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Abstract
In this paper, a novel chemo-mechanical model is proposed for the description of the stretch-dependent chemical processes 
known as Bayliss effect and their impact on the active contraction in vascular smooth muscle. These processes are responsible 
for the adaptive reaction of arterial walls to changing blood pressure by which the blood vessels actively support the heart in 
providing sufficient blood supply for varying demands in the supplied tissues. The model is designed to describe two different 
stretch-dependent mechanisms observed in smooth muscle cells (SMCs): a calcium-dependent and a calcium-independent 
contraction. For the first one, stretch of the SMCs leads to an inlet of calcium ions which activates the myosin light chain 
kinase (MLCK). The increased activity of MLCK triggers the contractile units of the cells resulting in the contraction on 
a comparatively short time scale. For the calcium-independent contraction mechanism, stretch-dependent receptors of the 
cell membrane stimulate an intracellular reaction leading to an inhibition of the antagonist of MLCK, the myosin light chain 
phosphatase resulting in a contraction on a comparatively long time scale. An algorithmic framework for the implementa-
tion of the model in finite element programs is derived. Based thereon, it is shown that the proposed approach agrees well 
with experimental data. Furthermore, the individual aspects of the model are analyzed in numerical simulations of idealized 
arteries subject to internal pressure waves with changing intensities. The simulations show that the proposed model is able 
to describe the experimentally observed contraction of the artery as a reaction to increased internal pressure, which can be 
considered a crucial aspect of the regulatory mechanism of muscular arteries.
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1 Introduction

In 1902, William Maddock Bayliss observed the contrac-
tion of an artery as a result of an increase in the intravas-
cular pressure (Bayliss 1902; Blum et al. 1999). This reac-
tion constitutes the most important tool of arterioles and 
capillaries for regulating the blood flow and protecting the 
tissue from damage caused by overstretching. Today, it is 
known as the Bayliss-effect and associated with the con-
traction of smooth muscles cells (SMCs) in the media of 
the arterial wall. To analyze atherosclerotic arteries with 
respect to, e.g., efficiency and influence of antihypertensive 
drugs or plaque development and rupture, patient-specific 
numerical simulations are considered a promising toolbox 

for the improvement of clinical practice. For this purpose, 
an accurate calculation of the stress and strain distribution 
throughout the arterial wall is essential, which requires com-
putational simulation to include all biomechanically relevant 
aspects, cf. e.g., Uhlmann et al. (2022). Under physiologi-
cal conditions, these aspects include the passive material 
response of elastin and collagen (Holzapfel 2000; Balzani 
et  al. 2006), residual stresses (Chuong and Fung 1986; 
Balzani et al. 2007; Ambrosi et al. 2011; Cyron and Hum-
phrey 2017; Zahn and Balzani 2018) as well as the active 
material response (Yang et al. 2003b; Murtada et al. 2012; 
Böl et al. 2012; Stålhand et al. 2011; Yosibash and Priel 
2012). While modeling each aspect has its own difficulties, 
here, we focus on the modeling of the active response and 
embrace already existing approaches for the passive material 
response and the residual stresses. Furthermore, we do not 
consider any effects in the material response which are asso-
ciated with supra-physiological loading conditions. These 
may include microscopic damage, which can be induced in 
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tissues, e.g., during balloon angioplasty. Then, appropriate 
models allowing for the mesh-independent simulation of 
stress-softening phenomena can be applied, cf. e.g., Balzani 
and Ortiz (2012) and Schmidt and Balzani (2016).

SMCs are located in all hollow organs and contribute 
to their biological functionality. As in other muscle types, 
the degree of active contraction in SMCs is mainly gov-
erned by the cytosolic free calcium concentration. An 
increase of the calcium concentration can be caused by a 
release of calcium from the sarcoplasmic reticulum (SR; 
an ion-storage located within the cell membrane) or from 
extracellular calcium influx through calcium ion-channels. 
Both sources can be triggered by various biological signals 
including, e.g., calcium waves, junctional calcium transients, 
calcium sparks, calcium puffs, and L-type calcium channel 
sparklets (Amberg and Navedo 2013; Wray 2010). While the 
experimental data to identify the contribution of every single 
mechanism is still limited, the current state of knowledge 
identifies the calcium influx into vascular SMCs as a primar-
ily stretch-dependent process, cf. Cole and Welsh (2011), 
Johnson et al. (2009), Ji et al. (2002), Gao (2017), Pfitzer 
(2019), Schneider (2013) and Wizemann (2012). In addition 
to that, another mechanosensitive contraction mechanism 
has to be taken into account, which we will refer to as the 
calcium-independent contraction mechanism. This contrac-
tion mechanism is especially important when it comes to 
the contraction behavior over a longer time frame. While 
the increase of the cytosolic free calcium concentration 
is stimulating the activity of the enzyme MLCK (myosin 
light-chain kinase), the stretch of receptors of the cell mem-
brane also leads to an inhibition of the antagonist of MLCK, 
which is MLCP (myosin light-chain phosphatase). Both, the 
stimulation of MLCK and the inhibition of MLCP, contrib-
ute significantly to the intensity of contraction. Hence, the 
goal of this paper is to derive a phenomenological approach 
to model the calcium-dependent and calcium-independent 
contraction of vascular SMCs.

One of the most common model approaches for muscle 
shortening was published by Hill (1938). It illustrates the 
mechanical behavior and heat production during muscle 
shortening as a system of two components, where a visco-
elastic part and a contractile part are arranged in series. 
There, the visco-elastic component represents the mechani-
cal behavior of the elastic tissue, while the contractile 
component serves as a model of the muscle. An extension 
of this model is formulated in Fung (1970), which adds a 
parallel elastic component, representing the elasticity of 
the muscle tissue at rest. This is also known as three-ele-
ment Hill muscle model. Another base for the modeling of 
smooth muscles was set by the model of cross-bridge phos-
phorylation by Hai and Murphy (1988). Contractile units 
consist of myosin and actin proteins, which are responsi-
ble for the contraction of SMCs. In their model, Hai and 

