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Abstract

Metabolism is controlled to ensure organismal development and
homeostasis. Several mechanisms regulate metabolism, including
allosteric control and transcriptional regulation of metabolic
enzymes and transporters. So far, metabolism regulation has
mostly been described for individual genes and pathways, and the
extent of transcriptional regulation of the entire metabolic network
remains largely unknown. Here, we find that three-quarters of all
metabolic genes are transcriptionally regulated in the nematode
Caenorhabditis elegans. We find that many annotated metabolic
pathways are coexpressed, and we use gene expression data and
the iCEL1314 metabolic network model to define coregulated
subpathways in an unbiased manner. Using a large gene expression
compendium, we determine the conditions where subpathways
exhibit strong coexpression. Finally, we develop “WormClust,” a
web application that enables a gene-by-gene query of genes to
view their association with metabolic (sub)-pathways. Overall, this
study sheds light on the ubiquity of transcriptional regulation of
metabolism and provides a blueprint for similar studies in other
organisms, including humans.
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Introduction

All organisms regulate their metabolism during development and to

maintain homeostasis under fluctuating dietary and environmental

conditions. In humans, failure to maintain homeostasis can lead to a

variety of metabolic disorders such as inborn errors in human

metabolism, obesity, hypertension, and diabetes (Sharma

et al, 2008; DeBerardinis & Thompson, 2012). Metabolism can be

regulated through different mechanisms. One well-known mecha-

nism is allostery, a fast-acting mechanism where metabolites directly

modulate enzyme activity. For instance, the enzyme phosphofructo-

kinase, which regulates the conversion of fructose 6-phosphate to

fructose 1,6-biphosphate, is allosterically regulated during glycolysis.

This reaction is coupled to ATP hydrolysis where ATP binding to

phosphofructokinase inhibits enzyme activity by decreasing its affin-

ity for fructose 6-phosphate, while conversion to AMP reverses the

inhibitory effect and increases the activity of the enzyme (Blangy

et al, 1968; Schirmer & Evans, 1990). Metabolism can also be regu-

lated transcriptionally by activating or repressing the expression of

genes encoding metabolic enzymes or transporters. This mechanism

is relatively slow and allows the organism to adapt to changing cellu-

lar or environmental conditions. Well-known examples of the tran-

scriptional regulation of metabolism include induction of the lac

operon in Escherichia coli in response to a switch from glucose to lac-

tose as a carbon source (Jacob & Monod, 1961; Gilbert & Muller-

Hill, 1966); the Leloir pathway in Saccharomyces cerevisiae, which is

transcriptionally activated by galactose (Caputto et al, 1949; Hopper

et al, 1978); and mammalian cholesterol biosynthesis genes, which

are activated by the transcription factor (TF) SREBP when choles-

terol levels are low (Brown & Goldstein, 1997; DeBose-Boyd &

Ye, 2018). Another example of transcriptional rewiring of metabo-

lism involves propionate degradation in the nematode Caenorhab-

ditis elegans. Like humans, C. elegans utilizes a vitamin B12-

dependent pathway to break down this short-chain fatty acid. When

dietary vitamin B12 is low, propionate metabolism is transcription-

ally rewired to an alternative degradation pathway referred to as the

propionate shunt, thereby preventing toxic propionate accumulation

(Watson et al, 2014, 2016; Bulcha et al, 2019).

The contribution of transcriptional regulation of metabolism has

mostly been studied at a systems, or network, level, in single-cell

organisms such as E. coli and S. cerevisiae and to a lesser extent in

plants (Ihmels et al, 2004; Kharchenko et al, 2005; Seshasayee

et al, 2009; Ledezma-Tejeida et al, 2017; Tang et al, 2021). How-

ever, the extent to which overall metabolic activity is under tran-

scriptional control in animals remains unclear.

C. elegans is an excellent multicellular animal model to study the

transcriptional regulation of metabolism at a systems level: Its fixed
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lineage of 959 somatic cells was fully described (Sulston & Hor-

vitz, 1977), its metabolism shows extensive conservation with

human metabolism (Lai et al, 2000; Shaye & Greenwald, 2011),

many gene expression datasets are available, and a genome-scale

metabolic network model (MNM) has been reconstructed (Yilmaz &

Walhout, 2016). The most up-to-date MNM, iCEL1314, contains 907

metabolites, 2,230 reactions and 1,314 genes (Yilmaz et al, 2020).

By using flux balance analysis (FBA), iCEL1314 can be used to gain

insight into the metabolic state of C. elegans during different nutri-

tional conditions or in different tissues. An additional set of meta-

bolic genes has been predicted based on homology with known

metabolic enzymes in other organisms or based on the presence of

domains found in metabolic enzymes (Yilmaz & Walhout, 2016;

Bhattacharya et al, 2022).

Guilt-by-association is a powerful concept in systems biology

that can be used to identify genes with shared functions. One way

this can be done is by coexpression analysis where a functional

association can be predicted when genes are coexpressed in many

transcriptomic datasets (Eisen et al, 1998; Hughes et al, 2000; Kim

et al, 2001; Segal et al, 2003; Stuart et al, 2003). In C. elegans, coex-

pression analysis has been used to study global, temporal, and spa-

tial gene expression (Reinke et al, 2000; Kim et al, 2001, 2016;

Spencer et al, 2011; Liu et al, 2018).

Here, we investigated the extent of transcriptional regulation of

C. elegans metabolism. We developed a computational pipeline to

identify genes of which the corresponding mRNA varies significantly

during development, in different tissues, and across a gene expres-

sion compendium consisting of different conditions. Using both a

supervised and a semisupervised method, we identified coexpressed

metabolic pathways and subpathways. Overall, we found that three-

quarters of metabolic genes exhibit variation in expression, which is

comparable to the proportion in nonmetabolic genes. Further, we

found that most annotated metabolic pathways contain genes that

are significantly coexpressed. With a custom-made semisupervised

method, we identified clusters of genes that define coexpressed

subpathways or combinations of subpathways that likely form func-

tional metabolic units. We extracted conditions where coexpressed

clusters of genes are coordinately activated or repressed, revealing

how these clusters may contribute to metabolic homeostasis. We

developed a web application we named “WormClust” that is avail-

able on WormFlux website (Yilmaz & Walhout, 2016). WormClust

enables querying of C. elegans genes to identify metabolic (sub-)

pathways with which these genes are coexpressed. Altogether, our

findings show that transcriptional regulation of metabolic genes and

pathways is ubiquitous in C. elegans, indicating that this principle is

broadly conserved from single-cell organisms to metazoa. Finally,

our analyses and tools provide a platform for similar studies in other

organisms, including humans.

Results

Three-Quarter of metabolic genes are transcriptionally regulated

mRNA levels are determined by a combination of synthesis and deg-

radation. Here, we used variation in mRNA levels as a first approxi-

mation for transcriptional regulation. We evaluated the expression

of metabolic genes during development, in different tissues, and

under different conditions to identify metabolic genes that are highly

variant and therefore likely transcriptionally regulated. We used all

annotated metabolic genes (Yilmaz & Walhout, 2016; Yilmaz

et al, 2020) and grouped them into four classes based on current

annotation (Dataset EV1): Class A, iCEL1314 genes (N = 1,308; after

removal of six pseudogenes, see Materials and Methods); class B,

genes annotated to reactions that cannot yet be connected to the

iCEL1314 model (N = 192); class C, genes encoding proteins with

homology to metabolic enzymes in other organisms (N = 860); and

class D, genes encoding proteins with a domain found in known

metabolic enzymes (N = 132). Hereafter, we refer to the 1,308 genes

in class A as “iCEL1314 genes” and the remaining 1,184 as “other

metabolic genes”.

We first identified metabolic genes that vary in expression during

larval development by using a high-quality postembryonic time-

resolved RNA-seq dataset, hereafter referred to as the “development

dataset” (Kim et al, 2013; Figs 1A and EV1A, and Dataset EV2).

Briefly, this dataset contains expression profiles of stage-

synchronized animals that were collected every 2 h after hatching

for 48 h at 20°C. In the original paper, genes were grouped into 12

clusters based on similarity in developmental expression profiles.

One of these clusters contains 5,045 genes, including 995 metabolic

genes, with relatively invariant temporal expressions. We will refer

to this cluster as the “flat cluster.” However, although the expres-

sion levels of most of the flat cluster genes are relatively stable dur-

ing development, we noticed that some did exhibit considerable

variation. Additionally, many invariant genes from other clusters

were not included in the flat cluster. Therefore, we used an unbi-

ased statistical method, called variation score (VS) to stringently

define variation in developmental gene expression. This included

calculating deviation from the flat cluster genes’ expression and

then empirically establishing a conservative VS threshold (0.169;

Fig EV1A and B, see details in Materials and Methods). We excluded

3,552 genes, including 213 metabolic genes, because they were

expressed at levels too low for variability analysis. For the

remaining metabolic genes, we found that 754 (31.4%, VS ≥ 0.169)

are highly variant, and 98 were invariant (4%, VS = 0; Fig 1B). The

remaining 1,332 metabolic genes (0 < VS <0.169) were annotated

as moderately variant (Figs 1B and EV1C). About a quarter of

iCEL1314 genes (329, or 26%) are highly variant, which is lower

than the proportion of other metabolic genes (37%) and nonmetabolic

genes (41%; Fig EV1C and D, and Dataset EV2). The percentage of

highly variant metabolic genes is lower than that of nonmetabolic genes

across most VS thresholds (Fig 1C).

