Table 2. Performance of the different models in the training and validation sets.
Models’ or radiologists’ performance | AUC | ACC | Sensitivity | Cut-off | Specificity | PPV | NPV |
---|---|---|---|---|---|---|---|
LR | 0.725 (0.716) | 0.672 (0.660) | 0.788 (0.652) | 0.390 | 0.586 (0.667) | 0.586 (0.600) | 0.788 (0.714) |
RF | 0.800 (0.711) | 0.672 (0.623) | 0.558 (0.391) | 0.378 | 0.757 (0.800) | 0.630 (0.600) | 0.697 (0.632) |
SVM | 0.733 (0.696) | 0.664 (0.604) | 0.481 (0.391) | 0.409 | 0.800 (0.767) | 0.641 (0.562) | 0.675 (0.622) |
DT | 0.824 (0.695) | 0.730 (0.679) | 0.923 (0.826) | 0.541 | 0.586 (0.567) | 0.623 (0.594) | 0.911 (0.810) |
Bayes | 0.715 (0.690) | 0.680 (0.604) | 0.519 (0.261) | 0.267 | 0.800 (0.867) | 0.659 (0.600) | 0.691 (0.605) |
KNN | 0.816 (0.693) | 0.697 (0.660) | 0.654 (0.609) | 0.400 | 0.729 (0.700) | 0.642 (0.609) | 0.739 (0.700) |
Adaboost | 0.705 (0.624) | 0.730 (0.660) | 0.538 (0.348) | 0.474 | 0.871 (0.900) | 0.757 (0.727) | 0.718 (0.643) |
Xgboost | 0.823 (0.688) | 0.836 (0.698) | 0.731 (0.609) | 0.423 | 0.914 (0.767) | 0.864 (0.667) | 0.821 (0.719) |
GBDT | 0.625 (0.510) | 0.680 (0.566) | 0.25 (0.087) | 0.441 | 1.000 (0.933) | 1.000 (0.500) | 0.642 (0.571) |
Radiomics + CNN | 0.885 (0.812) | 0.811 (0.774) | 0.865 (0.826) | 0.425 | 0.771 (0.733) | 0.738 (0.704) | 0.885 (0.846) |
Radiologist1 | – | 0.757 | 0.739 | – | 0.768 | 0.675 | 0.819 |
Radiologist2 | – | 0.811 | 0.8 | – | 0.818 | 0.75 | 0.857 |
Radiologist3 | – | 0.789 | 0.753 | – | 0.8 | 0.725 | 0.822 |
3D CNN | 0.874 (0.709) | 0.862 (0.717) | 0.786 (0.767) | 0.495 | 0.962 (0.652) | 0.965 (0.742) | 0.773 (0.682) |
nnU-Net | 0.922 (0.835) | 0.919 (0.830) | 0.900 (0.800) | 0.506 | 0.943 (0.870) | 0.955 (0.889) | 0.877 (0.769) |
LR, logistic regression; RF, random forest; SVM, support vector machine; DT, decision tree; KNN, k-nearest neighbor; GBDT, gradient boosting decision tree; CNN, convolutional neural network; AUC, area under the curve; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value. Training set, in front of the brackets. Validation set, in brackets.