neutral to positive (Table 2, Fig. 4). This 
mutation in DDAH1 was predicted to be a harmful mutation that 
easily leads to loss of interactions with the ligand, suggesting 
that mutations of this gene may play an important role in BPD.

Compared with previous WES studies, we found no com-
mon overlapping genes in all studies (Fig. 5), but 35 genes 
in our study have been reported in previous WES studies. 
There were three overlapping genes (GIGYF2, KRT10, 
APOB) with the study in Shanghai [10]. Twenty-two 
genes (MAP3K6, NCOR2, FAM155A, PAPLN, MYO9A, 
ABCC6, ABCC11, PIEZO1, DNAH2, MYO15A, RNF213, 
ACP5, APOB, CSPG5, FGFRL1, DNAH5, SOBP, ROS1, 
TBP, GLI3, TMEM229A, GALNTL5) overlapped with 
Carrera’s work [8], two genes (MAB21L3, LIFR) over-
lapped with Hadchouel’s [9] studies, and 9 genes (FIGN, 
ITGA9, ANKRD6, CNOT4, NAV2, CIT, SLC8A3, TRIP11, 
SETBP1) overlapped with study by Li [7]. Among them, 
only apolipoprotein B (APOB) gene was found in three stud-
ies, and these genes are mainly involved in cellular com-
ponents (FAM155A, PAPLN, TMEM229A, GALNTL5, 
SLC8A3), immune-related (GLI3, SOBP), microtubule 
and ciliary organization (MYO9A, MYO15A, DNAH2, 
DNAH5, FIGN), angiogenesis (MAP3K6, RNF213), fibro-
blasts (FGFRL1), and WNT signaling pathway (ANKRD6), 
which indicate these pathways are important to BPD.

Fig. 2   Manhattan plot of results from exome-wide association analysis of 34 BPD and 32 non-BPD infants

Fig. 1   PCA plot of association test statistics in the WES-based dis-
covery data
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Fig. 3   The mutant genes in our study were overlapped with those in 
previous studies. The genes with red color are core genes

Table 2   Changes in physicochemical parameters between mutant and wild-type proteins in DDAH1

Gene Amino 
acids(n)

Molecular 
weight

Theoretical  
pI

Estimated 
half-life

Instability 
index

Aliphatic 
index

Grand average of 
hydropathicity

Type

DDAH1 285 31,121.78 5.53 30 h 38.12  
(stable)

95.79  −0.133

 
DDAH1-

variant
285 31,164.8 5.64 30 h 39.45  

(stable)
94.42  −0.162

 

Fig. 4   Predicted 3D structure of DDAH1 wild type and mutant. 
Close-up of the mutation. Wild-type, and mutant side chain are 
shown in green and red respectively, the rest of the protein is shown 
in gray
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Gene mutations strongly associated with BPD

Association analysis of mutation sites and groups using 
PLINK2 revealed 19,256 SNPs associated with BPD, 
most of which were in the intron region. Only 5 SNPs had 

P value < 5 × 10−5 (Table 3), and no reports found they 
are related to BPD. Among them, DEK/RNF144B gene 
rs6928572 has a population carrier frequency of 91% in 
the 1000 genome database and a low pathogenicity. The 
harmfulness of SNP on CREB3L1 gene is not high in 

Fig. 5   Venn diagram of risk 
genes for BPD development 
reported in four previous studies 
[16–19] and ours

Table 3   SNPs strongly 
associated with BPD in 
PLINK2 association analysis

ID P-value Region Gene rs

chr7_95215272_T_C 1.85E-05 intronic PDK4 -
chr6_18364733_G_C 2.05E-05 intergenic DEK, RNF144B rs6928572
chr9_42752064_T_C 2.86E-05 intergenic FOXD4L4, LOC101928381 rs62554164
chr22_50705729_A_T 4.42E-05 intronic MAPK11 -
chr11_46329475_T_G 4.86E-05 exonic CREB3L1 -
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various databases. None of the top 10 SNPs was in link-
age disequilibrium, suggesting that there is no common 
effect on these genes (Fig. 6).