To identify metabolic genes that exhibit differential expression

across tissues, we selected a high-quality single-cell RNA sequencing

dataset that measured gene expression during L2 stage of C. elegans

across seven major tissues: body wall muscle, glia, gonad, hypoder-

mis, intestine, neurons, and pharynx (Cao et al, 2017; Figs 1A and

EV2A, and Dataset EV3). This dataset is hereafter referred to as the

“tissue dataset.” Unlike the development dataset, the tissue dataset

does not have a defined cluster of invariant genes. Therefore, we

used the less sophisticated coefficient of variation (CV) measure to

identify variation in gene expression across the seven tissues

(Fig EV2A). We previously found that the five genes comprising the

propionate shunt are differentially expressed in different tissues

(Watson et al, 2016; Yilmaz et al, 2020), and each of these genes had

a CV greater than 0.75 (Fig EV2B). Visual inspection of genes with
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CV values from 0.15 to 1.2 indicates that CV = 0.75 provides a clear,

yet conservative threshold to annotate highly variant genes across

tissues (Fig EV2C). We further classified genes with a CV less than

0.75 but greater than or equal to 0.3 as moderately variant and genes

with a CV less than 0.3 as invariant (Fig EV2D, see Fig EV2B and C

for examples). A total of 6,370 genes, including 348 metabolic genes,
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were not included in this analysis because they are expressed at low

levels (Yilmaz et al, 2020; details in Materials and Methods). We

identified ~60 and ~25% of metabolic genes as highly and moder-

ately variant, respectively. These include 781 highly variant and 405

moderately variant iCEL1314 genes (Figs 1B and EV2E). A very small

number of metabolic genes (13, or 1%) were invariant across tissues.

Even though the analysis of the different datasets used a different sta-

tistical approach, these results suggest that more metabolic genes are

variant and, therefore, likely transcriptionally regulated in different

tissues than during development (Fig 1B). In contrast to develop-

ment, the percentage of metabolic genes that are highly variant

across tissues at any CV cutoff is greater than nonmetabolic genes

(Fig 1D), indicating that metabolic processes exhibit a relatively high

level of tissue specificity.

Overall, metabolic gene expression showed higher variation

across tissues at a fixed time point (L2) than larval development.

However, because we used two different statistical methods for the

development and tissue datasets, we confirmed that it held true

when we applied the same CV measure we used in the tissue dataset

to the development dataset (Appendix Fig S1A). The two datasets

also have different resolution: the development dataset has great

temporal but no spatial resolution because it was measured by bulk

RNA-seq while the tissue dataset, which was measured by single-

cell RNA-seq, has great spatial but no temporal resolution. There-

fore, we examined genes that are highly tissue-specific, because

they are highly expressed in a single tissue in the tissue dataset, and

found that only 57% of these are also highly variant in the develop-

ment dataset (Appendix Fig S1B). Therefore, we conclude that tran-

scriptional regulation of metabolic genes more frequently

establishes spatial than temporal gene expression patterns.

To directly compare metabolic gene expression in tissues and

development, we plotted VS values of metabolic genes across devel-

opment versus CV values across tissues and found that these two

parameters are moderately correlated (Fig 1E). We divided the scat-

ter plot into four quadrants, based on the thresholds used in each

dataset (Dataset EV4). To determine whether there are any func-

tional enrichments, we performed pathway enrichment analysis

(PEA) on the metabolic genes for each quadrant using the tool pro-

vided on the WormFlux website (Yilmaz & Walhout, 2016). The first

quadrant (Q1) consists of genes with moderate/low developmental

variation and moderate/low tissue variation. It has 595 metabolic

genes, including 385 iCEL1314 genes that are enriched in several

metabolic pathways, such as the electron transport chain (ETC),

aminoacyl-tRNA biosynthesis, the tricarboxylic acid (TCA) cycle,

the pentose phosphate pathway and glycolysis/gluconeogenesis

(Appendix Fig S2A). The second quadrant (Q2), with high develop-

mental variation and moderate/low tissue variation, consists of only

176 genes, including 68 iCEL1314 genes that are enriched in sulfur,

cysteine, and methionine metabolism (Appendix Fig S2A). The 891

genes in the third quadrant (Q3) consist of genes with moderate/

low developmental variation and high tissue variation. They include

504 iCEL1314 genes that are highly enriched in lipid metabolism.

Notably, genes involved in peroxisomal fatty acid (FA) metabolism

vary more in expression than mitochondrial FA degradation (Appen-

dix Fig S2A). Finally, the 577 genes in the fourth quadrant (Q4)

show high developmental variation and high tissue variation. They

include 261 iCEL1314 genes, which are enriched in UDP-

glucuronosyltransferases (UGT) enzymes, guanylate cyclases, glyox-

ylate and dicarboxylate metabolism, and amino acid metabolism,

such as arginine and proline metabolism and glutamate/glutamine

metabolism (Appendix Fig S2A). Interestingly, there are differences

among different types of metabolic genes. For instance, amino acid

metabolism genes are variant in both development and in tissues,

while lipid metabolism genes are mostly variant in tissues, and

growth and energy metabolism are relatively invariant in both

development and in tissues.

To evaluate metabolic gene expression more broadly, we com-

bined 177 expression profiling datasets into an expression compen-

dium, an earlier version of which we have used to study TF

paralogs (Reece-Hoyes et al, 2013; Figs 1A and EV3A, Datasets EV5

and EV6, see Materials and Methods). Using a CV threshold ≥ 0.75

in at least three datasets, we found that 775 of the 2,492 metabolic

genes (~31%), including 284 iCEL1314 genes, are highly variant in

the compendium, which is lower than nonmetabolic genes (44%,

Figs 1B and EV3B). This difference holds true for different cutoffs of

the number of datasets showing high variation (Fig 1F) and across

different CV thresholds (Fig 1G). However, the percentage of invari-

ant genes is similar between metabolic and nonmetabolic genes

using different CV cutoffs (Fig 1H).

When we compared highly variant genes in development, tissue,

and compendium, we found that a total of 1,867 metabolic genes

(75%) are highly variant in at least one of the three datasets and

that 283 metabolic genes are highly variant across all three datasets

(Fig 1B and I). Using phenotypes provided in WormBase WS282

◀ Figure 1. Analysis of metabolic gene expression during development, in different tissues and in a gene expression compendium.

A Computational pipeline to identify C. elegans metabolic genes that change in expression during development, across tissues, and compendium of multiple conditions.
Statistically significant differences in gene expression were calculated in the developmental dataset using a variation score (VS), in the tissue dataset using coefficient
of variation (CV) and by number of datasets with CV ≥ 0.75 in the compendium (collection of 177 datasets).

B Pie charts of metabolic and nonmetabolic gene expression variation in the three different datasets: development, tissue, and compendium separately and combined.
Bar graph shows metabolic genes in iCEL1314 and other (predicted) metabolic genes.

C Comparison of percentage of highly variant metabolic versus nonmetabolic genes at different VS thresholds.
D Comparison of percentage of highly variant metabolic versus nonmetabolic genes at different CV thresholds.
E Scatter plot of VS (development) versus CV (tissue) of metabolic genes. The plot is divided into four quadrants: Q1 with moderate/low VS and moderate/low CV; Q2

with high VS and moderate/low CV; Q3 with moderate/ low VS and high CV; and Q4 with high VS and high CV. The Pearson and Spearman correlation coefficients
and the corresponding P-values are indicated. Examples of Q4 genes that are highly variant both during development and in different tissues include ugt-13, ugt-18,
and ugt-34 (UGT enzymes); gcy-3 (guanylate cyclases); and ddo-3, gln-2, argk-1, and phy-3 (amino acid metabolism).

F Comparison of percentage of highly variant metabolic versus nonmetabolic genes at different cutoffs of number of datasets with high CV (≥ 0.75).
G Comparison of percentage of highly variant metabolic versus nonmetabolic genes at different CV cutoffs in at least three datasets in the compendium.
H Comparison of percentage of invariant metabolic versus nonmetabolic genes at different cutoffs of the fraction of datasets with low CV (< 0.3).
I Venn diagram of highly variant metabolic genes in the different datasets.
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(Harris et al, 2020b), we found that the 75% highly variant meta-

bolic genes are enriched in conditional response variants such as

chemical and pathogen response, and depleted in essential pheno-

types such as lethality, larval arrest, slow growth, and sterility

(Appendix Fig S2B). Finally, the remaining 624 (25%) of metabolic

genes that are not highly variant in any dataset are similar in path-

way enrichment as the Q1 genes discussed previously and are

enriched in the essential phenotypes (Appendix Fig S2C and D).

Altogether, our analyses indicate that at least 75% (1,867 out of

2,492) of metabolic genes vary in mRNA levels and are therefore

likely transcriptionally regulated, including 902 iCEL1314 genes

(~69%; Fig 1B). This is similar to the proportion of varying nonme-

tabolic genes (~79%), indicating that metabolic genes are overall at

least as much under transcriptional control as other genes (Fig 1B).

