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Automated assembly of molecular mechanisms at
scale from text mining and curated databases
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Abstract

The analysis of omic data depends on machine-readable informa-
tion about protein interactions, modifications, and activities as
found in protein interaction networks, databases of post-
translational modifications, and curated models of gene and pro-
tein function. These resources typically depend heavily on human
curation. Natural language processing systems that read the pri-
mary literature have the potential to substantially extend knowl-
edge resources while reducing the burden on human curators.
However, machine-reading systems are limited by high error rates
and commonly generate fragmentary and redundant information.
Here, we describe an approach to precisely assemble molecular
mechanisms at scale using multiple natural language processing
systems and the Integrated Network and Dynamical Reasoning
Assembler (INDRA). INDRA identifies full and partial overlaps in
information extracted from published papers and pathway data-
bases, uses predictive models to improve the reliability of machine
reading, and thereby assembles individual pieces of information
into non-redundant and broadly usable mechanistic knowledge.
Using INDRA to create high-quality corpora of causal knowledge we
show it is possible to extend protein–protein interaction databases
and explain co-dependencies in the Cancer Dependency Map.
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Introduction

Molecular biology is characterized by a sustained effort to acquire

and organize mechanistic information about the molecules

governing the behavior of cells, tissues, and organisms (Craver &

Darden, 2013). “Mechanism” is used rather loosely in this context

since it operates on multiple scales from the structural transitions of

individual molecules to the myriad interactions mediating signal

transduction or tissue morphology, but it is generally understood to

involve a description of the properties, modifications, and behaviors

of biomolecules in terms of physical and chemical principles. Indi-

vidual mechanistic discoveries are reported in the biomedical litera-

ture, which, with over 3�107 articles indexed in PubMed as of 2022,

constitutes a substantial public investment in science and an essen-

tial source of knowledge. However, results in research papers are

generally described in natural language designed for human—not

machine—consumption. As the literature has grown, and methods

of experimental data collection become more diverse, it has become

increasingly difficult for any individual scientist to acquire all of the

background knowledge necessary to be an expert in a particular

problem and fully interpret complex experimental results (Forscher,

1963). Biomedicine is therefore faced with a substantial problem of

knowledge aggregation, harmonization, and assembly.

The bioinformatics community has actively worked to make

knowledge more accessible by curating information about molecular

mechanisms in a machine-readable form suitable for computational

data analysis (Ashburner et al, 2000; Schaefer et al, 2009; Perfetto

et al, 2016; Fabregat et al, 2018). This has led to the creation of stan-

dard representation languages (Hucka et al, 2003; Demir et al, 2010),

and databases that aggregate curated knowledge from multiple pri-

mary sources (Jensen et al, 2009; Cerami et al, 2011; Türei

et al, 2016). Curated databases form the backbone of many widely

used methods of high-throughput data analysis, including gene set

and pathway enrichment, and prior knowledge-guided network

inference (Babur et al, 2021; Dugourd et al, 2021). However, the cre-

ation of these databases has largely involved human curation of the

literature, which is costly and difficult to sustain (Bourne et al,

2015). As a result, most databases and online resources are incom-

plete; for example, the creators of Pathway Commons (which aggre-

gates pathway knowledge from 22 primary human-curated

databases) have estimated that their resource covers only 1–3% of

the available literature (Valenzuela-Esc�arcega et al, 2018). At the

same time, databases such as Pathway Commons contain redundant

or conflicting information about the same sets of mechanisms

because assembling knowledge into a coherent whole is difficult and

is dependent on human expertise and curation. Compounding these

difficulties is the increasing volume of published scientific articles,

which makes ongoing maintenance of a previously created resource

necessary to prevent obsolescence; the fact that curation standards
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and languages evolve along with methods of data collection and

analysis further complicates the task of knowledge assembly.

Automated extraction of mechanistic information through litera-

ture mining (using natural language processing) has the potential to

address many of the challenges associated with manual curation

(Ananiadou et al, 2015). However, the precision of machine reading

systems remains lower than that of human curators, particularly for

complex relationships and the subtle language in specific statements

about the mechanism (Allen et al, 2015; Islamaj Doğan et al, 2019;

Madan et al, 2019). Nevertheless, at the current state of the

art, machine reading can extract simple relations (e.g., post-

translational modifications and binding and regulatory events) at

the literature scale (i.e., from a substantial fraction of the body of

3�107 biomedical publications currently available). To accomplish

this, a variety of text mining systems have been developed, each

with different designs, strengths, and weaknesses. Common steps in

these systems include grammatical parsing of sentences, named

entity recognition and normalization, also called grounding (i.e.,

associating entities with a standardized identifier in controlled

vocabularies such as HGNC), and event extraction (identifying inter-

actions, transformations, or regulation involving grounded entities).

Much of the research in text mining for biology to date has focused

on small-scale studies for method validation, but a handful of efforts

have aimed to create large-scale resources available for use in data

analysis by the broader computational biology community (Yuryev

et al, 2006; Van Landeghem et al, 2013).

A key requirement for the broader use of text mining in biologi-

cal data analysis is overcoming the relatively low technical precision

of current systems. One way to mitigate the effect of text mining

errors is to filter out low-confidence extractions based on reliability

estimates. General reliability estimates can be derived a priori from

the published precision scores for specific text mining systems (e.g.,

Torii et al, 2015; Valenzuela-Esc�arcega et al, 2018), but these figures

do not account for the fact that error rates can differ substantially

for different types of information or sentence structures. An alterna-

tive approach is to cross-reference text-mined information against

previously curated databases (Holtzapple et al, 2020) which yields

high-confidence interactions at the expense of the breadth provided

by text mining. For single reading systems, redundancy among

extractions (i.e., extracting the same information repeatedly from

different spans of text) has been shown to associate positively with

reliability (Valenzuela-Esc�arcega et al, 2018) but this has not as yet

been quantitatively characterized or used to derive reliability scores.

In principle, the integration of multiple distinct reading systems with

different types and rates of error could provide the information

needed to estimate interaction reliability but this has not been previ-

ously explored.