Murphy describe the chemical dependency of myosin 
light-chains on the concentration of cytosolic free calcium 
to activate MLCK. This is considered as the only regula-
tory mechanism for the ability of myosin heads to perform 
power strokes. This chemical model is well-accepted and 
used in many publications from the last two decades (Mur-
tada et al. 2010a, 2012; Yang et al. 2003a, b; Böl et al. 
2012; Stålhand et al. 2011). Murtada et al. (2010a) use 
a phenomenological approach to develop a new material 
model for smooth muscle contraction. They combine the 
three-element Hill muscle model with the chemical model 
for cross-bridge phosphorylation and consider the intra-
cellular free calcium concentration as input, which is not 
influenced by mechanisms of the model. In a subsequent 
publication (Murtada et al. 2012), the authors include a 
mechanical description of the overlap between myosin and 
actin filaments, influencing the degree of active contrac-
tion. Similar to striated muscle, they define the filament 
overlap in SMCs as increasing for the raise of the active 
contraction. With this formulation of the filament overlap, 
they are able to match the presented experimental data. In 
this context, a study by Liu et al. (2013) reported that the 
length of myosin filaments is actually widely varying and 
relatively short. Another theory about the length of myosin 
filaments can be found in Chitano et al. (2017). They meas-
ured the concentration of monomeric free myosin at differ-
ent states of muscle stretch. It was found that the amount 
of monomeric myosin is decreasing in stretched SMCs. 
Myosin in its monomeric form has no contribution to the 
contraction mechanism. However, Chitano et al. (2017) 
suggest that monomeric myosin is consumed for polym-
erization, extending the myosin filaments, which they 
assume to be the predominant mechanism for the increase 
of active contraction after muscle stretch. Especially the 
polymerization of monomeric myosin confirms that the 
overlap between myosin and actin provides a considerable 
contraction mechanism for SMCs. Furthermore, the fila-
ment sliding during a contraction of a SMC can lead to an 
elongation of the overlap between both filaments. Hence, 
the approach to modify the magnitude of the driving stress 
inside of SMCs based on the overlap of the contraction 
filaments is convincing and works especially well from a 
numerical point of view to fit experimental data of the cor-
responding papers. More recent publications towards this 
contraction mechanism can be found in Haspinger et al. 
(2018), Murtada et al. (2017) and Stålhand and Holzapfel 
(2016). However, while this effect can have considerable 
impact on the degree of contraction, the majority of reports 
in biology and medicine (see, e.g., Wray 2010; Cole and 
Welsh 2011; Tykocki et al. 2017; Johnson et al. 2009; Ji 
et al. 2002; Gao 2017) support the approach to model the 
increase in active contraction as a process governed by 
the influx of calcium ions. One model for smooth muscle 
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contraction with such an approach was published by Yang 
et al. (2003a). The authors included an electrochemical 
model part by combining a Hodgkin–Huxley-type mem-
brane model with models of the fluid compartment. While 
this represents one of the most detailed approaches to 
include the calcium influx from the extracellular medium 
and the SR, it also requires a detailed amount of experi-
mental data. In Böl et al. (2012), the calcium concentra-
tion in SMCs was defined as a time-dependent calcium 
function. This simple approach enabled the investigation of 
calcium waves moving through the artery without defining 
a coupling between the chemical model and the mechan-
ics. Another promising material model for smooth muscle 
contraction is described in Stålhand et al. (2011). Here, 
the influence of the chemical state of the SMCs onto their 
mechanical behavior is characterized by a modified version 
of the model for cross-bridge phosphorylation by Hai and 
Murphy (1988). By introducing stretch-dependent reaction 
rates inside the chemical model, the amount of phospho-
rylated, attached cross-bridges increases for larger fiber 
stretch, causing a stronger active contraction. This par-
ticular model was also tested by the authors of this paper 
and revealed a numerical issue, where the reaction rates 
were able to become negative for a high stretch, which is 
non-physiological. In Yosibash and Priel (2012), an active 
material model for SMC contraction was proposed where 
the active stress was modeled dependent on the concentra-
tion of a vasoconstrictor and the current stretch in fiber 
direction. The model was fitted to experimental data from 
Wagner and Humphrey (2011) where endothelin-1 was 
the investigated vasoconstrictor. The model by Yosibash 
and Priel (2012) was further investigated in Gilbert et al. 
(2019) by coupling the mechanics with a diffusion of the 
vasoconstrictor. While the model showed a promising fit to 
experiments, it should be recognized that several hormones 
influence the SMC contraction of the arterial wall at the 
same time. A more complex version of this model could be 
considered to embrace the contractile mechanism of arter-
ies in-vivo. Two other recent publications introduce mech-
ano-electrochemical models for the contraction of SMCs 
in the uterus and the urinary bladder (Sharifimajd et al. 
2016; Seydewitz et al. 2017). Both models consider the 
membrane potential as the most important activation factor 
for calcium influx via L-type voltage-gated calcium chan-
nels. The change of the membrane potential of SMCs in 
larger hollow organs can be initiated by a various number 
of stimuli, e.g., the nervous system or by stretch-dependent 
mechanisms. On the one hand, both model approaches sup-
port our own understanding of calcium influx in SMCs of 
the arterial wall. On the other hand, the influx of calcium 
into vascular SMCs is mostly mechanosensitive and not 

directly comparable to the influx of calcium in larger hol-
low organs.

For the purpose of modeling vascular smooth muscle 
contraction, we will focus on the calcium-dependent and 
calcium-independent mechanisms by extending the model 
of Hai and Murphy (1988) and combining it with a modified 
version of Murtada et al. (2012). While other possible mecha-
nisms for the contraction of smooth muscle in the arterial wall 
were mentioned above, the increase of an overlap between 
actin and myosin as well as the influence of vasoconstrictors 
are not included in our approach. To describe the passive, 
hyperelastic material behavior of the arterial wall, we adopt 
the polyconvex material model of Balzani et al. (2006). The 
functionality of the proposed model will be presented by rep-
licating experimental data from Johnson et al. (2009), where a 
middle cerebral rat artery was subjected to different levels of 
internal pressure while the temporal adjustment of the outer 
diameter was measured. There, not only the active material 
response was investigated, but also the mechanical reaction of 
the artery under the influence of Rho kinase inhibitors, which 
are known to be suppressing the contraction mechanism of 
MLCP. Since certain aspects of the artery in the experiment 
are unknown, we will present reasonable assumptions con-
cerning the geometry of the arterial ring, the boundary condi-
tions, fiber directions and the determination of the material 
parameters. The assumptions are related to both, own expe-
rience in the numerical work with arterial simulations and 
scientific references. We apply the opening angle method on 
the arterial ring to include circumferential residual stresses 
(Chuong and Fung 1986). It will be shown that the model is 
able to fit the experimental data accurately, especially for the 
purely active contraction at higher pressure values. The artery 
considered in the experiments is a middle cerebral artery of a 
rat and is thus, a muscular artery. In contrast to elastic arteries 
such as the aorta, muscular arteries are found further away 
from the heart. They are richer in SMC content, especially in 
the media (center layer of the artery) and they contain a high 
amount of collagen in the adventitia (outer layer), for more 
information see (Murtada and Humphrey 2018). In addition, 
they produce a lower amount of nitric oxide (see Leloup et al. 
2015) which makes them more vulnerable when it comes to 
cardiovascular diseases as atherosclerosis. Especially because 
of the high amount of SMCs, muscular arteries are able to 
hold or even decrease their outer diameter after an increase 
of the blood pressure. Therefore, we further investigate the 
proposed model by applying pressure waves to an arterial 
ring. These simulations demonstrate the performance of the 
proposed model to replicate the contractile behavior of a mus-
cular artery which restores its diameter even after a distinct 
increase of the blood pressure.
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2  Chemo‑mechanical model for active 
vascular tissue

We focus on muscular blood vessels, such that the tissue 
consists of elastin, collagen, and a dominant fraction of 
active SMCs. For the passive response, we consider the 
model from Balzani et al. (2006) and combine it with rea-
sonable assumptions about geometry and fiber orientation in 
an arterial ring. Most important in this section, however, is 
the introduction of a coupling between the chemical model 
of the active material with its mechanical model part. We 
extend the models of Hai and Murphy (1988) and Murtada 
et al. (2012) by a set of new stretch- and rate-dependent 
equations to describe the chemical reactions of the calcium-
dependent and -independent contraction mechanisms.