A supervised approach shows widespread Coexpression of genes
comprising metabolic pathways

We previously found that the five genes comprising the propionate

shunt pathway are coordinately activated in response to propionate

accumulation (Watson et al, 2016; Bulcha et al, 2019). In addition,

we found strong coexpression of genes functioning in the

methionine/S-adenosylmethionine (Met/SAM) cycle, for instance

when flux through this pathway is perturbed (Giese et al, 2020). To

systematically test which C. elegans metabolic pathways exhibit

coexpression, we developed a custom pathway enrichment analysis

pipeline (Fig 2A) based on gene set enrichment analysis (GSEA; see

Materials and Methods; Subramanian et al, 2005) and applied it to

the compendium. We ran this pipeline using metabolic pathways,

enzyme complexes, and enzyme families as defined in WormPaths

(Walker et al, 2021). Henceforth, we use “category” to refer to a

group of metabolic genes that best fit in an enzyme complex or

related set of enzymes such as aminoacyl-tRNA synthetases. We cal-

culated an enrichment score (ES) that defines the enrichment of rel-

atively high coexpression within that set. A normalized ES (NES)

indicates relative strength of this enrichment compared with ran-

domized tests, the significance of which is measured as a false dis-

covery rate (FDR; Fig 2A). With an FDR cutoff of ≤ 0.05, 52 of 84

metabolic pathways or categories (~61%) exhibit coexpression,

which is significantly more than expected by chance (Fig 2B and C,

Dataset EV7, Appendix Fig S3). As expected, the 52 coexpressed

metabolic pathways and categories include the propionate shunt

and the Met/SAM cycle (Fig 2D and E). When we examined coex-

pression in pathways and categories separately, we found that 78%

of categories showed significant coexpression compared to 58% of

pathways (Fig 2B). Examples of metabolic pathways that exhibit

high coexpression include peroxisomal FA degradation and starch

and sucrose metabolism (Fig 2F and G). Examples of coexpressed

categories include vacuolar ATPases, ETC complex I, and

aminoacyl-tRNA synthetases (Appendix Fig S3). There are 32 cate-

gories and pathways that do not exhibit self-enrichment, including

pantothenate and CoA biosynthesis and mevalonate metabolism

(Fig 2H and I, and Appendix Fig S3). Such pathways may either not

be regulated at all, may be regulated by allostery, or only one or a

few genes in these pathways are transcriptionally regulated and

may therefore function as key regulatory genes. Alternatively, these

pathways maybe coregulated in conditions that were not yet pro-

filed and therefore are not included in the compendium.

The extent of within-pathway coexpression of metabolic genes

can be potentially confounded because metabolic reactions are often

associated with multiple genes in gene-protein-reaction (GPR) anno-

tations (Kim et al, 2008; Thiele & Palsson, 2010). There are two rea-

sons for this. First, some metabolic reactions are catalyzed by

enzyme complexes comprising two or more proteins. In such cases,

all genes need to be expressed for the reaction to take place and are

therefore annotated here as “AND” genes. Second, some genes are

part of larger families (paralogs) that encode isozymes or highly

similar proteins. Metabolic network reconstruction efforts use pro-

tein sequence homology to associate genes with reactions (Thiele &

Palsson, 2010; Yilmaz & Walhout, 2016, 2017). As a result, multiple

highly homologous paralogs may be associated with the same meta-

bolic reaction. Such paralogs are annotated here as “OR” genes.

Some reactions are associated with a combination of AND and OR

genes (Fig EV4A). Finally, for some gene families it may be that one

member catalyzes one reaction and another member catalyzes

another. Paralogs that are associated with distinct reactions are

referred to here as “other paralogs” (Fig EV4B). Pathways can be

associated with multiple types of AND and OR genes (Fig 2J).

AND genes encode proteins that function together in complexes,

and such genes are often strongly coexpressed (Jansen et al, 2002).

For example, genes encoding ETC complex members are coex-

pressed and coregulated (van Waveren & Moraes, 2008). Therefore,

we wondered whether this holds true for AND genes in iCEL1314

and, if so, whether this would inflate pathway coexpression enrich-

ment. To test this, we systematically assessed coexpression of differ-

ent types of gene pairs. As expected, we found that AND genes are

significantly more coexpressed than random gene pairs, OR genes

and other paralogs (Figs 2K and EV4C–E). Both OR genes and other

paralogs are also more coexpressed than random metabolic gene

pairs in all three datasets (Figs 2K and EV4C–E). Surprisingly, OR
genes are more coexpressed than other paralogs across tissues

(Figs 2K and EV4C–E).
In C. elegans, ~18% of genes are transcribed from operons

(Blumenthal et al, 2002). In total, 26% of metabolic genes occur in

operons. However, they most frequently occur as a pair with a

nonmetabolic gene. In total, 242 metabolic genes (~10% of all meta-

bolic genes) occur in a pair with another metabolic gene in an

operon (Dataset EV1).

As expected, these operon gene pairs are more coexpressed than

random gene pairs, OR genes and other paralogs, thus serving as a

validation for our coexpression analysis. However, these pairs are

less coexpressed than AND genes and there is no overlap between

the two categories. This shows that enzyme complexes are strongly

coregulated and their coregulation mechanism is largely indepen-

dent of operonic organization (Figs 2K and EV4C–E).
Based on the analysis of AND, OR and operon genes, it is difficult

to determine the contribution of the coexpression of such gene pairs

to pathway enrichment. Therefore, we examined coexpression of

gene pairs that are annotated with distinct reactions in a pathway,

which we refer to as pathway (PW) genes (Fig 2J). We found that

PW gene pairs are significantly more coexpressed than random gene

pairs (Figs 2L and EV4F–H). We also examined coexpression of gene

pairs that are not part of an operon, which we refer to as pathway

excluding operon (PO) genes. There are only three pathway gene

pairs that are part of operon; hence, there is no significant difference

between pathway genes and PO genes coexpression (Figs 2L and
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EV4F–H). Therefore, pathway coexpression is not just driven by

AND, OR and operon genes, indicating that pathway genes’ coex-

pression is a true feature of many metabolic pathways.

A Semisupervised approach extracts coexpressed subpathways

Our finding that metabolic pathways and categories exhibit exten-

sive coexpression was based on previously annotated pathways

(Walker et al, 2021). However, these pathways connect into the

larger metabolic network and the definition of the start and ending

of each pathway is somewhat arbitrary. Since there is extensive

coexpression of genes that function together in predefined path-

ways, we reasoned that we may be able to use coexpression to

extract metabolic (sub)-pathways in an unbiased manner. To specif-

ically focus on metabolic genes that function in connected reactions

in the metabolic network, we developed a “coflux” metric that cal-

culates flux dependency between metabolic genes using the network

model (see details in Materials and Methods; Dataset EV8). Reac-

tions in linear pathways have complete flux dependence (i.e.,

coflux = 1), while in branched pathways flux dependency may be

partial (coflux = between 0 and 1), and in uncoupled reactions,

there is no dependence (coflux = 0). We then used a custom semisu-

pervised approach that multiplies coflux and coexpression values

and clustered the resulting product matrix with a relatively stringent

set of parameters (Fig 3A and B, Dataset EV9, Appendix Fig S4A,

see Materials and Methods for details).

As expected, the propionate shunt pathway genes formed a tight

cluster (Fig 3C and Appendix Fig S4B). Interestingly, while the first

four genes, acdh-1, ech-6, hach-1, and hphd-1, occurred closely

together, the fifth gene, alh-8, was not part of the same cluster. This

could be explained in two ways. First, alh-8 encodes an enzyme that

functions at a junction in the pathway where its substrate malonate

semialdehyde is converted either to acetyl-coa or, potentially, to

beta-alanine. Therefore, metabolic flux is divided in two directions

and is not linearly coupled with the shunt pathway flux like the first

four reactions. Second, alh-8 is annotated to another reaction where

2-methyl-3-oxopropionate is converted to propionyl-CoA (Fig 3C).

This approach also revealed another cluster comprising the canoni-

cal, vitamin B12-dependent propionate degradation pathway, indi-

cating that, like the propionate shunt, this pathway may also be

transcriptionally activated or repressed under specific conditions

(Fig 3C, Dataset EV9).

The semisupervised approach reveals pathway boundaries

The propionate shunt example above shows that the semisupervised

approach can extract subpathways (e.g., the propionate shunt) from

previously defined pathways (e.g., propionate degradation) based

on coexpression and coflux. We therefore used other clusters

defined by the semisupervised approach to better define starts and

ends of different pathways.

An example of a pre-annotated WormPaths pathway that was

fully captured with the semisupervised approach is peroxisomal FA

degradation (Fig 4A, Dataset EV9). The first reaction in peroxisomal

beta-oxidation is catalyzed by acyl-CoA oxidases (encoded by acox

genes). Only acox-1.1 and acox-3 in the acox family genes are coex-

pressed with the other peroxisomal FA oxidation genes, indicating

that they are more likely to function in this pathway than the other

acox genes, which are coexpressed with each other, and with mito-

chondrial FA degradation genes (Dataset EV9).