Overall, what is still needed are computational tools for the

large-scale assembly of both text-mined and curated mechanisms in

databases to generate knowledge resources with mechanistic detail

and genome scale. Human-generated resources such as Reactome

(Fabregat et al, 2018) aspire to this but would benefit in scope and

currency from human-in-the-loop collaboration with machines. To

accomplish this, machine assembly must overcome challenges asso-

ciated with combining noisy information about mechanisms at dif-

ferent levels of specificity in the face of the technical errors in

grounding and event extraction mentioned above. Users of the

resulting knowledge will often have different end goals but still need

reliable networks and models. Particularly challenging is the assem-

bly of information that can be used to investigate specific mecha-

nisms at the level of the individual reactions, mutations, or drug-

binding events—something currently possible on a smaller scale

using dynamical systems analysis (Lopez et al, 2013) and logic-

based modeling (Saez-Rodriguez et al, 2009). These more mechanis-

tic networks and models contrast with existing genome-scale net-

works that commonly involve unsigned node-edge graphs that

aggregate diverse types of interactions (genetic, physical, co-

localization, etc.) using the simplest possible abstraction.

We previously described a software system, the Integrated Net-

work and Dynamical Reasoning Assembler (INDRA), able to read

simplified declarative language and create relatively small mecha-

nistic models that could be executed using dynamical, logic-based,

or causal formalisms (Gyori et al, 2017). This version of INDRA

could, for example, convert “word models” such as “Active ATM

activates p53. Active p53 transcribes MDM2, etc.” into dynamical

ODE-based models. INDRA accomplishes this using an intermediate

representation to decouple the process of knowledge collection

from the construction of specific models. More specifically, INDRA

normalizes mechanistic information expressed in natural (English)

language into a high-level intermediate machine representation

called Statements. Statements can then be used directly to create

executable models, for example in rule-based languages such as

BioNetGen or PySB. The current taxonomy of INDRA Statements

accounts for the types of biomolecular processes most commonly

involved in intracellular biological networks and signal transduction

(e.g., post-translational modifications, positive and negative regula-

tion, binding, and transcriptional regulation) but is extensible to

other domains of natural science.

Here, we describe a major extension of the INDRA architecture

that allows it to tackle the harder and more generally applicable

problem of assembling mechanistic information extracted from the

primary research literature at scale (hundreds of thousands of publi-

cations). This task presents a set of challenges that are very different

from those encountered when converting declarative language into

ODE models (Gyori et al, 2017). We accomplished reading at scale

by combining the results of multiple reading systems with curated

mechanisms from a wide range of databases and structured knowl-

edge sources. Used in this way, INDRA identifies duplicate and par-

tially overlapping Statements, allowing for the automated assembly

of mechanistic fragments into a nonredundant and coherent set of

interactions and subsequently into large-scale knowledge assemblies

for use in biocuration and data analysis. We illustrate these capabili-

ties of end-to-end assembly in INDRA by processing publications

and databases relevant to human genomics to create a corpus of

~900,000 unique and specified interactions and regulations among

human proteins. We found that the overlap between different

machine reading systems was surprisingly small (highlighting both

the readers’ complementarity and their limitations), but for a given

INDRA Statement, the existence of supportive evidence from multi-

ple reading systems was informative of reliability. We used manual

curation to quantify the technical error and overlap characteristics

of different machine reading systems and then developed predictive

models that estimate the reliability of text-mined extractions in the

form of a “belief score.” Finally, to evaluate the utility of machine-

extracted mechanisms, we used the INDRA-assembled corpus of

Statements to prioritize the curation of protein–protein interactions
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(PPIs) that are not yet captured in the widely used structured knowl-

edgebase, BioGRID (Oughtred et al, 2019). We then used the same

assembled corpus to identify and explain gene dependency relation-

ships in the Cancer Dependency Map (DepMap) dataset (Meyers

et al, 2017; Tsherniak et al, 2017). In this case, an INDRA-

assembled network helped determine statistically significant code-

pendencies between genes, thus allowing for the detection of new

codependencies in cancer. INDRA also provided possible mechanis-

tic explanations rooted in the scientific literature for observed

DepMap codependencies.

Results

Automated assembly of large knowledgebases from curated data-

bases and machine reading systems raises a series of intercon-

nected, conceptual issues not arising in the conversion of simple

declarative natural language into machine readable mechanisms, a

problem we previously tackled using the INDRA architecture shown

in Fig 1A (Gyori et al, 2017). In particular, each source of informa-

tion yields many mechanistic fragments that capture only a subset

of the underlying process, often at different levels of abstraction.

For example, one source might describe the MEK1 (HUGO name

MAP2K1) phosphorylation of ERK2 (MAPK1) on a specific threonine

residue (T185), whereas another source might describe the same

process at the protein family level, stating that MEK phosphorylates

ERK, without mentioning a specific isoform, residue or site position

(Fig 1B). Individual mechanisms obtained from machine reading are

not only fragmented but they also include different types of techni-

cal errors that must be overcome (Fig 1B, red font). One familiar

analogy to the process of assembling mechanistic fragments into

useful knowledge is the assembly of a genome sequence from many

noisy, overlapping sequencing reads (Fig 1B). The goal of knowl-

edge assembly is similarly to achieve the best “consensus” represen-

tation of the underlying processes, incorporating as much

mechanistic detail as possible while minimizing errors. Ultimately,

the process is expected to yield computational approaches for find-

ing truly missing or discrepant information, by analogy with variant

calling.

When attempting to scale the process of assembly from curated

natural language to scientific publications, we identified multiple

technical and conceptual problems that needed to be addressed to

assemble coherent knowledge at scale. These included (i) inconsis-

tent use of identifiers for biological entities among different sources,

(ii) full or partial redundancy between representations of the same

mechanisms, and (iii) technical errors in named entity recognition

and relation extraction. Such problems are particularly salient when

integrating literature-mined interactions, but they also exist when

aggregating interactions from multiple curated databases, due to dif-

ferences in curation practices. For example, in Pathway Commons

v12 there are at least eight different curated representations of the

process by which MAP2K1 phosphorylates MAPK1, each at a differ-

ent level of detail (Fig EV1A). We developed a set of INDRA algo-

rithms for addressing each of these assembly challenges. These

algorithms are general-purpose and can be configured into custom

assembly pipelines (Fig 1C) to support a wide range of modeling

applications, as illustrated in the following examples of machine

reading, assembly, and data analysis (Box 1).