2.1  Continuum mechanical basis and passive 
response

Let X be a material point in the reference configuration B in 
the three-dimensional space, and x the material point in the 
current configuration S . The motion of a material point X 
is defined by the time-dependent map x = �t(X) = �(X, t) . 
The deformation gradient F , which is associated with the 
map � , and the right Cauchy-Green tensor C are given by

In order to account for the passive, hyperelastic material 
behavior of the arterial tissue, the material model is devel-
oped based on the finite strain theory. In addition, the con-
cept of structural tensors M(f ) = a(f ) ⊗ a(f ) (cf. e.g., Boehler 
1987) is applied to address the anisotropy resulting from the 
embedded fibers. The fiber directions a(f ) are regarded, 
which are arranged helically around the vessel wall. A weak 
interaction of these two fiber families is assumed, which 
allows for an additively decomposed formulation of the 
strain-energy density function Ψ . The isotropic energy part 
Ψp, isot describes the elastin-rich matrix in which collagen 
fibers and SMCs are embedded. The orientation of embed-
ded fibers in soft biological tissues can be arbitrarily com-
plex and simulations will always require suitable simplifica-
tions. The specific orientations depend also strongly on the 
location of the artery in the body. Due to a lack of specific 
information regarding SMC orientation in the particular 
artery considered later, we decided to not follow oversimpli-
fied assumptions, where only one fiber direction in circum-
ferential direction is considered. Instead, for the orientation 
of smooth muscle, we follow similar approaches from the 
literature, see, e.g. Haspinger et al. (2018), where the SMCs 

(1)F =
�x

�X
, C = F

T
F .

are mainly oriented in the direction of the mainly two col-
lagen fiber families, cf. Horny et al. (2010). We additionally 
consider a qualitatively realistic distribution of fiber angle 
(measured between the circumferential and axial direction) 
along the radial direction. Though, we do not account for 
dispersed fibers and thus, our assumptions represent to some 
extent a simplification. However, in the analysis presented 
in Sects. 3 and 4, we focus on mostly qualitative effects in a 
simplified arterial segment. Therefore, not including sophis-
ticated and thus very specialized SMC orientations or even 
dispersion is reasonable. Hence, the material behavior along 
the fiber directions is described by four transversely isotropic 
parts here, namely, Ψ(1)

p, ti
 and Ψ(2)

p, ti
 for the passive collagen 

fibers, and Ψ(1)
a  and Ψ(2)

a  for the active SMCs. Consequently, 
the additive decomposition of Ψ can be written as

Note that within the two summations, different fiber orien-
tations may be considered. For a more specific definition 
of the strain-energy density, a coordinate-invariant repre-
sentation in terms of the principal and mixed invariants is 
considered with

Herein, Cof(∙) = det(∙)−T denotes the cofactor. It is worth 
mentioning that the fifth invariant is not polyconvex on its 
own. However, to ensure the existence of minimizers and 
material stability, polyconvexity is important (Ball 1977). 
Hence, the alternative invariant for the transversely iso-
tropic part, which has been introduced in Schröder and Neff 
(2003), is considered as

which fulfills the polyconvexity condition. For the isotropic 
energy part, a neo-Hookean formulation is used which 
excludes a dependency on I2 . In addition, an isotropic energy 
part is added to represent the nearly incompressible behav-
ior of the arterial tissue. Deviations from the incompress-
ible state are punished by the term �2(I

�3
3
+ I

−�3
3

− 2) . The 
transversely isotropic part is formulated as a function of K3 
according to Balzani et al. (2006) and thus, the passive com-
ponents of the material model are given by

(2)Ψ = Ψp, isot +

2∑
f=1

Ψ
(f )

p, ti
+

2∑
f=1

Ψ(f )
a
.

(3)
I1 = tr(C) , I2 = tr[Cof(C)] ,

I3 = det(C) , I
(f )

4
= C ∶ M

(f ) , I
(f )

5
= C

2 ∶ M
(f ) .

(4)K
(f )

3
= I1I

(f )

4
− I

(f )

5
,

(5)
Ψp, isot =�1

�
I1I

−1∕3

3
− 3

�
+ �2

�
I
�3
3
+ I

−�3
3

− 2
�

and

Ψ
(f )

p, ti
= �4⟨K(f )

3
− 2⟩�5 ,
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where the material parameters are restricted to 𝛼1 > 0 , 
𝛼2 > 0 , 𝛼3 > 1 , 𝛼4 > 0 and 𝛼5 > 2 , and ⟨∙⟩ = 1∕2(∙ + � ∙ �) 
define the Macaulay brackets. Once, the strain energy den-
sity is defined, the second Piola-Kirchhoff and the physical 
Cauchy stress tensor can be computed as

2.2  Mechanical–chemical coupling for active 
response in SMCs

The model of cross-bridge phosphorylation and regulation of 
the latch state in smooth muscles by Hai and Murphy (1988) 
describes the influence of calcium on myosin filaments. SMCs 
contain a network of protein filaments which are separated by 
dense bodies, including contractile units. Contractile units con-
sist of thin actin filaments and thick myosin filaments arranged 
in parallel to each other. Cross-bridges, also known as myosin 
heads, are able to build a connection between both protein 
filaments. The entire contraction mechanism is initiated by an 
influx of calcium ions into SMCs, which interact with calmo-
dulin. Calcium–calmodulin-complexes bind to the enzyme 
myosin light-chain kinase (MLCK), activating the phosphoryl-
ation of regulatory light-chains of myosin. As a consequence, 
phosphorylated myosin heads are able to attach to actin and, 
subsequently, perform power strokes which results in a con-
traction of the cell. Attached as well as detached phosphoryl-
ated myosin heads can be dephosphorylated by the activity of 
the enzyme myosin light-chain phosphatase (MLCP). Note 
that all equations in this subsection relate to one single fiber 
direction and thus, we skip the index (f) to not overcomplicate 
notation here. Since the mathematical expressions in Sect. 2.3 
allow for a readable notation, the indices will there be used 
again. In the model of Hai and Murphy, the myosin heads are 
classified in four functional states: (A) detached and dephos-
phorylated, (B) detached and phosphorylated, (C) attached and 
phosphorylated, and (D) attached and dephosphorylated. The 
transformation of myosin heads from one state into another is 
described by the reaction rates for phosphorylation ( k1 and k6 ), 
dephosphorylation ( k2 and k5 ), attachment ( k3 ), and detach-
ment ( k4 and k7 ). Since the attachment of myosin heads can 
only occur for phosphorylated myosin, there is no reaction rate 
for the transformation of myosin heads from state A to state D. 
Consequently, following the model of Hai and Murphy (1988), 
four ordinary differential equations describe the kinetic model 
of the four myosin states as the following

(6)S = 2�
C
Ψ and � =

1

detF
FSF

T.

where nA , nB , nC , and nD constitute the proportions of myo-
sin heads in the respective state. As natural constraints for 
proportions, the following equations have to be fulfilled

In the system of ordinary differential Eq. (7), the reaction 
rates k3 , k4 , and k7 are considered as constant. The reac-
tion rates k1 and k6 describe the activity of MLCK, which is 
calcium-dependent. As calcium-independent antagonist, the 
reactions rates k2 and k5 describe the activity of MLCP. As 
suggested in Murtada et al. (2012), k1 and k6 are described 
as a function of [Ca2+] , i.e.

where [Ca2+] is the concentration of intracellular calcium, 
Ca50 represents the half-activation constant and � is a param-
eter defining the maximally achievable value for k1 and k6 . 
As stated in the introduction, the influx of calcium into vas-
cular SMCs is a complex stretch-dependent mechanism. A 
sudden stretch of the cell results in a fast increase of the 
intracellular calcium concentration. This increased level of 
calcium concentration leads to a rather immediate contrac-
tion of the cell to protect the tissue from overstretching. Sub-
sequently, the increased calcium level triggers an outflow of 
calcium, which reacts slower than the initial inflow. Based 
on this outflow, the calcium concentration eventually settles 
at a certain constant value as long as the loading situation 
of the cell remains unchanged. To model the instantane-
ous inflow of calcium into the cell after an increase of the 
stretch, we propose a stretch-dependent calcium function as

where � = (I
(f )

4
)1∕2 is the stretch in longitudinal direction of 

the SMC and �1 is a material parameter. To describe the 
comparably slower outflow of calcium after a sudden stretch 
of the cell, an evolution equation for �c is proposed as the 
four-parameter sigmoid function

(7)

⎡⎢⎢⎢⎣

ṅA
ṅB
ṅC
ṅD

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

−k1 k2 0 k7
k1 − k2 − k3 k4 0

0 k3 − k4 − k5 k6
0 0 k5 − k6 − k7

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

nA
nB
nC
nD

⎤⎥⎥⎥⎦
,

(8)
nA + nB + nC + nD = 1, with nA, nB, nC, nD ∈ [0;1] .