Functional enrichment of the differential genes 
in two groups

We found 3074 genes’ mutations were associated with 
BPD through SKAT-O test, and used GO- and KEGG-
enriched pathways to find those genes in biological pro-
cesses included arterial development, regulation of cellular 
metabolic processes, pancreas development, epithelial cell 
development, etc.; in cell composition, enriched pathways 
included photoreceptor disk membrane, dynactin complex, 
lamellar body, collagen type IV trimer, etc.; in molecular 
functions, enriched pathways included peptide, proton sym-
porter activity, GTPase binding, RNA N6-methyladenosine 
dioxygenase activity, etc., suggesting that the mutated genes 
mainly cover blood vessels, epithelial cells, fibers, and 
energy metabolism. KEGG pathways are mainly involved 
in human diseases, metabolism, biological systems, etc. The 
top three are mainly methyl butanoate metabolism, pho-
totransduction, alanine, aspartate, and glutamate metabo-
lism (Fig. 7).

Twenty‑four candidate genes may influence 
the pathogenesis of BPD

To further understand the effect of gene mutations on sur-
rounding genes, we performed eQLT analysis for gene 
mutations with P < 0.01 and found that 24 deleterious 
mutations affected the expression of surrounding genes, 

namely TMEM17, CTD-2521M24.6, DYRK4, KLHDC4, 
AC007362.3, CNIH2, CTSF, SFI1, NGDN, IFNAR1, 
PLD4, F8A1, PRELID1, TMX4, RP11-510M2.2, STRCP1, 
ICAM3, SNRNP70, WWC3, DNM1P51, BIVM, LIFR, 
CASP1P2, and SMG8 (Table 4), these genes were the candi-
date genes in the pathogenesis of BPD. To confirm whether 
these genes are differentially expressed in BPD patients, 
through the NCBI GEO dataset, we found decreased expres-
sion of BIVM (immunoglobulin-like variable motif) in the 
cord blood of BPD patients, and BIMV rs3825519 mutation 
was also found in our study; therefore, we speculated BIMV 
rs3825519 mutation may lead to decreased expression of 
BIMV gene.

BIVM rs3825519 mutation was identified in BPD patients 
with prolonged assisted ventilation

BIVM rs3825519 mutation was found in fifteen BPD 
patients (44.1%, 15/34) and four non-BPD infants 
(12.5%,4/32), which had statistical difference (P = 0.006). 
We compared the GA, BW, and assisted ventilation dura-
tion between the BIVM rs3825519 mutation group (n = 15) 
and the wild-type group (n = 19) in BPD patients and found 
that BIVM mutation group had a longer assisted ventilation 
duration than the wild-type group (P = 0.02, 88.4 ± 49.8 days 
vs 54.5 ± 26.6 days). In the non-BPD group, the duration of 
assisted ventilation in the mutant was longer than in wild-
type preterm infants (38.5 (29) days vs. 29 (18.5) days), 
but did not reach statistical difference, may be the sample 
size need to be expanded. BIVM rs3825519 mutation could 
lead to aggravation and prolong assisted ventilation of BPD 

Fig. 6   Linkage disequilibrium 
analysis among the top 10 SNPs 
associated with BPD
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patients, which further confirmed that BIVM gene could 
play a role in BPD (Table 5).

Approximately normally distributed data were described 
using mean ± standard deviation (SD), non-normally distrib-
uted data were described using medians and interquartile 
range (IQR) and non-BPD group with BIVM mutation was 
non-normally distributed data.

Discussion

Even though BPD is a common lung disease in premature 
infants, much remains unknown about the pathogenesis of 
BPD. Many reports have explored the role of SNPs in BPD, 
but the reproducibility of the results is poor, suggesting that 
the genetic variation in BPD may point to uncommon vari-
ants and complex genetic factors. In this study, we collected 
BPD and non-BPD infants for WES analysis. There was no 

difference in population composition between those two 
groups. Low GA and BW preterm infants are more likely to 
develop BPD, which is consistent with currently recognized 
risk factors. Gender and multiple births are not risk factors 
for BPD.