INDRA integrates mechanisms from pathway databases and
machine reading

We used six machine reading systems, Reach (Valenzuela-Esc�arcega

et al, 2018), Sparser (McDonald et al, 2016), MedScan (Novichkova

et al, 2003), TRIPS/DRUM (Allen et al, 2015), RLIMS-P (Torii

et al, 2015), and the ISI/AMR system (Garg et al, 2016) to process

567,507 articles (using full-text content when available, and allowed

by copyright restrictions, and abstracts otherwise; Table 1) curated

as having relevance to human protein function (see the “Article cor-

pus for event extraction” section of Materials and Methods). Reader

output was normalized to INDRA Statements (see “INDRA State-

ment representation” in Materials and Methods), yielding ~5.9�106
unassembled or “raw” Statements (Fig 2A). Readers differed in the

types of relations they extracted: Reach, Sparser, MedScan, and

TRIPS/DRUM produced a multitude of different INDRA Statement

types (each between 19 and 28 different types, depending on the

reader) while RLIMS-P is limited to extracting Phosphorylation

Statements, and ISI/AMR to Complex Statements. Overall, readers

extracted 31 different Statement types (Table EV1). These were

combined with approximately 7.3�105 INDRA Statements extracted

from structured sources such as Pathway Commons and the BEL

Large Corpus; this used previously described extraction logic (a

means of converting structured information of different types into

INDRA Statements; Gyori et al, 2017) but extended to multiple addi-

tional sources including SIGNOR (Perfetto et al, 2016). In combina-

tion, reading and databases yielded a total of ~6.7�106 raw

Statements. We then processed these raw Statements using an

assembly process as described below and illustrated schematically

in Fig 2A. In what follows, we refer to the resulting set of assembled

INDRA Statements as the INDRA Benchmark Corpus.

After collecting information from each source, a pipeline involv-

ing a series of normalization and filtering procedures was applied

(green and red boxes, respectively, in Fig 2A). These processing

steps are also available as individual and reusable software modules

in INDRA. First, we removed Statements that were supported by

mentions indicative of a hypothesis rather than an assertion (for

instance, including sentences phrased as “we tested whether. . .”).

Next, “grounding mapping” was performed to correct systematic

errors in named entity normalization, which often arise due to the

ambiguity of biomedical naming conventions. INDRA integrates a

manually curated mapping table that fixes those entities frequently

misidentified by reading systems (described in detail in Bachman

et al (2018)) and a set of machine-learned models that perform dis-

ambiguation based on text context (by integrating the Adeft (Steppi

et al, 2020) and Gilda (Gyori et al, 2022) systems). “ER” is an exam-

ple of a common but ambiguous entity: it can stand for endoplasmic

reticulum, estrogen receptor, estradiol receptor, emergency room,

and a variety of other entities and concepts depending on context.

As currently implemented, Reach, Sparser, and other reading sys-

tems ground “ER” deterministically to a single identifier (e.g., estro-

gen receptor) irrespective of context. In contrast, the machine-

learned disambiguation models integrated into INDRA predict the

most likely meaning of entities such as ER based on surrounding

text; this is then used to correct the results of text reading systems.

The next step of the grounding mapping process normalizes iden-

tifiers for individual entities using a network of cross-references

between equivalent identifiers in different namespaces (Fig EV2A).
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This addresses the opposite problem from the one described above

(i.e., one name corresponding to multiple entities), namely that a

single entity can have multiple identifiers in different namespaces,

and these identifiers can be assigned inconsistently across machine

reading systems and curated database sources. For example, a

metabolite such as prostaglandin E-2 identified using a Chemical

Figure 1. Conceptual overview of knowledge assembly.

A Assembly of models from diverse knowledge sources. Structured (pathway databases) and unstructured (literature, expert input in natural language) biological
knowledge is converted into machine-readable, mechanistic fragments. These fragments must be assembled into a coherent corpus before the generation of specific
models for data analysis.

B Mechanistic “fragments” capture incomplete but overlapping aspects of an underlying molecular mechanism (here, the phosphorylation of ERK by MEK). Fragments
may also contain errors (highlighted in red). Assembly involves identifying relationships between fragments to arrive at a consensus representation that captures
available information.

C Artifacts involved in the collection of mechanisms from knowledge sources by INDRA, and their representation as INDRA Statements. Yellow boxes show key
terminology used to refer to different artifacts with additional synonyms provided in quotes.

D INDRA knowledge assembly transforms raw statements into assembled statements from which models can be generated. The individual steps of the assembly
pipeline (Steps 1 to N, yellow background) operate on INDRA Statements and are configurable from a library of built-in or user-defined functions.
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Entities of Biological Interest identifier (ChEBI; Hastings et al, 2016)

will be assigned additional equivalent identifiers and a standard

name so that it has the same canonical form as an equivalent metab-

olite identified using an NCBI Medical Subject Heading identifier

(MESH; Fig EV2A and B). This procedure ensures that Agents in

INDRA Statements take on canonical identifiers in multiple name-

spaces, irrespective of the identifier used in the original source of

knowledge.

After these filtering and correction steps were performed, 38% of

Statements contained Agents with ungrounded entities; these were

filtered out. In examining entity texts corresponding to Agents that

were ungrounded and therefore filtered out, we found that the most

commonly occurring unnormalized Agent texts were generic, high-

level terms such as “expression,” “activity,” “cytokine,” “growth,”

and “signaling” consistent with our previous finding that

ungrounded entities often correspond to generic concepts lacking

context (Bachman et al, 2018). Because the current study focuses on

biology involving human genes, we also filtered Statements to

include only those containing human genes and their families or

multi-protein complexes. Each of these processing and filtering steps

operates at the level of individual Statements and changes both the

overall number of Statements and the proportion of Statements in

the corpus from each input source, as shown in Fig 2B.

The final normalization procedure we performed was sequence

position normalization. This accounts for inconsistencies in

attributed sequence positions of post-translational modifications,

some of which involve outright errors in residue numbers, while

others involve the implicit, interchangeable use of residue numbers

between human and model organism reference sequences (preprint:

Bachman et al, 2022). Human and mouse residue numbers are also

used interchangeably in many papers even though residue number-

ing in orthologous proteins frequently differs. In all cases, a method

for sequence normalization is necessary for accurate knowledge

assembly. After normalization, we filtered out Statements

containing non-canonical sequence positions (about 1% of all State-

ments) as these likely arose from machine reading errors. This

yielded a final corpus of ~2.9�106 filtered and normalized

Statements.