(9)k1∕6 = �
[Ca2+]2

[Ca2+]2 + (Ca50)
2
,

(10)[Ca2+](�) = �1⟨� − �c⟩2 ,

(11)

̇
𝜆c(Δ[Ca

2+]) = ̇̄𝜆c,min +

̇̄𝜆c,max −
̇̄𝜆c,min

1 + e𝛾2(Δ[Ca
2+]−𝜏c)

with 𝜏c = ln

(
̇̄𝜆c,min −

̇̄𝜆c,max

̇̄𝜆c,min

−1

)
(−𝛾2)

−1 ,
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where ̇̄𝜆c,min and ̇̄𝜆c,max describe the minimal and maximal 
change rate of �c , respectively, and �2 isa material parameter. 
In addition, �c is set as formulated in Eq. (11) to ensure that 
̇
𝜆c(Δ[Ca

2+] = 0) = 0 , which stops ̇𝜆c from changing when-
ever Δ[Ca2+] = 0 . The evolution equation for �c depends on 
Δ[Ca2+] = [Ca2+]tar − [Ca2+] , where [Ca2+]tar is the target 
calcium concentration. This target calcium concentration 
constitutes the calcium value which is reached in a steady 
state at a certain stretch � . Thus, we define the target calcium 
concentration as

with the material parameters �3 and the half-activation 
stretch �50, c . For the second contraction mechanism, which 
is assumed to react significantly slower, the calcium-inde-
pendent and mechanosensitive inhibition of MLCP is also 
proposed to be described by a four-parameter sigmoid evolu-
tion equation, this time for k2∕5:

where Δ�̄�p = 𝜆 − �̄�p . The parameters k̇2∕5,min and k̇2∕5,max 
are the minimal and maximal change rate of k2∕5 , respec-
tively, and �4 is a material parameter. In addition, the pen-
alty parameter �1 in the constraint term e−�1k2∕5 of Eq. (13) 
ensures that k2∕5 never becomes negative, which would be 
non-physiological. Additionally, the equation for k̇2∕5 should 
fulfill k̇2∕5(Δ�̄�p = 0) = 0 as long as the constraint term is 
zero. Therefore, the rearrangement of this equation sets 
the parameter �p as described in Eq. (13). Similar as in the 
model for the calcium-dependent contraction mechanism, �p 
is introduced here as a new stretch quantity to regulate the 
adaptation of k2∕5 over time after a change of the stretch � . 
For this purpose, the evolution equation for �p is defined as

where ̇̄𝜆p,min and ̇̄𝜆p,max are the minimal and maximal 
change rate of �p , respectively, and �5 is a material param-
eter. Here, the penalty parameter �2 ensures that Δ�̄�p is 
always larger than Δ�̄�p,min , which leads to a slow relaxa-
tion of the calcium-independent contraction mechanism. 
To guarantee that ̇̄𝜆p(Δk2∕5 = 0) = 0 while the constraint 

(12)[Ca2+]tar(�) = �3
�2

�2 + (�50, c)
2
,

(13)

k̇2∕5(Δ�̄�p, k2∕5) = k̇2∕5,min

(
1 − e−𝜁1k2∕5

)
+

k̇2∕5,max − k̇2∕5,min

1 + e𝛾4(Δ�̄�p−𝜏p)

with 𝜏p = ln

(
k̇2∕5,min − k̇2∕5,max

k̇2∕5,min

− 1

)
(−𝛾4)

−1 ,

(14)

̇̄�p(Δk2∕5,Δ�̄p) = ̇̄�p,min +
̇̄�p,max − ̇̄�p,min

1 + e�5(Δk2∕5−�k)
− ̇̄�p,max e−�2(Δ�̄p−Δ�̄p,min)

with �k = ln

( ̇̄�p,min − ̇̄�p,max

̇̄�p,min

− 1

)

(−�5)−1 ,

function ̇̄𝜆p,max e
−𝜁2(Δ�̄�p−Δ�̄�p,min) is zero, the parameter �k is 

set as described in Eq. (14). While the constraint function 
is dependent on Δ�̄�p , which has been introduced above, the 
four-parameter sigmoid function of Eq. (14) is only depend-
ent on Δk2∕5 = k2∕5, tar − k2∕5 , where k2∕5, tar is considered as 
the target value which is reached after the stretch of a cell 
stayed for a long time at a rather constant value. This target 
value for the activity of MLCP is defined as dependent on �:

with the material parameter �6 and the half-activation stretch 
�50, p.

2.3  Chemical–mechanical coupling for active 
response in SMCs

The active material model of the present work is based 
on the approach in Murtada et al. (2012). However, while 
(Murtada et al. 2012) consider the three-element Hill mus-
cle model (Hill 1938) as foundation to additively split the 
fiber strain into an active and an elastic part, we found this 
approach not accurate in arbitrary situations. In fact, sig-
nificant elastic strains may be reached, which could lead to 
non-physical, negative values of the active strain. Hence, we 
suggest a multiplicative split of the fiber stretch �(f ) such as

where �(f )e  describes the elastic stretch of the cell in fiber 
direction (f) and �(f )a  is the active stretch which is governed 
by the contraction of the SMCs. This approach is in line with 
classical multiplicative splits of the deformation gradient 
into elastic and inelastic parts, which goes back to, e.g., Lee 
(1969). We keep the idea of the three-element Hill muscle 
model where the passive and the active material component 
of the artery are acting as parallel. This means in particu-
lar, that the coupling between passive and active material is 
assumed as weak, which supports the additive decomposi-
tion of the strain-energy function as formulated in Eq. (2). 
While the passive material has already been described, here, 
we focus on the coupling of chemically-induced smooth 
muscle contraction and the elastic elongation of SMCs. 
The elastic energy stored inside of the SMCs is consid-
ered dependent on the elastic stretch �(f )e  . Additionally, only 
attached myosin cross-bridges can contribute to the elastic 
material response. Hence, the active strain-energy function 
in fiber direction (f) is defined as

(15)k2∕5, tar = �6

(
1 −

�

�50, p + �

)
,

(16)�(f ) = �(f )
a
�(f )
e
,

(17)Ψ(f )
a

=
�a

2

(
n
(f )

C
+ n

(f )

D

)(
�(f )
e

− 1
)2

,
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where �a constitutes a stiffness constant, and nC and nD are 
the proportions of myosin heads in the attached states C and 
D . The elastic stretch can be obtained by rearranging 
Eq. (16) to �(f )e =

�(f )

�
(f )
a

 . The contraction of the SMCs is gov-
erned by the cycling of the myosin cross-bridges in state C 
and results in a sliding between actin and moysin filaments, 
which is expressed through �(f )a  . The contraction behavior of 
a muscle can be investigated by quick-release experiments, 
where the shortening velocity of the tissue is measured for 
a certain afterload. The shortening velocity can be set into 
relation to the afterload by using Hill’s equation for tetanized 
muscle contraction (Katz 1939), which is defined as

where F is the isotonic afterload, F0 is the isometric force at 
which the quick-release is performed, v is the muscle short-
ening velocity, and a and b are fitting parameters. Consider-
ing the muscle shortening velocity related to the speed, by 
which the active strain changes, we can substitute v with 
�̇�
(f )
a  , the first time derivative of the active strain �(f )a  . Further-

more, the afterload F can be replaced by the active stress 
P
(f )
a = ��

(f )
a ∕��(f ) which is obtained after isotonic contrac-

tion, and F0 can be expressed by a driving stress P(f )
c  , which 

is related to the cycling cross-bridges. Hence, we obtain 
a similar hyperbolic function as in Eq. (18) which can be 
rewritten as

where �1 and �2 are material parameters. The active stress 
P
(f )
a  can directly be obtained from the active part of the 

strain-energy function Ψ(f )
a  as

The driving stress P(f )
c  depends on the chemical state of the 

myosin in SMCs, namely, the proportion of myosin heads 
nC which are able to perform power strokes. It is defined as

where � is the maximal achievable driving stress.