Examples where only a subset of annotated pathway genes clus-

tered together include tyrosine metabolism and histidine degrada-

tion. Tyrosine can be metabolized via different reactions, in

different pathway branches (Fig 4B). In one pathway branch, tyro-

sine is degraded in five steps to produce fumarate and acetoacetate.

The genes in this branch; gst-43, C31H2.4, Y53G8B.1, hpd-1, hgo-1,

fah-1, and gst-42 form a tight cluster (Fig 4B, Dataset EV9). This

cluster consists of OR genes hpd-1 OR C31H2.4; and Y53G8B.1 OR

gst-42 OR gst-43, which suggests that these genes are correctly anno-

tated to this pathway branch. Histidine can also be degraded via

two pathway branches: one converting histidine to glutamate

through N-formyl-L-glutamate and the other converting histidine to

3-methylimidazoleacetic acid. The four genes associated with the

conversion of histidine to N-formyl-L-glutamate; haly-1, Y51H4A.7,

amdh-1, and cpin-1, form one of the top-ranked clusters (Fig 4C,

Dataset EV9). However, the genes in the other branch are not

coexpressed.

We also found clusters consisting of genes that traversed differ-

ent pathways. For instance, alh-8 and gta-1, which are functionally

associated but not strongly coexpressed with the propionate shunt

◀ Figure 2. Supervised approach to investigate coexpression of metabolic pathways.

A Custom computational pathway enrichment analysis pipeline that determines coexpressed genes functioning in the same metabolic pathway. Pairwise
coexpression was based on the gene expression compendium. For every annotated metabolic pathway, the coexpression of pathway genes (columns) to all
metabolic genes (rows) was extracted. A ranked list of genes was obtained for each pathway by taking the mean of coexpression values in rows while ignoring self-
correlations. Weighted gene set enrichment analysis was then performed to find significantly enriched pathways. If a pathway is self-enriched with FDR ≤ 0.05, it is
annotated as coexpressed.

B Bar graph indicating the percentage of metabolic pathways and categories that show significant coexpression compared with ones that are not self-enriched for
coexpression.

C Histogram denoting the number of significantly coexpressed metabolic pathways obtained by 1,000 randomizations while maintaining the structure of the data.
D–I Mountain plots showing self-enrichment of (D) propionate shunt pathway, (E) Met/SAM cycle, (F) peroxisomal fatty acid degradation pathway, (G) starch and

sucrose metabolism, (H) pantothenate and CoA biosynthesis, and (I) mevalonate metabolism.
J Metabolic pathways often consist of reactions catalyzed by single genes, OR genes and AND genes. All genes involved in the same pathway are collectively

annotated as all pathway genes. Genes that are associated with distinct reactions are annotated as PW genes. PW gene pairs exclude AND and OR gene pairs. Met/
SAM cycle pathway, which consists of 13 metabolic genes, is shown as an example.

K Percentages of pairs of AND genes, OR genes, other paralogs, operon genes, and random metabolic genes categorized as coexpressed using different coexpression
values as cutoffs. Coexpression values are based on the gene expression compendium.

L Percentage of random, all pathway, PW, and PO gene pairs categorized as coexpressed using different coexpression values as cutoffs. Coexpression values are based
on the gene expression compendium.
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(Fig 3D), cluster with T09B4.8 (alanine metabolism) and four other

genes belonging to pyrimidine metabolism: dpyd-1, dhp-1, dhp-2

and upb-1 (Fig 4D, Dataset EV9). This observation functionally

connects genes in what were heretofore separately annotated path-

ways, that is, pyrimidine, alanine, and propionate metabolism. The

coexpression of these genes suggests that thymine is degraded,
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Figure 3. Semisupervised approach to extract coexpressed and flux-dependent metabolic genes.

A Computational pipeline to extract tightly coregulated units in the metabolic network: Functional relationships are provided through theoretical flux associations
(coflux) calculated using C. elegans metabolic network model iCEL1314, while expression correlations come from the compendium of 177 expression datasets.
Hierarchical clustering on the product of coflux and coexpression matrix gives coexpressed metabolic pathways.

B Heatmaps showing coflux and coexpression of iCEL1314 genes and clustered heatmap showing added modularity to coexpression space by product of coexpression
and coflux. Color legend is indicated.

C Distinct clusters denoted by clustered heatmap of genes in canonical and shunt pathways of propionate degradation were extracted using dynamic cut tree
algorithm with stringent parameters (deepSplit = 2, minClusterSize = 3). Color legend as indicated in (B).
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Figure 4. Semisupervised approach defines metabolic pathway boundaries.

A Clustered heatmap denoting a distinct cluster consisting of at least one gene from every reaction in peroxisomal fatty acid degradation. Heatmap genes are shown in
bold font. Color legend, indicated here, applies to all panels.

B Clustered heatmap showing a distinct cluster formed by the tyrosine degradation genes separate from the rest of the tyrosine metabolism.
C Clustered heatmap showing a distinct cluster formed by a boundary within the histidine degradation pathway.
D Clustered heatmap showing a distinct cluster formed by genes traversing pathway boundaries that are parts of propionate, alanine, and pyrimidine metabolism.
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leading to the formation of propionyl-CoA, L-3-amino-isobutanoate

and acetyl-CoA. This observation also suggests that alh-8 levels

have a stronger functional role in the conversion of 2-

methyloxopropanoate to propionyl-CoA than in the propionate

shunt. Remarkably, this further indicates that alh-8 may participate

in both the generation and degradation of propionyl-CoA.

The stringent cluster derivation parameters we used favor small

clusters, and as a result, interconnections between different path-

ways may be lost in the analysis. To unveil such connections, we

relaxed the parameters to allow the derivation of larger clusters of

coexpressed genes (Dataset EV10, Appendix Fig S4C). With these

settings, the propionate shunt cluster expanded and included bckd-

1A, bckd-1B, dbt-1, Y43F4A.4, ard-1, acdh-3, acdh-9, and B0250.5,

which are annotated to branched-chain amino acids (BCAA) isoleu-

cine and valine degradation pathways, but not alh-8 or gta-1

(Fig EV5A, Appendix Fig S4D, Dataset EV10). Propionyl-CoA, the

starting metabolite of the propionate shunt, is produced by

the breakdown of valine and isoleucine. We recently proposed that

the propionate shunt not only functions to detoxify excess propio-

nate but also to produce acetyl-CoA for ketone body and energy pro-

duction (Ponomarova et al, 2022). The coexpression of valine and

isoleucine breakdown genes with the propionate shunt indicates a

functional connection between these pathways to produce energy.

The Met/SAM cycle provides another example of different

degrees of clustering that can be unveiled with different parameter

settings (Fig EV5B). The smaller clusters with stringent clustering

captured different parts of one-carbon metabolism with their con-

nections to Met/SAM cycle, while relaxed clustering combined these

genes into one single cluster. This cluster acts as a subsystem that

connects the Met/SAM cycle on one side with glycerophospholipid

metabolism, specifically phosphatidylcholine biosynthesis, which

depends on methylation reactions using SAM (Walker et al, 2011),

as well as with purine metabolism (Ducker & Rabinowitz, 2017).

Second, Met/SAM cycle genes are highly coexpressed with the folate

cycle gene which produces the methyl group that is used to convert

homocysteine into methionine in the Met/SAM cycle (Ducker &

Rabinowitz, 2017; Giese et al, 2020). Together, these results confirm

that the Met/SAM cycle is overall coexpressed (Giese et al, 2020)

and show that additional co-functioning genes can be identified.

The semisupervised approach also identified gene clusters that

are not part of any coexpressed pathway identified by the super-

vised method above. An example is selenocompound metabolism,

where a set of seven genes form a highly coexpressed cluster

(FDR = 0.025, NES = 1.7; Fig EV5C). In comparison, the respective

FDR and NES values for self-enrichment of the WormPaths pathway

of selenocompound metabolism were 0.75 and 0.98 (Dataset EV7).

Altogether, these results illustrate that not all genes in a pathway

are coexpressed and further indicate that a subset of a pathway or a

combination of subsets from multiple pathways may be under tran-

scriptional control, illustrating the utility of semisupervised

approach as an addition to the predefined metabolic pathways in

WormPaths.

Metabolic pathway communities reveal coexpression among
complexes and pathways

To explore additional coexpression clusters than those that were

captured by the relaxed settings described previously, we visually

inspected the product matrix and extracted three clusters we refer to

as metabolic pathway “communities” (Fig 5A). We analyzed these

communities by WormPaths PEA (Walker et al, 2021). The first

community is enriched in ETC complexes I, III, and IV, indicating

broad transcriptional control of energy production (Fig 5B,

Dataset EV11). The second community is enriched in mitochondrial

and peroxisomal FA degradation, FA biosynthesis, ascaroside bio-

synthesis, and BCAA degradation (Fig 5C, Dataset EV11). The con-

nection between FA metabolism and BCAA degradation may reflect

the fact that some FAs are synthesized from BCAA breakdown prod-

ucts. For instance, branched-chain fatty acids (BCFAs) are synthe-

sized from the branched-chain alpha-keto acids of valine, leucine,

and isoleucine such as isovaleryl-CoA and isobutyryl-CoA after their

decarboxylation and further chain elongation (Daschner et al, 2001;

Jia et al, 2016; Wallace et al, 2018). The third community is

enriched in aminoacyl-tRNA biosynthesis, N-glycan biosynthesis,

collagen biosynthesis, iron metabolism, and mevalonate metabo-

lism, all of which produce biomass precursors. While aminoacyl-

tRNA synthetases play a major role in protein biosynthesis by

linking amino acids to their cognate transfer RNAs (tRNAs), mevalo-

nate metabolism provides precursors for glycan, collagen biosynthe-

sis provides collagen for the formation of the cuticle and other

extracellular matrices, and iron metabolism is important for many

aspects of metabolism, including the production of heme groups of

heme proteins. This result points toward the possibility that growth

is transcriptionally regulated by a central mechanism controlling

pathways that produce biomass precursors and assemble biomass

(Fig 5D, Dataset EV11). Taken together, we confirmed the coexpres-

sion of metabolic pathways and revealed coexpressed subpathways,

as well as coexpression among pathways.