We then used INDRA to combine Statements representing

equivalent mechanisms from different sources into a single unique

Statement; each unique Statement was associated with the

supporting mentions from all contributing knowledge sources

including curated databases and reading systems (Fig 2C). In some

cases, multiple readers will have extracted the same mechanisms

from the same sentence, but different reading systems often gener-

ated mentions supporting a specific Statement from different

sentences in given publications or even from different publications

(Fig 2C). This highlights the substantial differences between read-

ing systems and the benefits of the multi-reader approach used in

this paper. For the Benchmark Corpus, ~2.9�106 filtered Statements

yielded ~9�105 unique Statements after combining duplicates

(Fig 2A), with an average of ~3 supporting mentions per State-

ment. However, the distribution of mentions per Statement was

highly non-uniform, with a large number of Statements (63%)

attributable to a single sentence or database entry, and a small

number of Statements (82 in total) having > 1,000 supporting

mentions (Fig 2D). For example, the Statement that “TP53 binds

MDM2” has 2,494 distinct pieces of evidence. Although the data

are noisy for high mention counts, the distribution of mentions per

Statement appears linear on a log–log plot (Fig 2D) implying a

long-tailed distribution potentially following a power law. To con-

firm this, we fitted the observed mention distribution using two

approaches: (i) linear regression of the complement cumulative

distribution of mention counts on a log scale, which showed a

strong linear relationship (r2 = 0.999, P < 10−17), and implied a

power law exponent of α = 2.33 and (ii) fitting directly to a power

law using the powerlaw software package (Alstott et al, 2014),

which showed that the distribution was fit by a power law with

exponent α = 2.38 (standard error σ = 0.008; Fig 2E) and was

more likely than alternative distributions such as exponential

(P < 10−38) or positive log-normal (P < 10−30). Thus, the distribu-

tion of Statements having a given number of supporting mentions

is similar to long-tailed distributions observed in a variety of

domains including linguistics, computer networking, and demo-

graphics (Clauset et al, 2009).

A significant benefit of jointly assembling mechanisms from both

databases and literature is that curated interactions from databases

become linked to textual evidence that supports the interaction

(Fig 2F). For example, the fact that RCHY1 ubiquitinates TP73

appears as a curated interaction in the NCI-PID database (Schaefer

et al, 2009) with reference to PMID20615966 (Sayan et al, 2010),

but without providing specific supporting text within that publica-

tion. In the Benchmark Corpus, INDRA aligns seven mentions

Table 1. Distribution of content types for literature corpus.

Content type Count Percentage

PubMed abstract 384,628 67.8%

Elsevier 81,567 14.4%

PMC open access 74,654 13.2%

PMC author’s manuscript 25,950 4.6%

Missing 707 0.1%

Box 1. Representing knowledge captured from multiple
sources in INDRA (Fig 1D).

Scientific publications contain descriptions of mechanisms (interac-
tion, regulation, etc.) involving biological entities. These descriptions
can be extracted either by human experts and stored in curated
databases or by automated reading systems using natural language
processing. Collectively, reading systems and curated databases
serve as knowledge sources for INDRA. Extractions from knowledge
sources are made available to INDRA in a variety of custom
machine-readable formats such as JSON, XML, and TSV. INDRA pro-
cesses such extractions into a standardized representation, a set of
INDRA Statements. Each Statement represents a type of mechanism
(e.g., Ubiquitination), and has multiple elements, including Agents
representing biological entities such as proteins or small molecules,
and potentially also mechanistic detail such as an amino acid resi-
due for a modification. Each Statement can be supported by one or
more mentions, each representing a single curated database entry
or a single extraction by a reading system from a sentence in a
given publication. Mentions are represented by INDRA as Evidence
objects that have a multitude of properties representing rich prove-
nance for each mention, including the source sentence and the
identifiers of the source publication.
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obtained from text mining with the ubiquitination of TP73 by

RCHY1 and these are derived from four sentences found in two

more recent publications (Wu et al, 2011, 2; Coppari et al, 2014;

Fig 2F). Such aggregation of evidence across curated databases and

text-mining systems is highly beneficial because it increases our

confidence in the accuracy and relevance of a mechanism (Kemper

et al, 2010). In these cases, INDRA, due to its automated nature,

provides a substantial advantage for linking literature sources to

specific interactions compared to comparable manual curation,

which would be laborious and time consuming.

Figure 2. The INDRA knowledge assembly pipeline was used to create a Benchmark Corpus.

A The INDRA assembly pipeline for the Benchmark Corpus. The pipeline starts with ~570 thousand publications processed by multiple reading systems, as well as
structured database sources including Pathway Commons and SIGNOR. Raw Statements extracted from these sources proceed through filtering (red), normalization
(green), and assembly (blue) steps. Gray shading on input modules indicates modules that were originally introduced in Gyori et al (2017).

B Number of INDRA Statements, by source, at key stages of the assembly pipeline shown in panel (A).
C Combining duplicate Statements. INDRA identifies raw Statements that are identical and creates a single unique Statement with all of the associated mentions.
D Distribution of mention counts (including both mentions in text and database entries) across all Statements in the Benchmark Corpus. Each point in the scatterplot

represents the number of Statements with a given number of mentions.
E Complement cumulative distribution of Statements as a function of the number of mentions supporting them (black) and the maximum likelihood estimate of a

power-law fit to the distribution (red).
F Assembly of Statements enriches curated mechanisms in pathway databases with literature evidence from text mining. Here, a reaction in Pathway Commons

represents the ubiquitination of TP73 (p73) by the ubiquitin ligase RCHY1 (Pirh2). Reach, Sparser, and MedScan each extract statements matching the one from
Pathway Commons and provide references to PubMed identifiers and specific evidence sentences as provenance.
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Detecting hierarchical relationships between mechanisms

Following processing, filtering, and the identification of duplicate

Statements it is necessary to identify relationships among

“overlapping” Statements (Fig 3A). A pair of Statements is consid-

ered to be overlapping when one functions as a refinement (i.e.,

adds additional mechanistic detail) to the other. Although the anal-

ogy in this case is not perfect, something similar is required in

Figure 3. Identifying refinement relationships among Statements.