2.4  Numerical implementation

The proposed model has been implemented into FEAP 
(Finite Element Analysis Program) using a multilevel New-
ton scheme. For this purpose, the tangent moduli, i.e. the 
derivatives of the stresses with respect to strains, which are 
needed for the global Newton–Raphson scheme, were com-
puted by using complex-step derivative approximation 

(18)(F + a)(v + b) = (F0 + a)b ,

(19)�̇�(f )
a

= 𝛽1
P
(f )
a − P

(f )
c

P
(f )
a + 𝛽2

,

(20)P(f )
a

= �a

(
n
(f )

C
+ n

(f )

D

)(
�(f )
e

− 1
)
.

(21)P(f )
c

= � n
(f )

C
,

(CSDA) following (Tanaka et al. 2014). All evolution equa-
tions are numerically integrated by applying the backward 
Euler integration scheme (Butcher 2003). To solve the back-
ward Euler integration scheme iteratively (Ortega and 
Rheinboldt 1970), a local Newton iteration was implemented 
for Eqs. (11), (13), (14), and (19). Since Eqs. (13), (14) are 
coupled in the sense that both are dependent on k(f )

2∕5
 and �

(f )

p
 , 

they are solved simultaneously. Furthermore, updates for the 
stretch �(f ) in fiber direction (f), which are coming from the 
Newton iteration of the global finite element problem, are 
considered as an update of the elastic part of the stretch �(f )e  . 
Hence, �(f )a  is only changing by solving Eq. (19). The algo-
rithmic implementation scheme for calculating the stresses 
and the tangent moduli at a certain Gauss point is illustrated 
in Fig. 1. 

3  Parameter adjustment and comparison 
to experimental data

In this section, the parameters of the proposed model are 
adjusted to experimental data from Johnson et al. (2009) 
(see Fig. 4a in the original publication). There, the con-
traction of a segment of a rat’s middle cerebral artery was 
investigated in Krebs solution by applying a sequence of 
intravascular pressure with increasing pressure values 
and, meanwhile, measuring the change of the outer diam-
eter over time. Every pressure level was held over a time 
span of 300 s. The used pressure protocol is illustrated in 
Fig. 2c. The pressure was applied to the same artery three 
times, where the surrounding Krebs solution was varied 
to obtain different mechanical responses: 

1. Normal Krebs solution - fully active contraction of a 
healthy artery,

2. Krebs solution including 1 μ M of Rho kinase inhibi-
tor Y27632—contraction of an artery with suppressed 
calcium-independent mechanism,

3. Krebs solution with zero calcium concentration - no con-
traction; passive material response of the artery.

All three scenarios were considered when adjusting the 
material parameters. In order to enable a suitable com-
parison of the model response acting at the material point 
level and the experimental data which was obtained from 
a structural problem, we replicated the experimental setup 
by defining a corresponding boundary value problem 
in FEAP. A mesh for an arterial ring was created with one 
element in longitudinal direction, four elements in radial 
direction and 72 elements in circumferential direction, 
which results in 288 quadratic, 20-node brick elements 
in total. In the experimental setup, the cerebral artery is 
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fixated on the cannulas of the arteriograph with nylon 
threads and then, no additional prescribed axial stretches 
are applied. This setup prevents the entire artery from 
axial movement, and axial strains close to zero should 
be expected throughout the specimen. Therefore, we 
decided to set the displacements in axial direction for the 
arterial ring in our simulation to zero. The diameters of 

the unloaded artery were not provided in Johnson et al. 
(2009). However, a wall thickness of 20 μ m and a ratio 
of 0.2 between wall thickness and lumen is reasonable 
for such an artery (see Table 1 in Gannon et al. 2008). 
Therefore, the inner and outer radius of the unloaded and 
stress-free state of the arterial ring was selected as 92 and 
112 μ m, respectively. To apply reasonable fiber directions, 

Fig. 1  Algorithm to calculate 
the second Piola–Kirchhoff 
stresses and the tangent moduli 
at a material point from the pro-
posed material model. All quan-
tities have to be computed for 
all fiber directions, separately

Fig. 2  Visualization of the mesh with a  the fiber angles in the plane 
of longitudinal and circumferential direction, b  the opening angle to 
apply residual stresses, and c a diagram of the pressure profile, which 
was used in experimental data and applied for the parameter adjust-

ment of the proposed model. The red square in b marks the node 
which is used in Fig. 5 to plot the evolution of mechanical and chemi-
cal quantities over time

Table 1  Optimized passive 
parameters and opening angle

Parameter �1 (kPa) �2 (kPa) �3 �4 (kPa) �5 �

Value 11.52507 151.73775 2.75662 1.27631 3.08798 38.923◦
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a constant gradient for the fiber direction over the wall 
thickness was defined, based on data from Schriefl et al. 
(2012), see also the numerical results in Fausten et al. 
(2016). Note that human elastic arteries were used to 
measure fiber directions in Schriefl et al. (2012). Although 
fiber directions in a middle cerebral rat artery may vary 
from these measurements, experience during setting up 
the optimization problem showed that the influence of the 
fiber directions on the qualitative response of the model 
can be expected small, although some optimized param-
eters may be different. However, we tried to be as realistic 
as possible and thus, we did not include a constant fiber 
angle over the wall thickness. Considering an even more 
complicated fiber orientation would give the optimization 
problem more flexibility and thus, even better agreement 
with experiments should be expected. The fibers lie in the 
plane of longitudinal and circumferential direction (see 
Fig.  2a). The angle between fiber and circumferential 
direction starts with 10◦ at the inner side and increases 
linearly to 40◦ at the outer side of the arterial wall. The 
collagen fibers and the SMCs were assumed to be aligned 
in the same directions. In addition, residual stresses were 
considered by applying the opening angle approach. The 
corresponding opening angle � of the arterial ring (see 
Fig. 2b) was included as a fitting parameter to match the 
experimental data of the passive material response. To fit 
the parameters to the experimental data, an optimization 
was implemented into python by utilizing the library mys-
tic. Mystic offers a mixture of evolution strategy and gradi-
ent methods. For every set of parameters which was newly 
generated from mystic, FEAP is called inside the python 
script to solve the described boundary value problem with 
the new parameter set. Thanks to the parallelization of 
mystic, up to 40 children parameter sets were analyzed at 
the same time. The objective function

was defined to measure the differences between the model 
response and the experiment. Herein, dexp, k is the measured, 
outer diameter from the experimental data at the time tk , 
and dsim, k is the outer diameter from the simulation at the 

(22)z =

√√√√ndata∑
k=1

(
dexp, k − dsim, k

dexp, k

)2

same time tk . The optimization of the material parameters, 
i.e. minimization of the objective function, was executed in 
two sequential steps: First, the five passive material param-
eters and the opening angle � of the arterial ring were fitted 
by running an optimization which only accounted for the 
experimental data from the scenario three, i.e. where the 
passive response is tested. The resulting values for those six 
parameters are listed in Table 1. 