Metabolic subpathways are activated or repressed under
different conditions

The gene expression compendium is comprised of 177 expression

profiling datasets that measure relative mRNA levels in a variety of

experimental conditions and genotypes. Therefore, we next asked

whether we could identify specific conditions in which different

metabolic gene clusters are activated or repressed. Using a custom

computational pipeline (Fig 6A), we first identified those datasets

that best represent the coexpression of a particular cluster. We then

manually investigated the top datasets for each cluster (see Mate-

rials and Methods). To validate this approach, we first examined the

expression of propionate shunt cluster genes in top-scoring datasets.

We previously showed that propionate shunt genes are repressed in

animals fed Comamonas aquatica DA1877, a bacterium that (unlike

the standard E. coli OP50 diet) produces vitamin B12, thus enabling

flux through the canonical propionate degradation pathway

(MacNeil et al, 2013; Watson et al, 2013, 2014, 2016). The dataset

from that study, labeled as dataset 15 in the compendium, scored as

most significant for propionate shunt gene coexpression, where the

genes are expressed in animals fed E. coli OP50, but not in animals

fed C. aquatica (Fig 6B, Dataset EV4). Interestingly, propionate

shunt genes are also highly coexpressed in a dataset that measured

expression in spr-5 mutants versus wild-type animals across 1(f1),

13(f13) and 26(f26) generations (Fig 6B, dataset 139). Propionate

shunt genes are more highly expressed in the N2 reference strain

compared with spr-5 mutant animals (Fig 6B). Since spr-5 encodes a
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histone demethylase, this may indicate that the expression of shunt

genes is regulated not only by TFs but also by epigenetic

mechanisms.

Peroxisomal FA degradation genes were most significantly coex-

pressed in dataset 132, which measured gene expression in pre-

cisely staged embryos during the first quarter of embryonic

development (Fig 6C). The time course included a stage of exclu-

sively maternal transcripts (four-cell), the transition to zygotic

transcription (28-cell), and the presumptive commitment to the

major cell fates (55-, 95-, and 190-cell stages; Yanai &

Hunter, 2009). Peroxisomal FA degradation genes were lowly

expressed in four-cell embryos and their expression increased in

later embryonic stages, which may reflect a change in carbon

source for energy and biomass generation prior to hatching and

feeding. Peroxisomal FA degradation genes are also upregulated in

animals fed P. aeruginosa compared with the standard E. coli

OP50 diet (Fig 6C, dataset 51). This may reflect the high energy

demand during infection (Nhan et al, 2019).
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Figure 5. Extraction of metabolic communities.

A Clustered heatmap indicating communities formed by multiplying coflux and coexpression values of iCEL1314 genes. (B, C, and D) define three major communities
shown in the respective parts of this fig.

B–D PEA of communities B (B), C (C), and D (D).
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Inspection of expression of the histidine degradation cluster

discussed above revealed that it is highly expressed in animals fed

C. aquatica (Fig 6D, dataset 15). However, these genes were not

affected in animals fed E. coli supplemented with vitamin B12

(Bulcha et al, 2019), suggesting that the effect of C. aquatica on this

cluster may be independent of this cofactor. Animals showed lower

expression of this cluster upon exposure to UV treatment (Fig 6D,

dataset 33). In humans, UV converts cis-uruconate (the product of

first reaction of histidine degradation, Fig 4C) to trans-uruconate,

which has been proposed to play a protective role in skin (Brosnan

& Brosnan, 2020). Our result indicates that, in C. elegans, UV expo-

sure rewires metabolic flux to avoid histidine degradation, for

instance to preserve histidine that could be converted to trans-

uruconate.

The tyrosine degradation cluster was most significantly coex-

pressed in dataset 11, wherein expression profiles of gas-1 mutant

animals, which are deficient in mitochondrial respiration, were

compared with wild-type animals (Falk et al, 2008; Fig 6E). This

study revealed that free tyrosine levels are decreased in gas-1

mutants. In addition, there is a failure of NAD+-dependent ketoacid

oxidation in mitochondrial respiratory chain mutants (Falk

et al, 2008). To compensate for this respiratory dysfunction, multi-

ple pathways are upregulated, including the TCA cycle and ketone

body metabolism (Falk et al, 2008). Since the end products of tyro-

sine degradation pathway cluster are the TCA cycle intermediate

fumarate and the ketone body acetoacetate (Fig 4B), the function of

the upregulation of tyrosine degradation during mitochondrial dys-

function may be to supply metabolites for compensatory pathways.

Altogether, these results show that the gene expression compen-

dium can be used to gain insight into the conditions that most

greatly affect the activation or repression of different metabolic gene

clusters. However, one needs to be careful to manually inspect the

conditions of interest because sometimes coexpression can be

biased by an outlier experiment. An example of this is dataset 47,

one of the top datasets in which canonical propionate degradation

pathway genes are coexpressed. Even though the conditions in this

dataset are not related to canonical propionate breakdown, this

dataset falsely appears as one of the top datasets due to coexpres-

sion driven by one bad outlier sample. It is however also possible

that this outlier sample was unknowingly contaminated to change

the nutritional or environmental state, hence driving the variable

expression of these genes (Fig 6F).

Overall, our systematic analysis revealed specific conditions of

when metabolic gene clusters are activated or repressed, reinforcing

our overall finding that transcriptional regulation plays an important

role in the control of metabolism.

WormClust web application enables gene-by-gene query to
identify coexpression with metabolic (sub)-pathways

A major premise of this study is the assumption that variance in

mRNA levels results, at least in part, from transcriptional regulation,

which in turn suggests that genes are coexpressed because they are

coregulated. In reverse engineering of gene regulatory networks,

coexpression of TFs with their target genes has been used to define

causal relationships (Segal et al, 2004; MacNeil & Walhout, 2011).

To make our data available to the community as well as to enable

the easy identification of TFs and other C. elegans genes that are

coexpressed with metabolic (sub)-pathways, we developed a web

application named WormClust, which is available on the WormFlux

website (Yilmaz & Walhout, 2016). This tool takes any C. elegans

gene as input and evaluates its coexpression with metabolic (sub)-

pathways. If the query gene is an iCEL1314 gene, the output is a

clustered heatmap of the coexpressed genes in the model based on

product matrix, and according to the selected level of stringency,

that is, relaxed, or stringent. If the query gene is not an iCEL1314

gene, then an association of the gene with annotated metabolic

pathways is provided. The threshold for this association can be

based on FDR and/or NES (Fig 7A).

We, and others, previously found that nuclear hormone receptor

(NHRs) TFs frequently associate with metabolic genes in different

types of assays and dataset (Van Gilst et al, 2005; Arda et al, 2010;

Mori et al, 2017; Bhattacharya et al, 2022). To illustrate the utility of

WormClust, we tested three NHRs with known metabolic pathway

associations for coexpression with annotated metabolic pathways in

the compendium of 177 C. elegans expression datasets. All of these

showed coexpression with their target metabolic pathways (Fig 7B–
D): nhr-68 was highly coexpressed with the propionate shunt

(FDR = 0.02 and NES = 2.1; Bulcha et al, 2019), nhr-31 associated

with vacuolar ATPases (FDR = 0.036, NES = 2.04; Hahn-

Windgassen & Van Gilst, 2009), and nhr-79 is coexpressed with per-

oxisomal FA degradation (FDR = 0.019, NES = 2.3; Zeng

et al, 2021). In addition to pathways, we also performed enrichment

of clusters or subpathways from our semisupervised analysis with

TFs. We found that nhr-79 is enriched to cluster 16 (stringent),

which contains peroxisomal FA degradation genes; nhr-31 shows

enrichment to cluster 5 (relaxed) that consists of vacuolar ATPases;

and nhr-68 shows enrichment to cluster 12 (stringent) which con-

tains propionate shunt genes, albeit with higher FDR. In addition,

nhr-68 shows enrichment to cluster 40 consisting of mans-2, hex-2,

and fut-8 (N-glycan biosynthesis), and cluster 51 consisting of bgal-

1, gana-1 (galactose metabolism) and hex-1 (sphingolipid metabo-

lism; Appendix Fig S5A–C, Dataset EV9). This observation suggests

◀ Figure 6. Condition analysis of metabolic gene coexpression.