A Refinement by hierarchies of Statement elements as defined by INDRA. The two Statements shown contain the same number and types of information but all
elements in the top Statement are refinements of the corresponding elements in the bottom Statement according to the INDRA Statement hierarchies.

B Refinement by additional context. The upper Statement contains all information in the lower one but also provides additional detail, making it a refinement of the
one below.

C Example refinement graph for a Statement from the example corpus. For clarity, the transitive reduction of the hierarchy is shown, and each Statement object is
displayed via its English language equivalent. Each node in the graph represents a statement with blue or red circles representing evidence from pathway databases
or mentions extracted by machine reading systems, respectively. Next to each blue or red circle, the number of different sources is shown with the overall number of
mentions from these sources in parentheses. For example, the statement “CREB1 is phosphorylated on S133” has five pieces of evidence from one pathway database
source, and 48 mentions extracted by three reading systems. Edges represent refinement relationships and point from more specific to less specific Statements.

D Graph of family relationships (dotted isa edges) and Statements representing phosphorylation (solid edges, annotated with Statement identifiers from panel C),
between different levels of specificity of the RSK and CREB protein families.

E Number of Statements based on the total number of other Statements that they refine.
F Number of Statements with different depths of Statements that they refine (i.e., the length of the longest path in the graph of refinement relations starting with the

given Statement).
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genome assembly—if a shorter sequence is fully contained in a lon-

ger sequence, the shorter one is redundant. When such a relation-

ship exists between two Statements, we say that the more detailed

one “refines” the less detailed one. Refinement can happen at the

level of entities (e.g., one Agent representing a protein family and

another Agent a specific member of that family), or molecular states

and context (e.g., an explicit reference to a site of post-translational

modification in one Statement and its omission in another). The

refinement relationship between Statements is determined using a

partial ordering logic that compares pairs of Statements based on

their individual elements (where elements include the Agents

involved in the Statement, and, depending on the type of Statement,

post-translational modifications, cellular locations, types of molecu-

lar activity, etc.) and determines whether each element is either

equivalent to or a refinement of the other (Fig 3A). To accomplish

this, INDRA makes use of hierarchies of each relevant type of ele-

ment, including proteins and their families and complexes drawn

from FamPlex (Bachman et al, 2018), combined with chemical and

bioprocess taxonomies from ChEBI and the Gene Ontology

(Ashburner et al, 2000; e.g., MAP2K1 is a specific gene in the MEK

family, Fig 3A, blue), protein activity types (e.g., kinase activity is a

specific type of molecular activity, Fig 3A, red), post-translational

modifications (e.g., phosphorylation is a type of modification,

Fig 3A, green), and cellular locations (also obtained from the Gene

Ontology; e.g., that the cytoplasm is a compartment of the cell,

Fig 3A, purple). A Statement is also considered a refinement of

another if it contains additional contextual details but is otherwise a

match across corresponding elements. One example of such a refine-

ment relationship is shown in Fig 3B, in which the first Statement

(Fig 3B, top) describes an additional molecular state (MAP2K1 being

bound to BRAF) and mechanistic detail (T185 as the specific site of

modification of MAPK1) over another Statement (Fig 3B, bottom)

which omits these contextual details.

Pairwise refinement of relationships among Statements is most

easily represented using a graph in which nodes represent State-

ments and directed edges point from a node representing a State-

ment to another node representing the Statement that it refines.

Such Statement refinement graphs can be quite deep (i.e., the

length of a directed path starting from a Statement can consist of a

large number of edges going through many refined Statements).

For example, the refinement subgraph for RPS6KA1 phosphorylated

on S732, T359, S363, T573, S380, and S221 phosphorylates CREB1

on S133 (Fig 3C, where RPS6KA1 encodes the ribosomal S6 kinase

and CREB1 a transcription factor) has nine levels. The refinement

relationships for this Statement reveal the varying levels of speci-

ficity at which a given mechanism is described in sources: CREB is

phosphorylated has 2,268 mentions in the literature collected by

four reading systems, RPS6KA1 phosphorylates CREB1 has three

mentions in total from both literature and curated databases, and

CREB1 is phosphorylated on S133 has 399 mentions. It is also

worth noting that support from curated databases for these State-

ments (Fig 3C, blue circles) is not attributable to a single database

source. For example, the Statement labeled S1 in Fig 3C is derived

only from Pathway Commons, S5 only from SIGNOR, and S7 only

from HPRD (Mishra, 2006). Thus, human-curated databases are

individually incomplete and mutually inconsistent with respect to

the way they report specific mechanisms and the literature they

cite as supporting evidence.

Organizing Statements hierarchically helps to ensure that an

assembled model does not contain information that is mechanisti-

cally redundant. For instance, when the Statements in Fig 3C are

viewed as a graph with nodes representing entities (RPS6KA1,

CREB1, etc.) and edges representing phosphorylation reactions

(Fig 3D, solid arrows), five partially redundant edges can be identi-

fied (e.g., RPS6KA1 → CREB1, P90RSK → CREB1, and P90RKS →
CREB) connecting members of the RSK and CREB protein families

at different levels of specificity (e.g., P90RSK is a member of the

RSK family, Fig 3D, dashed arrows). A key feature of INDRA is that

it can recover Statement refinement relationships, enabling princi-

pled resolution of complex redundancies, for example, by retaining

only Statements that are not refined by any other Statements (in the

case of Fig 3C, the Statement labeled as S1 at the top of the graph).

The refinement graph in Fig 3C also reveals how a highly specific

Statement can serve as evidence for all the other Statements it sub-

sumes, a relationship that is exploited when estimating Statement

reliability.

We found that refinement relationships were common in

the Benchmark Corpus: 38% of Statements refined at least one

other Statement, and some Statements refined a large number of

other Statements, including 89 Statements that refined at least 20

other Statements (Fig 3E). These Statements are typically ones that

represent a canonical (i.e., often described) mechanism (e.g., the

mechanism by which members of the AKT protein family phosphor-

ylate GSK3 proteins) at a high level of detail and subsume multiple

variants of the same mechanism described at a lower level of detail.