In a second step, the experimental scenarios one and two 
were simulated in FEAP sequentially to enable the optimiza-
tion of the parameters of the calcium-dependent and -inde-
pendent contraction mechanism simultaneously. This means, 
in particular, that data from experiments and simulations 
of the scenario one and two were evaluated together in the 
objective function given in Eq. (22). In both scenarios, time-
dependent contractile mechanisms have to be considered. 
To reproduce the initial contractile state of the arterial wall, 
we apply an intravascular pressure of 10 mmHg over a time 
of 600 s before the pressure profile starts. Since the agent 
Y27632 is suppressing the calcium-independent contrac-
tion mechanism, we assume that the reaction rates k2∕5 are 
constant in scenario two. Hence, we introduce an additional 
fitting parameter k2∕5,const , which equals the reaction rates 
k2∕5 in scenario two. In addition to all fitting parameters of 
the proposed model, reasonable starting values have to be set 
for the time dependent quantities. Such starting values are 
labeled as ∙start . The initial value for the fraction of myosin 
heads in state A was set to nA, start = 1 . According to Eq. (8), 
the starting values for nB, start , nC, start and nD, start were set to 0. 
Table 2 lists all additional chemical parameters which were 
set prior to the optimization. Note that these parameters were 
preselected based on experience gathered from previous 
optimization runs to speed up the optimization procedure. 

Aside from �2 = 26.68 kPa (see Murtada et al. 2012), all 
mechanical parameters were part of the optimization. The 
constant reaction rate for k2∕5 in scenario 2 was optimized to 
be k2∕5,const = 0.892345 s−1 . All other chemical and mechan-
ical parameters, which were part of the optimization, are 
listed in Table 3.

The comparison between the selected data points of the 
experiments, which were manually extracted from the origi-
nal paper, and the simulation results with optimized param-
eter sets is illustrated in Fig. 3. In addition to that, Fig. 4 

Table 2  Chemical material parameters, manually adjusted/set prior to optimization

k3 k4 k7 Ca50 �2 �3 �50, c �̄�c, start �a, start

0.134 s−1 0.00166 s−1 0.000066 s−1 0.4 μM 50 μM−1 0.9 μM 1.2 1.0 1.0

�4 �1 �5 �2 Δ�̄�p,min
�6 �50, p �̄�p, start �e, start

200 100 s 50 s 1000 − 0.00001 1.5 s−1 1.0 1.0 1.0
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shows 3D contour plots of the circumferential Cauchy stress 
of the active material response at the end of each pressure 
level. Stresses up to 30 kPa are reached for an intravascular 
pressure of 120 mmHg which are found in the middle of 
the wall in radial direction. Stress gradients over the wall 

thickness are clearly visible for all times, but they are sig-
nificantly reduced due to the application of residual stresses. 
Note that instead of the simple opening angle strategy fol-
lowed here, more sophisticated models for residual stresses 
based on growth may be applied following the constraint 

Table 3  Active mechanical and chemical parameters, optimized

� �1 ̇̄𝜆c,max
̇̄𝜆c,min

k̇2∕5,max k̇2∕5,min

0.1624 s−1 0.5131 μM 0.0443 s−1 − 0.0443s−1 0.0009735 s−2 − 0.0010694s−2

̇̄𝜆p,max
̇̄𝜆p,min

�a � �1 k2∕5, start

0.0000699 s−1 − 0.0002323 s−1 11.857 kPa 148.262 kPa 0.001006 s−1 1.82758 s−1

Fig. 3  Comparison of model response with experimental data from 
Johnson et  al. (2009) for three different setups: passive response, 
active response under influence of 1 μ m Rho kinase inhibitor Y27632 
and fully active response. The Rho kinase inhibitor Y27632 is 
assumed to block the calcium-independent contraction mechanism 
( k2∕5 is const.). The results of the model nearly correspond with the 

experimental data. An adjusted variation of the parameter optimiza-
tion is illustrated in orange. In this case, the parameter optimization 
incorporates a decrease of calcium concentration and calcium flow 
rate while Y27632 influences the artery. The corresponding results 
are almost identical to the original computation

Fig. 4  Comparison of circumferential Cauchy stresses of the fully 
active material response of Fig.  3 at different times of the pressure 
profile (see Fig. 2c); Stresses increase up to 30 kPa for an intravas-

cular pressure of 120 mmHg; stress gradients over the wall thickness 
are significantly reduced at all times due to application of residual 
stresses
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mixture theory (Humphrey and Rajagopal 2002) or growth-
related deformation gradients (Zahn and Balzani 2018). 
Such models would enable more homogeneous transmural 
distributions of stresses, which is in line with the homeo-
stasis concept cf. Cyron and Humphrey (2014). However, 
as can be seen in the diagram of Fig. 3, the model shows an 
accurate representation of the experimental data.

So far, our parameter adjustment was based on the 
assumption that MLCP can indeed be deactivated by the 
agent Y27632 to separate the response resulting from 
MLCK. However, in the paper by Jackson and Boerman 
(2017), it is shown that Y27632 also influences the level of 
intracellular calcium concentration and thus, the inflow rate 
of calcium ions into the SMCs which will have an effect on 
MLCK. Unfortunately, in Johnson et al. (2009), the poten-
tially modified calcium concentration has not been measured 
as part of the experiment. In order to investigate if our model 
is able to represent the experiment even for the scenario 
when the calcium concentration is changed by the agent, we 
performed an additional parameter optimization. Motivated 
by data from Jackson and Boerman (2017), we made an esti-
mation for the modified calcium concentration based on the 
text above Fig. 8a in Jackson and Boerman (2017), where 
the concentration of the intracellular calcium was found to 
be lowered to 67.3%. Since the concentration of Y27632 
injected there was 10 times the concentration injected in 
the experiments considered here (experiments from Johnson 
et al. 2009), we used the diagram in Fig.  7 of Jackson and 
Boerman (2017) to estimate the lowering of the calcium 
concentration to approximately 75%. Additionally, a clear 
lowering of the number and frequency of calcium waves was 
shown in Fig. 8a of Jackson and Boerman (2017). However, 
due to a lack of specific data, we also assumed a reduc-
tion of the calcium flow into the cells to 75%. Therefore, 
for our analysis of the scenario where the agent is applied, 
we decreased the parameter values of �1 and �3 to 75% of 
their values corresponding to the fully active response. The 
reduction of �1 results in a direct decrease of the calcium 
flow into the cell. Additionally, lowering �3 decreases the 
target value of the intracellular calcium concentration at a 
certain stretch. The results are indicated by “adjusted active 
w/wo Y27632” in Fig. 3 and the associated parameters are 
listed in Table 4 in the Appendix. Results show, that the 
proposed model is able to represent the experiments just 
as well even if the effect of agent-based, altered calcium 
concentrations is taken into account. Admittedly, the modi-
fied scenario is based on some estimations where findings 
from Jackson and Boerman (2017) were transferred to the 
data in Johnson et al. (2009) and thus, the considered sce-
nario may not be perfectly realistic. However, the reason-
able agreement for different scenarios shows already that the 
mechanisms included in the model appear to be appropriate. 
Experiments show that a significant contraction of the artery 

is obtained even when the internal pressure is increased. 
This effect is essential for the functional principle of blood 
flow regulation in many muscular arteries, which not only 
stiffen but also contract upon increased blood pressure to 
assist the heart. The accurate representation of this response 
governs the significance of computational simulations. Since 
our model agrees well with the experiments even for this 
specific response, it appears to be a reasonable approach 
to describe the loading-dependent adaptation of the active 
response of vascular tissue. Competitive approaches, e.g., 
Murtada et al. (2012), Haspinger et al. (2018), include the 
stretch-dependency directly in the mechanical part of the 
active stress model by considering a specific microscopic 
assumption regarding a stretch dependent change of myo-
sin-actin overlap length. For small muscular arteries, this 
change of overlap length can be considered small and thus, 
this cannot explain the significant effects observed in the 
experiments in Johnson et al. (2009). This may explain, 
that, to the best of the authors knowledge, existing models 
have so far not been shown to be able to represent vascular 
contraction upon increased internal pressure as observed in 
the experiments in Fig. 3. On the other hand, MLCP and 
MLCK are known mechanisms which also modify active 
stress intensity upon external stretch, although through 
more chemical effects. Therefore, our model represents an 
approach which is close to the biochemical processes since it 
incorporates the stretch-dependency directly in the chemical 
part of the model which is in line with observations known 
as the Bayliss effect. This does apparently not only allow for 
a suitable representation of the experiments, it also allows 
a more direct and biophysically motivated incorporation of 
further effects on the active response, e.g., induced by anti-
hypertensive drugs.