A Computational pipeline to extract activating or repressing conditions of metabolic clusters. The mean coexpression of all gene pairs in each cluster in each dataset
is calculated separately. To rank datasets that showed highest coexpression uniquely for each cluster, these mean coexpression values are normalized using z-
scoring across each dataset (as shown by heatmap). Thirty best datasets that potentially represent activation/repression conditions of each cluster are identified by
the z-score values of mean coexpression. Then, for each cluster, datasets are manually inspected in the order of decreasing mean coexpression along with its associ-
ated published paper and the heatmap to understand activation/repression conditions.

B–F Mean coexpression of the 30 best datasets for clusters of propionate shunt (B), peroxisomal fatty acid degradation (C), histidine degradation (D), tyrosine
degradation (E), and canonical propionate degradation (F), followed by heatmap examples from selected datasets as indicated by bold-blue dataset numbers. Color
bar and heat map legend as indicated in (B).
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that nhr-68 may play a broader role in the regulation of metabolic

gene expression.

WormClust also provides an opportunity to annotate new meta-

bolic genes. For example, vha-20, a vacuolar ATPase that is not

part of the original iCEL model because it was only recently anno-

tated by WormBase and KEGG, shows significant enrichment to

vacuolar ATPases (Fig 7E). This result suggests that WormClust

can be used to “deorphan” unannotated metabolic genes. As

another example, we found that acdh-11 is highly coexpressed with

mitochondrial fatty acid degradation and isoleucine degradation

genes (Fig 7F). Therefore, we propose that acdh-11 can now be

added to the iCEL model as another OR gene to reactions in these

pathways. We envision future systematic studies of orphan meta-

bolic genes and TFs to increase the annotation of metabolic genes

and elucidate the transcriptional mechanisms that regulate their

expression.

A
WormClust

Enter a query 
gene

if iCEL1314  
gene

True False

Query gene

Q
ue

ry
 g

en
e

Gene 1
Gene 2
Gene 3

Gene 4
Gene 5
Gene 6

G
en

e 
1

G
en

e 
2

G
en

e 
3

G
en

e 
4

G
en

e 
5

G
en

e 
6

Product matrix 
cluster that contains 

the gene

Enrichment bar graph of other 
genes such as  TFs, orphan 
genes and transporters to  

WormPaths pathways 

Normalized enrichment score (NES)
Enrichment score (ES)
False discovery rate (FDR)

Pa
th

w
ay

/ c
at

eg
or

y

Pathway 1

 Pathway 2

Pathway 3

Pathway 4

Pathway 5

0 0.5 1.0 1.5 2.0

0.027

0.03

2.5

2.66E-03

5.99E-03

1.58E-02

B

0.86

0.72

2.1

2

0.02

0.04

Propionate 
shunt 

Folate cycle

Pathways enriched with nhr-68  
FDR  0.05 and NES  2

0 0.5 1.0 1.5 2.0 2.5

C

D

Peroxisomal 
FA  

degradation
0 0.5 1.0 1.5 2.0 2.5

Pathways enriched with nhr-79
   FDR  0.05 and NES  2

0 0.5 1.0 1.5 2.0 2.5

Vacuolar 
ATPase

2.04
0.720.036

0.019 0.78
2.3

F

Pathways enriched with nhr-31 
FDR  0.05 and NES  2

Suggested annotation of acdh-11 to isoleucine degradation and mitochondrial FA degradation
2mbcoa ile

2mb2coa

etfox

etfrd

acdh-1 | acdh-2 |
acdh-3 | acdh-4

KEGG

KEGG 

acdh-8 |  
acdh-10 |
acdh-7

 | acdh-11

Reaction in isoleucine degradation

(2) coa, (2) h2o,
(2) nad, fad

(2) h, fadh2,
(2) nadh (acdh-7 | acdh-8 | acdh-10) &

(ech-4 | B0272.4) & [(ech-6 | ech-7) |
(ech-1.2 | ech-1.1) | ech-3] & [(ech-1.2 |
ech-1.1) | (B0272.3 | F54C8.1 | ech-8 |
ech-9 | hacd-1)] & (B0303.3 | acaa-2) 

(2) accoabtcoa

fa8p1n3coa(4) accoa

 | acdh-11

Example reaction in mitochondrial FA degradation

Pathways enriched with vha-20 
FDR  0.05 and NES  2

Vacuolar 
ATPase

0 0.5 1.0 1.5 2.0 2.5

E

Choose either 
"stringent" or "relaxed"

Adjust FDR or/and 
NES threshold

Pa
th

w
ay

/ C
at

eg
or

y

Isoleucine  
degradation

Electron transfer 
flavoprotein

Mitochondrial FA 
degradation

Propionate 
degradation- 

canonical

Pathways enriched with acdh-11 
FDR  0.05 and NES  2

0

2.3
0.85

0 0.5 1.0 1.5 2.0 2.5

2.3

2.18

2.18

2.08

0.76

0.89

0.70

0.047

0.03

0.042

0.026

0.84

Pa
th

w
ay

/ C
at

eg
or

y
Pa

th
w

ay
/ C

at
eg

or
y

Pa
th

w
ay

/ C
at

eg
or

y

Pa
th

w
ay

/ C
at

eg
or

y

0.016
0.85

2BCFA 
biosynthesis

Figure 7. WormClust: a web application that enables querying of genes to identify coexpression with metabolic (sub)-pathways.

A Diagram showing the workflow of WormClust. A C. elegans gene is taken as input. If the gene is part of iCEL1314, a clustered heatmap of closely associated genes in
product matrix of coflux and coexpression is displayed, based on stringency level of clustering. If the input gene is not an iCEL1314 gene, enrichment bar graphs of
the gene to annotated metabolic pathways are displayed, based on selected FDR and NES thresholds.

B Bar graph of pathways that are significantly coexpressed with nhr-68 with NES ≥ 2 and FDR ≤ 0.05.
C Plot showing significant coexpression of nhr-31 with vacuolar ATPases (FDR ≤ 0.05 and NES ≥ 2).
D Plot showing significant coexpression of nhr-79 with peroxisomal fatty acid degradation (FDR ≤ 0.05 and NES ≥ 2).
E Plot showing significant coexpression of vha-20 with vacuolar ATPases (FDR ≤ 0.05 and NES ≥ 2).
F Bar graph of pathways that are significantly coexpressed with acdh-11 with NES ≥ 2 and FDR ≤ 0.05 (left). Examples of specific reactions in metabolic network model

where acdh-11 can be annotated as OR gene (right).
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Discussion

In this study, we performed a systems-level analysis of mRNA level

variation as a proxy for the transcriptional regulation in C. elegans.

Even with our conservative approach, we found that most metabolic

genes are under transcriptional control. By a combination of super-

vised and semisupervised methods, we found that genes in many

metabolic pathways are coexpressed and identified gene clusters

that represent parts of pathways, or combinations of pathways with

strong coexpression. These results build upon earlier work in single-

cell organisms such as E. coli and S. cerevisiae (Ihmels et al, 2004;

Kharchenko et al, 2005; Seshasayee et al, 2009; Ledezma-Tejeida

et al, 2017; Tang et al, 2021) implying that coexpression of meta-

bolic genes that function together is a principle that is evolutionarily

conserved.

Our data indicate metabolic genes are more subject to transcrip-

tional regulation across tissues than during development. What is

the purpose of transcriptional activation or repression of metabolic

genes? We propose that the transcriptional regulation of metabolic

genes can serve different purposes. First, there is extensive tran-

scriptional regulation of metabolic genes in different tissues. This

can be viewed as the setup of metabolic network functionality

depending on a tissue’s needs. Indeed, tissues have different needs.

For instance, the C. elegans intestine serves as the entry point of

bacterial nutrients and requires the expression of enzymes that aid

digestion and metabolite transport to other tissues. Similarly, the

animal’s muscle needs to produce energy to support movement and

is therefore highly catabolic. Second, metabolic genes are transcrip-

tionally regulated during development. This likely reflects the need

for different aspects of metabolism as tissues differentiate and grow

and as different metabolic functions are necessary. We refer to the

expression of different metabolic genes and pathways in different

tissues and different developmental stages as “metabolic network

wiring.” A third function of metabolic gene activation or repression

is under different conditions that dictate the need for different meta-

bolic functions. This can be for the breakdown of different nutrients,

for example, carbohydrates versus fats, versus protein, or to rewire

metabolic pathways when others are perturbed. An example of this

is the propionate shunt, which is transcriptionally activated when

flux through the preferred, vitamin B12-dependent pathway is

perturbed (Watson et al, 2016; Bulcha et al, 2019). We refer to the

transcriptional rerouting of metabolism as “metabolic rewiring.”

Finally, metabolic genes can be transcriptionally activated when

flux through the pathway in which they function is hampered. An

example of this is the Met/SAM cycle in C. elegans, which is tran-

scriptionally activated when flux through the cycle is low, for

instance under low vitamin B12 dietary conditions (Giese

et al, 2020). For genes encoding enzymes that function in multiple

reactions and metabolic pathways (e.g., alh-8), we can learn with

which pathways they are more strongly coexpressed. Our study pro-

vides a facile portal to investigate the tissues, developmental stages,

or conditions under which particular metabolic genes and pathways

are highly coexpressed, which will help to formulate hypotheses for

detailed follow-up studies.