We also found that the Benchmark Corpus contained tens of thou-

sands of refinements involving three or more levels (Fig 3F), empha-

sizing that many mechanisms across databases and literature are

described at many levels of specificity. INDRA assembly can recon-

struct these relationships and allow resolving the corresponding

redundancy.

Modeling the reliability of INDRA Statements with the help of a
curated corpus

One of the most challenging problems in using mechanisms gener-

ated by text mining is the unknown reliability of the extracted infor-

mation. While the notion of “reliability” includes conventional

scientific concerns, such as the strength of the evidence supporting

a particular finding or study (Fig 4A, upper left quadrant), in prac-

tice the overwhelming majority of incorrect assertions result from

technical errors in machine reading (Fig 4A, lower left quadrant).

Common reading errors include systematic misidentification of

named entities, incorrect polarity assignment (e.g., classifying acti-

vation as inhibition), failure to recognize negative evidence (e.g., “A

does not cause B"), and difficulty distinguishing hypotheses from

assertions and conclusions (e.g., “we tested whether A causes B" as

opposed to “A causes B"; Valenzuela-Esc�arcega et al, 2018; Noriega-

Atala et al, 2019). These errors arise primarily because scientific

texts use a wide range of non-standard naming conventions to refer

to genes, proteins, and other entities, as well as complex grammati-

cal structures to convey the confidence associated with a result or

data point. Indeed, much of the art in scientific writing is to generate

text that appears to progress inexorably from a hypothesis to the

description of supporting evidence to a conclusion and its caveats.

This type of writing can be difficult even for humans to fully
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understand. However, addressing the technical errors of reading

systems at the level of individual Statements is a prerequisite for

addressing the additional issues that arise when Statements are

combined into causal models (Fig 4A, right quadrants). Additional

challenges with integrated models include dealing with contradic-

tions between Statements, assessing the relative influence or rele-

vance of multiple Statements in a given context, as well as issues

surrounding causal transitivity across multiple Statements.

To study the reliability of our assembled Statements, we sampled

a set of Statements from the Benchmark Corpus. The sampled State-

ments had between 1 and 10 mentions per Statement and arose

from five reading systems (Reach, Sparser, MedScan, RLIMS-P, and

TRIPS; we excluded the ISI/AMR system from this analysis due to

the low number of extractions it produced). Two of the authors,

both of whom are PhD biomedical research scientists, used this to

develop a Curated Corpus from the sampled Statements. Curation

involved determining whether a given mention correctly supported

a specific Statement based on human understanding of the sentence

containing the mention and the overall context of the publication.

Statements were sampled by mention count in a stratified manner to

establish the relationship between mention count and reliability;

high mention-count Statements are therefore overrepresented rela-

tive to their baseline frequency in the Benchmark Corpus (see

“Statement Curation” section of Materials and Methods). The

resulting data set covers 1,800 Statements with a combined total of

6,022 unique mentions a subset of which (see Table 2 and “State-

ment Curation” section of Materials and Methods) was used to

assess the individual technical reliability of reading systems.

For a single reading system, the reliability of an extracted State-

ment has been observed to increase with the number of different

supporting mentions (Valenzuela-Esc�arcega et al, 2018). We

hypothesized that a Statement with multiple mentions would be

more reliable if the mentions had been independently extracted by

more than one reading system. To test this idea, we used two com-

plementary approaches to create models of Statement reliability: (i)

structured probability models that build on empirical error charac-

teristics of individual reading systems based on the Curated Corpus

and (ii) machine learning (ML) models trained on the Curated Cor-

pus. Structured probability models require much less training data,

but, given sufficient training data, machine-learned models are gen-

erally more expressive and likely to be more accurate in predicting

Statement reliability.

Modeling the reliability of Statements from individual
reading systems

We first examined the error characteristics of individual reading sys-

tems. For individual readers, analysis of the Curated Corpus showed

that while Statements with more mentions are generally more reli-

able, in many cases Statements supported by many sentences were

Figure 4. Estimating statement belief for a single machine reader.

A A classification of sources of error and uncertainty in assembling causal models. Sources are classified according to whether they are external or internal to the
INDRA system, and whether they arise at the level of individual Statements (atomic) or an integrated network or model (global).

B Empirical precision of three reading systems based on the number of mentions supporting a given Statement extracted by that reader.
C Mathematical formulas for Statement correctness for three different Belief Models. Each model specifies the probability that a Statement is incorrect overall given

that a specific number k of mentions support it from a given source. erand: random error for the source; esyst: systematic error for the source; B(α, β): Beta function.
D Fits of the three belief models in (C) plotted against the empirical precision of Reach-extracted Statements.
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still incorrect due to the presence of systematic errors (Fig 4B). For

example, the Sparser reading system extracted the Statement MAOA

binds MAOB with 10 mentions from 10 different publications, but

all extractions were incorrect because the system incorrectly inter-

preted “association” as referring to a physical interaction rather than

a statistical association between MAOA and MAOB (monoamine

oxidase A and B), which is what the original publications described.

We compared three alternative probability models for their ability to

capture the dependence of sentence reliability on mention count: (i)

a simple binomial model, (ii) a beta-binomial model (a binomial

model in which the probability of success at each trial follows a beta

distribution), and (iii) a two-parameter model that captures both

random and systematic errors—we termed this latter model the

INDRA Belief Model (Fig 4C; see “The INDRA Belief Model” section

of Materials and Methods). Parameters for each of the three models

were estimated from the data from the Curated Corpus using Mar-

kov chain Monte–Carlo (MCMC; see “Parameter estimation for

INDRA Belief, Binomial, and Beta-Binomial Models” section of

Materials and Methods). Both the beta-binomial model and the

INDRA Belief Model outperformed the binomial model at predicting

Statement correctness from mention counts, primarily due to their

ability to capture the empirical observation that even high-mention

Statements do not approach an accuracy of 100% (a phenomenon

accounted for by modeling systematic reader errors; Fig 4D,

Table 3). The INDRA Belief Model performed slightly better than the

beta-binomial model at predicting Statement correctness for both

the Reach and Sparser reading systems (Table 3) due to its better fit

to low mention-count Statements (Fig 4D, mentions 1, 2, and 3). An

additional advantage of the INDRA Belief Model is that the random

and systematic error rates erand and esyst are interpretable and can be

estimated heuristically by examining a small number of high-mention

Statements (with precision approximately equal to esyst) and 1-mention

Statements (with precision equal to esyst + (1 − esyst)erand). This makes

it possible to set reasonable parameters for the INDRA Belief Model

based on prior intuition or examination of a small number of exem-

plary Statements. Since the INDRA Belief Model performed the best

overall, it is used as the default model in INDRA when no curation

data are available. However, the beta-binomial model more accurately

fit the underlying distribution of correct mentions for each Statement,

suggesting that further research is needed on such error models

(Fig EV3).