4  Numerical analysis of proposed model

In this section, the proposed model is analyzed further to 
show the general capabilities of the model and to illustrate 
why the incorporation of the Bayliss effect is important. For 
this purpose, the material point level as well as a structural 
simulation will be considered.

4.1  Investigation of the contraction at a material 
point

To further investigate the details of the contractile mecha-
nism of the proposed model, we provide diagrams showing 
the evolution of important quantities over time in Fig. 5. The 
data is plotted for one fiber direction of the marked node in 
Fig. 2b, which is located at the outer diameter of the arterial 
ring, using the simulation setup for the fully active material 
model as described in Sect. 3. 
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Because of the symmetry of geometry and fiber angles, 
the plotted quantities are equal for both fiber directions. In 
the first diagram, the evolution of the reaction rates k1∕6 
and k2∕5 are shown, which are identified with the activity 
of MLCK and MLCP, respectively. It can be clearly seen 
that the downregulation of k2∕5 is the predominant contrac-
tion mechanism here. This can be explained by the decision 
to fit the first and second experimental scenario simultane-
ously, where k2∕5 is constant in the second scenario. The 
difference in diameter between passive material response 
and active material response without calcium-independent 
contraction mechanism is only about 20 μ m over the entire 
time span (see Fig. 3). Hence, the calcium-dependent con-
traction mechanism is fitted to produce a degree of con-
traction which fits this small decrease of the diameter. As a 
consequence, the calcium-independent contraction mecha-
nism was optimized to be much stronger to capture the con-
tractile behavior of the fully activated artery. Based on the 
temporal progress of k1∕6 and k2∕5 , the fraction of attached 
myosin heads changes as illustrated in Fig. 5b. The fraction 
of attached and phosphorylated myosin heads nC is directly 
proportional to the driving stress Pc (see Fig. 5d). At the 

end of the pressure profile, nC reaches a value of roughly 
0.25 which leads to 25% of the maximally achievable driving 
stress. Figure 5c shows the evolution of the elastic stretch 
�e , the active stretch �a and the total stretch � . The increase 
of the elastic stretch constitutes another crucial mechanism 
in the proposed model to accomplish a high degree of active 
contraction of the arterial wall. It can be clearly seen that 
�e reaches a value as high as 2.25. In an additive split, this 
would have led to a negative active stretch �a , which would 
probably be considered non-physical. Additionally, it can be 
seen that the active stretch �a decreases smoothly over the 
entire duration. Only �e and � show visible steps at the time 
points whenever the intravascular pressure is increased. This 
behavior is caused by the implementation choice in which �e 
is updated for the current time step before the active stretch 
�a is computed (see Fig. 1). Finally, Fig. 5d shows the evo-
lution of the active stress Pa and the driving stress Pc . As 
long as Pc is larger than Pa , the contraction of the artery is 
triggered based on the definition of the active stretch �a in 
Eq. (19). It can be seen that at the end of the last three pres-
sure steps, Pa nearly equals Pc , which leads to a deceleration 
of the contraction. As soon as Pa is larger than Pc , a slow 

Fig. 5  Plots of mechanical and chemical quantities over time for the 
simulation setup with fully active contraction (described in Sect. 3) at 
the marked node in Fig. 2b: a reaction rates k1∕6 and k2∕5 ; b fraction 

of attached myosin heads nC and nD ; c active stretch �a , elastic stretch 
�e and total stretch � in fiber direction; d active stress Pa and driving 
stress Pc
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relaxation of the arterial wall would be initiated. Overall, 
it can be seen that there are three contraction mechanisms 
in the proposed model: The calcium-dependent contraction 
mechanism which controls k1∕6 , the calcium-independent 
contraction mechanism which controls k2∕5 , and the contrac-
tion via active stretch �a . All of them have to work conjointly 
to produce the degree of contraction which is visible in the 
experimental data.

4.2  Application of pressure waves in an artery

To investigate the proposed model on its suitability for 
describing the contribution of SMC contraction to the blood 
flow regulation, we define simple intravascular pressure 
waves which are meant to mimic idealized heart-beat-like 
variations in pressure. In general, the diameter of smaller 
arteries decreases when the blood pressure increases (Blum 
et al. 1999) which is due to the active contraction of SMCs. 
Because of this functionality, these smaller arteries are 
called resistance arteries. The contractile behavior of resist-
ance arteries increases the resistance of the arteries towards 
the blood flow and ensures that the blood during high body 
activity is actually reaching the muscles which are in need 
of additional oxygen-rich blood. The geometry, mesh and 
Dirichlet boundary conditions, which were described in 
Sect. 3, are kept for the investigations here. For the analy-
sis of patient-specific arteries, approaches as, e.g., pro-
posed in Balzani et al. (2012) can be considered, but here, 
we are more interested in an idealized scenario to enable a 
decent qualitative investigation of the general features of 
the individual model components. The load protocol for the 
entire simulation is illustrated in Fig. 6a. Firstly, the arterial 
ring is set under a constant pressure of 80 mmHg which is 
held over a time span of 2000 s. Afterwards, intravascu-
lar pressure waves for a blood pressure of 120/80 mmHg 

are applied. As shown in Fig. 6a, the pressure waves are 
increased to 180/120 mmHg at 3000 s and decreased back 
to 120/80 mmHg at 3400 s. The values of the pressure waves 
are with 120/80 mmHg and 180/120 mmHg in the physi-
ological area of blood pressures for rats (see, e. g., Table 2 
in Wang et al. 2013). The considered functions for both pres-
sure waves are depicted in Fig. 6b. Note that the illustrated 
waves represent an idealized scenario which can however be 
considered characteristic, although not realistic. However, 
this simple approach is sufficient to qualitatively investigate 
the proposed model in a load scenario which is closer to the 
in vivo situation. 

To investigate the results of the simulation, we plot the 
outer diameter of the arterial ring over time from 2800 to 
4200 s in Fig. 7a. 