Genes that are coexpressed often function together and are fre-

quently coexpressed with their transcriptional regulators (Eisen

et al, 1998; Hughes et al, 2000; Kim et al, 2001; Segal et al, 2003; Stu-

art et al, 2003). We used this principle to develop WormClust with

which any C. elegans gene, including TFs, can be used to search for

metabolic pathways with which it is coexpressed. However, it is

important to note that the most critical regulators, those that respond

to the initial information, are often not coexpressed with their target

genes. Indeed, nhr-10, which is essential for activation of the propio-

nate shunt in response to high levels of propionate, does not change

much in expression under relevant conditions (Bulcha et al, 2019).

To identify such “first responders,” it will be useful to employ

promoter-reporter strains with large-scale RNAi screens (MacNeil

et al, 2015; Bhattacharya et al, 2022). Further, at least half of all

C. elegans metabolic genes are not yet associated with reactions or

pathways (Yilmaz et al, 2020). We have already shown the utility of

WormClust in “deorphaning” genes and connecting them to meta-

bolic network such as in case of vha-20 and acdh-11 (Fig 7E and F).

We propose that more such genes may be “deorphaned” in the

future. Longer term, we envision that association of other types of

regulators, such as RNA binding proteins and microRNAs, with met-

abolic pathways can be used to gain broader insights into the func-

tional connections among different biological processes.

Finally, the approaches used here should be broadly applicable

to any organism, including humans, for which large gene expression

profile compendia and high-quality metabolic network models are

available. By applying these approaches, deeper insights into the

transcriptional control of metabolism will be obtained, as well as

insights into the conditions under which metabolic genes and path-

ways are activated or repressed.

Materials and Methods

Reagents and Tools table

Reagent/
Resource Reference or Source

Identifier or
Catalog Number

Software

Python 3.6.6 https://www.python.org N/A

MATLAB 2019a https://www.mathworks.com N/A

GSEApy 0.1.18 https://doi.org/10.1093/bioinformatics/btac757 N/A

dynamicTreeCut 0.1.0 https://CRAN.R-project.org/package=dynamicTreeCut (Langfelder et al, 2008) N/A
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Reagents and Tools table (continued)

Reagent/
Resource Reference or Source

Identifier or
Catalog Number

Numpy 1.18.3 Harris et al (2020a) N/A

Pandas 1.1.0 https://pandas.pydata.org/ N/A

Matplotlib 3.2.1 https://matplotlib.org/ N/A

Scikit-learn 0.20.3 Pedregosa et al (2011) N/A

Scipy 1.4.1 Virtanen et al (2020) N/A

Seaborn 0.9 https://joss.theoj.org/papers/10.21105/joss.03021 N/A

Statannot 0.2.3 https://doi.org/10.5281/zenodo.7213391 N/A

Sleipnir Huttenhower et al (2008) N/A

Methods and Protocols

Preprocessing of genes
The master list of C. elegans genes considered for analysis was

downloaded from WormBase public ftp site (release WS282; Har-

ris et al, 2020b). The genes were filtered out to obtain only live

and protein-coding genes, which amounted to 19,985 genes in

total.

Development dataset
Postembryonic expression profiles were based on published RNA-

seq data (Kim et al, 2013). Briefly, the authors measured the tran-

scriptome of wild-type (N2) animals from hatching to 48-h post-

hatching every 2 h. This dataset includes 21,714 protein-coding

genes, including 2,405 metabolic genes. Genes were classified into

12 clusters based on their expression profiles (Kim et al, 2013).

We refer to the cluster showing relatively invariant expression as

the “flat cluster” and the genes within this cluster as “flat genes.”

Selecting only live protein-coding genes (WS282) resulted in a

total of 18,113 genes, including 2,397 metabolic genes. Of these,

4,689 are flat genes, including 995 metabolic genes. We generated

a histogram of average gene expression across development using

the logarithm of reads per kilobase per transcript (RPKM) values

at base 2. This resulted in a bimodal expression distribution that

was fitted by two superposed Gaussian curves, representing a

high-expression subpopulation and a low-expression subpopula-

tion (LES). Genes that showed expression values less than the

mean plus the standard deviation of LES at all the time points

were filtered out to avoid false fluctuations in gene expression.

After this step, a total of 14,561 genes were left, including 2,184

metabolic genes. The number of flat genes was reduced to 4,646,

including 986 metabolic genes.

Tissue dataset
Tissue-level expression profiles were based on a single-cell RNA-

seq dataset of animals at the second larval stage (L2; Cao

et al, 2017). This dataset provides gene expression as transcripts

per million (TPM) for 20,271 protein-coding genes including 2,506

metabolic genes across seven major tissues: body wall muscle,

glia, gonad, hypodermis, intestine, neurons, and pharynx.

Selecting only live genes (WS282) reduced the number of genes

to 19,675, including 2,491 metabolic genes. The dataset was previ-

ously processed to label gene expression in every tissue according

to the level of expression into four categories: high, moderate,

low, and rare (Yilmaz et al, 2020). Genes that showed rare or

low expression in all seven tissues were filtered out in this study,

resulting in 13,305 genes including 2,143 metabolic genes.

Gene expression compendium
A compendium of gene expression datasets was generated using a

combination of public datasets. First, 374 microarray, RNA-Seq,

and tiling array datasets related to C. elegans were downloaded

from WormBase (Harris et al, 2020b). Then, only those datasets

that consisted of at least 10 conditions were selected, resulting in

169 datasets. These datasets were individually examined for batch

effects, since many were obtained from multiple microarray exper-

iments where total RNA was not normalized. Initially, histograms

of expression values were analyzed, and 16 microarray datasets

that displayed abnormal distributions where the correlation distri-

butions were skewed toward +1, hence suggesting that the data

may consist of samples that are highly distinctive from each other

or are from separate experiments altogether. Such datasets were

selected for further examination (Fig EV3A). Twelve of these data-

sets were found to be composed of two subsets of data, where all

genes in one subset were up or downregulated with respect to the

other except for a few. The samples forming each subset were

independent of the other and seemed to have different amounts

of total RNA or a similar batch effect. Therefore, these datasets

were divided into two separate datasets to correct for batch

effects. The remaining four datasets were removed since the

source of abnormalities in their distributions of expression was

not clear. This processing resulted in a total of 177 datasets. For

each dataset, the expression of every gene was normalized by

converting the expression values to z-scores based on expression

across all conditions using the Normalizer function of Sleipnir

library (Huttenhower et al, 2008). Once all the datasets were z-

normalized, they were combined to form a compendium with

4,796 conditions (sum of multiple conditions within 177 datasets)

using the Combiner function of the Sleipnir library (Huttenhower

et al, 2008), which took a union set of all genes across the
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different datasets and converted missing values to NaN (not a

number) for subsequent processes.

Calculation of variation score in the development dataset
We define variation score (VS) as a measure of the deviation of a

gene’s expression profile from a flat reference over time in the

development dataset (Kim et al, 2013). Prior to any analysis, expres-

sion values of every gene were normalized by total expression in all

time points using equation (1),

xnormi ¼ xi

∑i
1xi

; (1)

where xi indicates the expression value of gene x at time i. To

define a reference profile of invariant expression, a line was

constructed in time by joining the mean normalized expression

value of the flat cluster at every time point. An envelope around

this line was then defined by adding and subtracting the standard

deviation of each point. A deviation from this envelope, referred as

variation score (VS), was then computed by taking the average dis-

tance between an individual gene profile and the flat reference pro-

file according to equation (2),

VSg ¼ ∑di
n

with

di
¼ 0; if xnormi ∈ μi � σi

else min xnormi � μi þ σið Þ�
�

�
�; xnormi � μi�σið Þ�
�

�
�

� �

8

><

>:

(2)

where n is the number of observations for the gene g, di is the dis-

tance at time i between the normalized level of expression of the

gene xnormi and the closest border of the reference flat profile, and

μi and σi are mean and standard deviations of normalized expres-

sion values of flat genes at time point i, respectively. A graphical

example of this calculation is provided in Fig EV1A. With this defi-

nition, a VS = 0 means that the profile of a given gene stays within

the envelope of the flat cluster and is therefore perfectly flat, or

invariant. To define highly variable genes, we empirically estab-

lished a conservative VS threshold value of 0.169 based on the dis-

tribution of VS between flat genes and all other genes, such that

97% of flat genes were not annotated as variant (Fig EV1B, see

details in Materials and Methods).

Calculation of coefficient of variation
Coefficient of variation (CV) is a statistical measure that is used to cal-

culate the dispersion of data. For every gene, CV was calculated by

dividing standard deviation of expression across different samples (σ)
(e.g., different tissues in case of tissue dataset) to the mean of expres-

sion across samples (μ). CV was empirically thresholded using the CV

of known propionate shunt genes to keep the approach conservative.

CV ¼ σ=μ (3)

Categorizing genes based on expression variation in compendium
To be consistent with the approach used with the tissue dataset and

to be conservative in our assessment, a CV threshold of 0.75 was

selected and required that highly variant genes had a CV greater

than or equal to this threshold in at least three datasets. Genes that

showed CV < 0.3 in at least 95% of the datasets were labeled as

invariant, and genes that fit into neither category were annotated as

moderately variant (Fig EV3A). It was further assumed that genes

that are not present in a dataset are lowly expressed, and were

removed from the analysis.