Multi-reader overlap is associated with higher Statement
frequency and reliability

To better understand the potential for multi-reader reliability assess-

ment, we characterized the extent of reader overlap in the Bench-

mark Corpus (i.e., when two or more readers produce mentions

supporting the same Statement). We found that 19% of assembled

Statements had supporting mentions from two or more reading sys-

tems (Table 4; Figs 5A and EV4A), but the bulk of Statements was

Table 2. Summary of Statement curation dataset for the purposes of single reader belief assessment.

Reader Mention curation 1 2 3 4 5 6 7 8 9 10

Reach Complete 57 (119) 26 (41) 25 (36) 16 (25) 26 (36) 24 (28) 26 (35) 31 (50) 18 (22) 20 (24)

Incomplete 57 (119) 26 (41) 25 (36) 16 (25) 26 (36) 24 (28) 26 (36) 31 (50) 18 (22) 20 (24)

RLIMS-P Complete 87 (109) 24 (26) 23 (25) 10 (10) 6 (6) 6 (6) 6 (6) 6 (6) 7 (7) 25 (25)

Incomplete 87 (109) 24 (26) 23 (25) 10 (10) 10 (10) 11 (11) 12 (12) 11 (11) 12 (12) 25 (25)

TRIPS Complete 158 (199) 46 (51) 28 (29) 3 (3) 7 (7) 12 (12) 24 (26) 12 (13) 9 (11) 9 (9)

Incomplete 158 (199) 46 (51) 28 (29) 9 (11) 10 (10) 12 (12) 24 (26) 12 (13) 9 (11) 9 (10)

Sparser Complete 9 (25) 13 (25) 9 (13) 6 (12) 11 (19) 6 (8) 16 (19) 2 (3) 3 (7) 11 (12)

Incomplete 9 (25) 13 (25) 10 (14) 6 (12) 12 (20) 8 (10) 16 (19) 23 (29) 13 (21) 19 (21)

MedScan Complete 63 (96) 22 (31) 4 (6) 0 (0) 2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 13 (19)

Incomplete 63 (96) 22 (31) 15 (22) 12 (15) 23 (26) 13 (17) 9 (13) 7 (11) 9 (13) 13 (19)

Entries are formatted as “number correct (total curated).” Each column shows the number of mentions (between 1 and 10) supporting a given Statement in the
curation dataset. Rows marked as “Complete” show counts only for Statements for which all mentions were curated while “Incomplete” also includes Statements
where less than the total number of mentions was curated. Counts across readers are not unique; if a Statement has mentions from multiple readers, it is
counted in multiple rows.

Table 3. Maximum likelihood values for alternative belief models
using best-fit parameters (lower values indicate a better fit).

Model

Reach, −log
(Max
likelihood)

Sparser, −log
(Max
likelihood)

MedScan,
−log(Max
likelihood)

Binomial (1
param)

375.4 104.7 150.1

Beta-binomial
(2 params)

260.2 90.7 97.4

INDRA Belief
Model (2
params)

259.5 91.2 96.9

Table 4. Frequencies of relations in the corpus by the total number
of sources.

Num. readers Freq. (%)

1 81.3%

2 14.42%

3 3.55%

4 0.67%

5 0.05%
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supported exclusively by either Reach, Sparser, or MedScan

(Fig 5A). The low overlap between readers is attributable to differ-

ences in their design, including their approaches to grammatical

parsing, named entity recognition, associated resources (i.e., which

lexical sources each reader incorporates), and the types of grammat-

ical or semantic patterns that can be recognized. Low overlap

among readers implies that using multiple reading systems in an

integrated fashion via INDRA can increase coverage relative to any

single reading system.

Despite the relatively small overlap among readers, the number

of mentions from each reader supporting a Statement showed sub-

stantial correlation, with both ρ(Reach, Sparser) and ρ(Reach,

MedScan) > 0.6 (Table 5). We found, however, that these correla-

tions in mention counts among reading systems were primarily

driven by a subset of relations with very high numbers of mentions

(Fig 5B). More generally, we found that reader overlaps for a State-

ment increases as a function of the number of supporting mentions

an individual reader extracted for the Statement (Fig 5C). Overall,

these data support the observation that, if a mechanism represented

by a Statement is described in many different sentences across input

documents, multiple systems are likely to extract supporting men-

tions, and these will often come from different sentences and publi-

cations (as we showed in Fig 2C and E).

When we examined the relationship between reader overlap and

Statement correctness using the Curated Corpus, we found that

Statements supported by many mentions were more likely to

Figure 5. Estimating Statement belief with multiple machine readers combined.

A Upset plot (equivalent to a Venn diagram with more than three sets) of Statement support for five machine reading systems integrated by INDRA. For a given
Statement, two or more readers intersect if they each provide supporting mentions for it. The top 10 subsets are shown; for a full upset plot of all subsets, see
Fig EV4A.

B Number of mentions from Reach and Sparser (left) and Reach and MedScan (right) for a given Statement, each Statement being represented by a red dot. Mention
counts are plotted on a logarithmic scale.

C The percentage of Statements for which an intersection (i.e., any overlap) between reading systems is observed as a function of the number mentions from a given
reader; the data are plotted separately for each of the five reading systems.

D Empirical Statement precision as a function of the number of mentions from Reach (left) and Sparser (right), plotting the cases for which only Reach or Sparser
provides supporting mentions for a Statement (red) and the case where all Statements are taken into account (blue).

Table 5. Correlations between reader mention counts.