First, it can be recognized that the diameter of the arte-
rial ring is at all times smaller than the diameters depicted 
in Fig. 3 in which the pressure steps from Fig. 2c was 
applied. This can be explained by the difference of the 
load scenarios. The pressure waves are frequently trig-
gering the stretch-dependency of the calcium-depend-
ent and -independent contraction mechanism. This is 
not occurring during a constant intravascular pressure. 
Hence, the contraction of the artery is even higher for 
a blood pressure of 120/80 mmHg than for the constant 
pressure of 120 mmHg in Fig. 3. In addition, it can be 
seen that after roughly 900 s of pressure waves with a 
blood pressure of 120/80 mmHg (at 2900 s), the arte-
rial ring develops a repetitive material response towards 
the pressure waves. Such a repetitive material response 
can also be observed at roughly 3200 s in the diagram 
(for a blood pressure of 180/120 mmHg) and at roughly 
4100 s (for the second time span of a blood pressure of 
120/80 mmHg). Especially the similarity of the repetitive 
material response for the first and second load period 

Fig. 6  a  Applied load protocol to arterial ring (see results in 
Fig. 7); Note that in time regions where pressure waves are applied 
(time > 2000  s) a number of one pressure wave per second is con-

sidered; b Considered intravascular pressure waves:  120/80  mmHg 
(green), 180/120 mmHg (red)
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at a blood pressure of 120/80 mmHg should be noted. 
Based thereon, we can state that the proposed model for 
SMC contraction is able to provide a stable, repeatable 
material response for more complex load scenarios, such 
as pressure waves on an arterial ring considered here. In 
addition, it can be observed that the maximal diameter 
of the arterial ring is nearly equal during the repetitive 
material response for a blood pressure of 180/120 mmHg 
(see Fig. 7a, 3200–3400 s) compared to the repetitive 
material response at a blood pressure of 120/80 mmHg 
(see Fig. 7a, 2900–3000 s). This indicates that the model 
is, in fact, able to replicate the behavior of arteries which 
contributes to the blood flow regulation. To underline 
the necessity of the calcium-dependent and -independent 
contraction mechanism to cover the feature of blood flow 
regulation, we also investigate variations of the proposed 
model for the same boundary value problem. In the first 
variation, we exclude the calcium-independent contrac-
tion mechanism by setting k2∕5 to a constant value. To 
achieve similar diameter values, we adjusted the reac-
tion rate to be k2∕5 = 0.03 s−1 . In the second variation, 
we excluded all stretch-dependencies from the chemical 

model by additionally keeping k1∕6 constant, which was 
done by setting [Ca2+] = 0.25μM . The adjustments to set 
k1∕6 and k2∕5 to constant values results in a quantitatively 
comparable model as in (Murtada et al. 2012). It can be 
seen from Fig. 7b and c that neither of the adjusted mod-
els can achieve qualitatively comparable contractions 
when the blood pressure is increased to 180/120 mmHg. 
Furthermore, while the model without calcium-independ-
ent contraction mechanism in Fig. 7b is still lowering the 
diameter directly after the blood pressure was increased 
(see between 3000 and 3100 s), the model without any 
chemically related stretch-dependency in Fig.  7c acts 
more like a viscoelastic than an active material. It can 
be concluded, that a stretch-dependency of the chemi-
cal model is essential for reliable simulations of in-vivo 
arteries under changing blood pressure. This could be 
achieved here by taking the calcium-dependent and -inde-
pendent contraction mechanism of the arterial wall into 
account.

Fig. 7  Arterial ring under intravascular pressure waves (see Fig  6) 
with different models: a proposed model; b proposed model without 
calcium-independent contraction mechanism ( k2∕5 is constant); c pro-
posed model without stretch-dependencies of the chemical model 
( k2∕5 and k1∕6 is constant). After an increase of the pressure from 

120/80  mmHg to 180/120  mmHg, the application of the proposed 
model leads to a decrease of the arterial diameter (see a between 
3100 and 3400 s) which is significantly visible for the diastolic blood 
pressure. The reduced models in b and c cannot achieve this contrac-
tile behavior
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5  Conclusion and outlook

Major novelty in the proposed formulation has been the 
incorporation of the calcium-dependent and -independent 
contraction mechanism to describe the Bayliss-effect. The 
mechanical model part was based on Murtada et al. (2012); 
the chemical model on Hai and Murphy (1988). Accord-
ing to the calcium-dependent and -independent contraction 
mechanism, a set of new equations was introduced which 
describe reaction rates of the chemical model as time- and 
stretch-dependent. The proposed model was implemented 
into FEAP and an optimization for fitting experimental data 
of Johnson et al. (2009) was built in python by utilizing the 
library mystic. Based on the optimized parameter set, the 
proposed model achieved a good fit to the experimental data. 
It could be shown that all contraction mechanisms of the 
model are involved to accomplish the correct contraction 
over time. In addition, simulation results of arterial rings 
under time-dependent intravascular pressure were shown. 
These were designed to mimick changes in blood pressure, 
as e.g. appearing during heart beats, as well as changes 
of blood pressure levels resulting, e.g., from a change of 
body activity. In total, three model variations were ana-
lyzed including the proposed model and two modifications. 
While the first model reduction excluded only the calcium-
independent contraction mechanism, both stretch-dependent 
mechanisms of the chemical model were deactivated in the 
second reduction. As it turned out, the proposed model 
showed a realistic contractile behavior which could be iden-
tified as the Bayliss-effect, whereas the reduced models were 
not able to describe this. The simulation results suggested 
that the calcium-dependent and -independent contraction 
mechanism are essential in a reliable model for vascular 
smooth muscle whenever changes in blood pressure are to 
be analyzed. Consequently, our numerical investigations of 
the proposed model show the following benefits compared 
to competitive approaches:

• effective description of the contraction of muscular arter-
ies as a result of increased internal pressure

• direct chemo-mechanical representation of the contractile 
mechanism in terms of a stretch-dependent modification 
of MLCK and MLCP

• advantageous basis for the inclusion of further chemo-
mechanical effects, e.g., related to the influence of anti-
hypertensive drugs such as calcium channel blockers 
or angiotensin II receptor blockers which locally affect 
MLCK and MLCP in vascular SMCs

When it comes to the correct prediction of deformations and 
stresses in patient-specific arteries, several additional aspects 
would be necessary to be included into the model. Firstly, the 
concentration of hormones is not constant over the day, which 
generally varies the ability of SMCs to contract. A similar modi-
fication of the strain-energy density function as in Yosibash and 
Priel (2012) could be considered to account for the effect of vaso-
constrictors on the contraction of SMCs. Furthermore, if patient-
specific arteries are to be investigated, more realistic residual stress 
distributions and fiber directions will be important to improve the 
accuracy of the simulations. In addition to that, simulations of 
patient-specific arteries are specifically interesting from a clini-
cal point of view, when they are performed for diseased arteries. 
This means not only that degenerated tissue may be required to be 
considered, also the impact of antihypertensive drugs on the arte-
rial wall has to be included into the model, which are widely pre-
scribed to patients with cardiovascular diseases. For this purpose, 
the proposed model offers several access points for extensions. 
Calcium-ion channel blockers can be involved into the model by 
defining single parameters of the MLCK activity as dependent 
on the concentration of the corresponding agent. Other antihy-
pertensives as angiotensin-II-receptor blockers or agents from the 
sartan family can be considered by manipulating the intensity of 
the stretch-dependency of both, the calcium-dependent and -inde-
pendent contraction mechanism. With the suggested modifica-
tions, an actual toolbox for computational simulations of patient-
specific arteries to optimize medical treatments could be realized.

Appendix: Optimized parameters 
for the adjusted, active case

Table 4  Active mechanical and chemical parameters with suppressed concentration and flow rate of calcium when SMCs are under the influence 
of Y27632 (see results in orange in Fig. 3), optimized

� �1 ̇̄𝜆c,max
̇̄𝜆c,min

k̇2∕5,max k̇2∕5,min

0.1905 s−1 0.5833 μM 0.05 s−1 − 0.05 s−1 0.0018301 s−2 − 0.0010865 s−2

̇̄𝜆p,max
̇̄𝜆p,min

μa � �1 k2∕5, start

0.00003983 s−1 − 0.00035 s−1 24.153 kPa 160.799 kPa 0.000525 s−1 1.30029 s−1
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