Calculation of coexpression of gene pairs
The correlation in expression of metabolic gene pairs during devel-

opment, across tissues, and across the compendium of gene expres-

sion studies was calculated based on Pearson correlation coefficient

(PCC) using the Distancer function of Sleipnir library (Huttenhower

et al, 2008). These correlations defined pairwise coexpression. Dif-

ferences in the distribution of coexpression values between random,

AND genes, OR genes, other paralogs, all pathway genes, and PW

genes were evaluated using Mann–Whitney U test (Fay &

Proschan, 2010).

Custom pathway enrichment analysis pipeline
Pathway-to-gene annotations from level 4 of WormPaths (Walker

et al, 2021) were used as input gene sets. Each metabolic pathway

(or category such as an enzyme complex; hereafter referred to as

pathway for simplicity) consists of two or more annotated meta-

bolic genes. The coexpression of genes in each metabolic pathway

with all other genes in the metabolic network was extracted from

the compendium. Subsequently, the mean of the correlations of

pathway genes with all other metabolic genes (excluding the self-

correlations) was calculated. The mean values were used to define

a ranked list of metabolic genes for every metabolic pathway.

GSEA was then performed on the preranked list of each pathway

using the PreRank module (Subramanian et al, 2005). Enrichment

score (ES) is the degree to which the genes in a gene set are over-

represented at the top or bottom of the entire ranked list of genes.

Since the genes that are functionally related are mostly positively

correlated, we only consider the genes at the top of the list, hence

the ones positively contributing to ES. Leading edge subset enlists

the gene hits before the peak while calculating ES, therefore

consisting of genes that contribute the most to the enrichment

score.

NES was derived for each pathway by normalizing the ES

values to mean ES for all permutations of the gene sets. This

accounts for differences in gene set size. FDR is the estimated

probability that a gene set with a given NES represents a false-

positive finding. The significance cutoff for the GSEA was set at

an FDR value of ≤ or =0.05. If a pathway was found to be signif-

icantly self-enriched, it was categorized as coexpressed. We vali-

dated this result by running the custom pathway enrichment

analysis pipeline on 1,000 randomized gene sets. For these ran-

domizations, the structure of the data was maintained such that

the correlation matrix, the number of genes in each pathway, and

the number of times an individual gene was repeated across path-

ways all remained the same.

Semisupervised approach that combines Coflux and Coexpression
The first part of the approach involves using flux balance analysis

(FBA) to simulate reaction rates (fluxes) in the metabolic network

and then using a flux dependency metric, referred to as coflux, to

measure pairwise associations of genes in the C. elegans metabolic

network model (Yilmaz & Walhout, 2016; Yilmaz et al, 2020). We
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examined all reaction pairs to see whether constraining the flux of

one of the reactions to zero reduces the flux of the other (see below

for the algorithm). The coflux value is zero for independent reac-

tions and one for reactions that are fully coupled. Reactions that are

connected by a junction to another reaction are usually partially

dependent. After generating coflux values for each pair of reactions,

we converted the reaction matrix to a pairwise gene coflux matrix

using GPR associations. A high coflux value for a gene pair indicates

that the genes encode enzymes acting in the same metabolic pro-

cess. For the second part of the approach, a coexpression matrix

was derived from the C. elegans gene expression compendium

described above. All negative correlations were converted to zero to

be consistent with the coflux matrix. The coflux and coexpression

matrices were multiplied to obtain a product matrix. Since both

coexpression and coflux values are between 0 and 1, a product takes

a high value only if both coflux and coexpression values are high.

Hierarchical clustering was then performed on the product matrix

using dynamic cut tree algorithm using cutreehybrid package (Lang-

felder et al, 2008).

Coflux algorithm
The coflux value for each gene pair was calculated using FBA with

iCEL1314 (Yilmaz et al, 2020). First, the standard bacterial diet was

amended with a minimum set of nutrients (i.e., by allowing uptake

through exchange reactions in the model as indicated in

Dataset EV8) that warranted nonzero flux in all reactions of the

model. Then, the following steps were taken to calculate coflux

values:

• For every irreversible reaction i,

� Calculate vmax,i, the maximum flux that can be achieved with

the intact network.

� For every reaction j, calculate vmax,ij, which is the

maximum flux observed in reaction i when reaction j is

constrained to a flux of zero. If i is included in a prede-

fined set of 15 redundant reaction pairs (i.e., reactions with

similar reactants and products except for differences such as

the use of NADP instead of NAD as electron carrier,

Dataset EV8), the flux of the corresponding reaction in the

pair was also constrained to zero.

� For every reaction j, calculate the coflux with i (cij) using equa-

tion (4).

cij ¼ Vmax;i � Vmax;ij

Vmax;i
(4)

• For every reversible reaction i,

� For every reaction j, repeat the above steps to calculate the

coflux with i in forward direction (cij,forward).

� Calculate vmin,i, the minimum (i.e., the most negative, as nega-

tive flux indicates flux in reverse direction) flux that can be

achieved with the intact network.

� For every reaction j, calculate vmin,ij, which is the minimum flux

observed in reaction i when reaction j is constrained to a flux of

zero. Once again, the reaction redundant with reaction i is also

constrained to zero flux, if applicable.

� For every reaction j, calculate the coflux with the reverse direc-

tion of i (cij,reverse) using equation (5).

cij;reverse ¼ Vmin;i�Vmin;ij

Vmin;i
(5)

� For every reaction j, calculate final coflux with i as the

maximum of cij,forward and cij,reverse (equation 6).

cij ¼ max cij;forward;abs cij;reverse
� �� �

(6)

• Since cij and cji are not necessarily equal, calculate final coflux

value for every reaction pair using equation (7).

cij;final ¼ max cij; cji
� �

(7)

• Convert the reaction coflux matrix to a gene coflux matrix based

on gene–reaction associations. If a gene pair is associated through

multiple reaction pairs (i.e., when at least one of the genes is asso-

ciated with multiple reactions), take the maximum of coflux

values between reactions to calculate gene coflux.

Hierarchical clustering
Hierarchical clustering was performed using average method of link-

age on the dissimilarity matrix generated by 1 minus the product

matrix value (coflux*coexpression). Dynamic cut tree algorithm

from cutreehybrid package was used to cut the dendrogram gener-

ated by this clustering with stringent parameters deepSplit = 2 and

minClusterSize = 3 and relatively relaxed parameters deepSplit = 3

and minClusterSize = 6 (Langfelder et al, 2008). The stringent set-

ting was thresholded based on the occurrence of propionate shunt

genes together in one cluster while keeping the size of the smallest

cluster to be at least 3. The relaxed setting was chosen to capture

larger clusters, such as the Met/SAM cycle genes in a single cluster.

Quantifying cluster quality through Silhouette score
Silhouette score determines the quality of clustering by measuring

the cohesiveness of genes within the same cluster and separateness

from the genes in the neighboring clusters (Rousseeuw, 1987). It

was calculated using scikit-learn package (Pedregosa et al (2011).

We first calculated silhouette score of each metabolic gene based on

its placement in each cluster and then calculated mean silhouette

score (MSS) for every cluster. Stringent clustering led to 197 clus-

ters, ranging in size from three to 27 genes. We ranked these strin-

gent clusters using MSS, where few of the top-ranked were

inspected in more detail (Appendix Fig S3A). For relaxed clustering,

we followed the same approach (Appendix Fig S3C).

Finding activation and repression conditions of metabolic clusters
To find activation and repression conditions of each cluster, we first

calculated the mean coexpression of all gene pairs in that cluster in

each dataset separately. To rank datasets that showed highest coex-

pression uniquely for each cluster, we normalized these mean coex-

pression values of all clusters using z-scoring across each dataset.

We then identified the 30 best datasets that potentially represent

activation/repression conditions of each cluster by the z-score

values of mean coexpression. After this, we manually inspected

each dataset in the order of decreasing mean coexpression, its

18 of 21 Molecular Systems Biology 19: e11443 | 2023 � 2023 The Authors

Molecular Systems Biology Shivani Nanda et al



associated published paper, and the heatmap to understand activa-

tion/repression conditions.

Gene-centric coexpression with metabolic (sub)-pathways by
WormClust
We developed a custom computational pipeline that identifies coex-

pression of C. elegans genes with metabolic genes used in this study.

The pathway gene sets were generated using WormPaths as a GMT

(Gene Matrix Transposed) file, a tab-delimited file of gene sets

(Walker et al, 2021). The ranked coexpression list of metabolic

genes was extracted for each queried gene, from the global coex-

pression matrix generated using compendium of 177 datasets. The

ranked list of each queried gene was used to run Gene Set Enrich-

ment Analysis (GSEA) on the custom metabolic pathway gene sets.

Data availability

Gene clusters from semisupervised approach and pathway enrich-

ment of all protein-coding genes outside the iCEL model, including

but not limited to TFs, orphan metabolic genes, and transporters are

available using WormClust on the WormFlux website (http://

wormflux.umassmed.edu/WormClust/wormclust.php). Other data

can be found in Datasets EV1–EV11. We also created a Github reposi-

tory (https://github.com/WalhoutLab/WormClust) for this project,

which includes scripts that generated results presented here.

Expanded View for this article is available online.
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