We found 457 deleterious SNPs, among them, substitu-
tion mutations were the most, followed by deletion muta-
tions, insertion mutations were the fewest, and most of the 
variants were heterozygous, which was consistent with pre-
vious study [9]. One study found BPD patients had more 
haploinsufficient genes than all protein-coding genes in 
the human genome [7] and in our study also supported the 
hypothesis that BPD is dose sensitive to gene, which means 
more heterozygous mutations may increase the phenotypic 
advantage of BPD.

Fifty genes in this study had previously been studied in 
relation to BPD, among which were 6 core genes. How-
ever, the mutations carried by the core genes (IL6, EGFR, 

Fig. 7   GO and KEGG enrichment analysis of differential genes associated with BPD. a GO enrichment analysis biological process, b GO enrich-
ment analysis, cellular component, c GO enrichment analysis molecular function, d KEGG enrichment analysis
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MMP9, CD44, SERPINE1) were more common in non-
BPD, suggesting that these SNPs were not risk factors of 
BPD. Among them, IL6 rs2069832 is not associated with the 
incidence of BPD in Northern Ireland and Canadian popula-
tions [15], while this locus may have protective significance 
in this study, reducing the incidence of BPD disease. We 
found that SOD2 (rs5746091, rs5746090, rs28662077) was 
only carried in BPD patients and associated with higher GA 
and BW. Previous study [16] found other two SOD2 SNPs 
(rs4880 and rs5746136) were associated with lower GA and 
BW, but not related to the pathogenesis of BPD, contrary to 
this study. More research is needed to determine whether 
different mutations in SOD2 gene will make different func-
tions of protein, thus has different influence on BPD. We 
also identified a novel DDAH1 mutation (NM_012137: 

exon1: c.89 T > G: p.L30R) in exon region, which is a non-
synonymous and deleterious mutation affecting the proper-
ties and structure of proteins. Downregulation or reduced 
activity of DDAH1 leads to apoptotic activation and reduced 
angiogenesis [17], and rs480414 SNP in DDAH1 was pre-
viously found to be protective against the development of 
pulmonary hypertension in BPD patients [18]. Whether this 
new mutation affects the activity of DDAH1 and thus plays 
a pathogenic role deserves further study.

We found 35 genes in our study have been reported in 
previous WES studies, suggesting they are strongly associ-
ated with BPD. Among them, APOB gene was candidate 
gene in three studies, indicating a possible role in patho-
genesis of BPD. Previous study found APOB gene varia-
tion associated with the survival rate of non-small cell lung 

Table 4   Twenty-four mutation-
affected genes identified by 
eQLT analysis

Mutant gene Region rs GTEx_related_gene eQTL_P-value

TMEM17 Exonic rs11676567 TMEM17 1.26E-08
MVB12A Intronic rs2303678 CTD-2521M24.6 8.10E-08
DYRK4 Intronic rs2286575 DYRK4 2.92E-09
KLHDC4 Intronic rs9934565 KLHDC4 4.01E-14
EEF1B2, SNORA41 Downstream rs34451626 AC007362.3 0.000143
CTSF Intronic rs2242663 CNIH2 0.001544
CTSF Intronic rs2242663 CTSF 3.52E-24
DRG1 Intronic rs1001599 SFI1 5.57E-23
NGDN Exonic rs2236261 NGDN 2.69E-17
IFNAR1 Intronic rs2850015 IFNAR1 1.09E-15
AHNAK2 Exonic rs34499888 PLD4 0.000103
TMLHE Intronic rs5940465 F8A1 1.07E-79
PRELID1,RAB24 Upstream rs6879874 PRELID1 3.63E-11
TMX4 UTR5 rs2205783 TMX4 4.98E-17
ZNF19 Exonic rs8050871 RP11-510M2.2 1.00E-05
MFAP1 Intronic rs693919 STRCP1 0.000182
S1PR5 Intronic rs10416073 ICAM3 0.000519
SNRNP70 UTR5 rs11539822 SNRNP70 1.58E-21
CLDN34 Exonic rs5934730 WWC3 1.92E-05
GOLGA6L4,LOC103171574 Intergenic rs1808567 DNM1P51 4.94E-09
BIVM,BIVM-ERCC5 Intronic rs3825519 BIVM 4.17E-17
LIFR Intronic rs2256595 LIFR 2.95E-07
CASP1P2,CARD17 Intergenic rs487128 CASP1P2 3.45E-11
SMG8 Exonic rs6503905 SMG8 5.60E-14

Table 5   The characteristic of patients with BIVM mutation in different groups

Characteristic BPD group P value Non-BPD group P value

Wild-type group (n = 19) BIVM muta-
tion group 
(n = 15) 

Wild-type group (n = 28) BIVM mutation 
group (n = 4)

Gestational age (week) 28.1 ± 2.2 26.9 ± 1.6 0.08 28.9 (2.93) 27.9 (1.25) 0.25
Birth weight (g) 991.1 ± 231.1 894.7 ± 133.5 0.17 1200 (447.5) 1095 (327.5) 0.78
assisted ventilation dura-

tion (days, median, IQR)
54.5 ± 26.6 88.4 ± 49.8 0.02 29 (18.5) 38.5 (29) 0.12
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cancer [19], but no research reported the correlation between 
APOB gene and BPD, which is worth digging into. There 
were only three overlapping genes between this study and 
the study of Shanghai [10], considering the differences in 
the study design, analysis strategy, and definition of BPD 
may lead to the different results. In this study, the diagnostic 
definition [12] in 2018 was used, and the definition of BPD 
in Shanghai used the 2001 [20] criteria. Those genes in our 
study that overlap with other studies were mainly involved in 
cellular components, immune-related, microtubule and cili-
ary organization, angiogenesis, and fibroblasts. On the other 
hand, we found that the genes associated with BPD disease 
are mainly concentrated on blood vessels, epithelial cells, 
fibers, and energy metabolism. This indicates that vascular 
development, epithelial cell development, collagen fiber, and 
energy metabolism are closely related to this disease.

We identified 24 candidate genes of BPD, supporting the 
hypothesis that BPD is a polygenic co-pathogenicity. These 
genes mainly are related to ciliary movement, and no asso-
ciation with BPD was reported. Through the GEO dataset, 
we found only BIVM gene expression was decreased in BPD 
patients, suggesting that BIVM gene is closely associated with 
BPD. BIMV gene was first identified in the variable region 
of immunoglobulin gene using electronic search technology, 
located in the 32–33 region of the long arm of 13 human chro-
mosome, and predicted to encode a 503 amino acid protein, 
which is ubiquitously expressed in normal tissues and may 
have immunoglobulin-like functions [21]. Study found BIVM 
is expressed at the base of cilia and is a key gene in ciliopa-
thies [22]. This study found that BPD patients with BIVM 
gene mutations needed longer assisted ventilation, which is 
a high-risk factor of BPD [23]. Therefore, we speculate that 
the BIVM rs3825519 mutation may affect the function of cilia 
and be involved in pathogenesis of BPD.

Our report has shortcomings, such as needing a sepa-
rate sample to validate the results; thus, we plan to further 
verify the mutation and expression of the candidate genes in 
another cohort. Despite these limitations, in this study, the 
use of WES to explore genetic variation of BPD can increase 
understanding of genetic factors of BPD in China, to guide 
clinical prediction and intervention, and achieve individual-
ized treatment of BPD.

Conclusion

For the first time, we identified the role of susceptible SNPs 
in BPD in Shenzhen, China, and identified 24 candidate 
genes that could influence the pathogenesis of BPD. And, 
we also found 35 genes in our study have been reported in 
previous WES studies, suggesting they have possible roles in 
pathogenesis of BPD, such as APOB gene. We found BIVM 
rs3825519 mutation may play a role in the pathogenesis of 
BPD by affecting ciliary motility. A novel DDAH1 mutation 

site (NM_012137: exon1: C.89 T&GT; G: P.L30r) may be 
involved in the pathogenesis of BPD.
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