Sparser MedScan RLIMS-P TRIPS

Reach 0.611 0.633 0.072 0.374

Sparser 0.454 0.114 0.420

MedScan 0.034 0.338

RLIMS-P 0.096
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overlap with other readers and be correct (Fig EV4B, blue points

along diagonals). Notably, in the case of Reach, the reader for which

the most extensive subset of curated Statements was generated, we

found that the probability of Statement correctness increased with

the overall number of Reach mentions, but only for high-mention

Statements that also included support from other readers (Fig 5D,

blue points). For relations with support only from Reach, empirical

correctness increased from 1 to 2 mentions (an observation consis-

tent with the findings regarding the Reach system’s precision

(Valenzuela-Esc�arcega et al, 2018)), but additional Reach-only men-

tions were not associated with substantial further increases in preci-

sion (Fig 5D, red points). Thus, in a multi-reader setting, the

absence of reader overlap also plays a key role in assessing State-

ment reliability. These observations imply that combining multiple

reading systems can be highly valuable when assessing Statement

correctness based on supporting mentions. It also provides informa-

tion that can be used by developers of reading systems to increase

recall and precision.

To characterize systematic issues affecting multiple readers, we

also examined sentences associated with Statements that were

incorrectly extracted by more than one reader. Recurring errors

included misgrounding due to overlapping aliases (e.g., grounding

—by four readers—of “TPP1” to gene TPP1 rather than gene ACD

for which “TPP1” is an alias), incorrect extraction of negative

results (e.g., “our preliminary attempts have not identified direct

phosphorylation of PPARγ by MST2,” extracted by three readers as

a Phosphorylation statement in which MST2 modified PPARγ),
unrelated subclauses being causally linked (e.g., “quiescent cells

attenuate eIF2α phosphorylation and induction of the ER stress

proapoptotic gene GADD153” incorrectly extracted by three readers

as a phosphorylation of GADD153 by eIF2α), incomplete named

entity recognition (e.g., “Shc associates with epidermal growth fac-

tor (EGF) receptor,” incorrectly extracted by two readers as binding

between Shc and EGF, not EGFR), and extraction of protein–DNA
binding as protein–protein binding (phrases similar to “c-Jun binds

to AP-1 sites to regulate gene expression” incorrectly extracted by

four readers as binding between c-Jun and the AP-1 complex, which

includes c-Jun as a component). In many of these cases, human

readers are able to recognize subtleties in the language that are diffi-

cult for machines to parse correctly.

Two approaches to modeling the reliability of Statements from
multiple readers

We evaluated two strategies for assessing the reliability of State-

ments using mention counts from multiple readers: (i) extending the

INDRA Belief Model and (ii) training machine learning models on

the Curated Corpus. Even though reader errors were not fully inde-

pendent of each other (Fig EV4B), we assumed independence

between different reading systems (Zhang, 2004) to extend the

INDRA Belief Model while adding the fewest additional model

parameters. Specifically, we adjusted how the model formulated

error estimates to express the probability that all mentions extracted

by the readers were jointly incorrect (see “The INDRA Belief Model”

section of Materials and Methods). We also assessed how well the

extended INDRA Belief Model could predict Statement correctness

based on mention counts per reading system compared to several

different machine-learned classifiers. These classifiers included

Logistic Regression on log-transformed mention counts, k-Nearest

Neighbors, support vector classifiers, and Random Forests (see the

“Machine-learned models of Statement reliability” of Materials and

Methods). Models were compared based on the area under the

precision-recall curve (AUPRC), which is a more robust metric for

class-imbalanced data (~73% of Statements in our curated corpus

were correct) than the area under the receiver-operator curve

(AUROC). In interpreting the AUPRC values, note that the curated

corpus is, by construction, biased toward Statements with higher

mention counts and, therefore, greater reader overlap. For example,

Statements supported by only a single reader constitute 81% of the

Benchmark corpus (Table 4) but only 35% of the curated corpus

(see “Statement Curation” section of Materials and Methods). As

such, reported AUPRCs should be interpreted as a measure of the

relative performance of each model across Statements supported by

different combinations of readers rather than measures of general

performance.

We found that, when mention counts were the only input fea-

ture, the INDRA Belief Model yielded the greatest AUPRC, followed

by the Logistic Regression and Random Forest models (Table EV2,

rows 1, 3, and 2, respectively). However, machine learning models

outperformed the INDRA Belief Model when they were extended to

use additional Statement features, such as the Statement type, the

number of supporting articles (i.e., the number of distinct publica-

tions from which mentions were extracted), the average length of

the mention texts (longer sentences were more likely to be incor-

rectly interpreted), and the presence of the word “promoter” in the

sentence (a frequent indicator that a sentence describing a protein to

DNA promoter interaction had been mis-extracted as a PPI; Table EV2,

rows 8–13; see the “Encoding of features for Statement belief predic-

tion” section of Materials and Methods). This implies that—as long as

sufficient training data are available—machine-learned classifiers can

use additional Statement-associated features to boost performance rela-

tive to the INDRA Belief Model which relies solely on mention counts.

Additionally, since INDRA can identify refinement relationships

among Statements (Fig 3), mentions can be combined across differ-

ent levels of detail for use in reliability estimation. For example, evi-

dence supporting the specific Statement, “MAP2K1 phosphorylates

MAPK1 on T185,” also supports the more generic Statement, “MEK

phosphorylates ERK.” Combining these refining mentions improved

precision and recall: the AUPRC of the Random Forest model

increased from 0.893 to 0.913 when using only mention counts

(Table EV2, row 2 vs. 17), and from 0.932 to 0.937 when using all

features (Table EV2, row 9 vs. 24). Further when we incorporated

overlapping mentions from curated databases as features alongside

reader mentions, we found that the Random Forest model’s AUPRC

increased to 0.942—the highest AUPRC reached across all models

and conditions. Because mentions from more specific Statements

flow to more general ones but not the reverse, the belief estimates

for the most specific Statements are determined only by their

directly supporting evidence. This leads to an overall inverse rela-

tionship between specificity and belief that allows Statements to be

filtered to the most specific statement lying above a certain thresh-

old of belief, thereby excluding potentially unreliable and highly

specific Statements in which extracted details may reflect technical

errors rather than meaningful additional context.

Because readers perform differently on the same input text, State-

ments supported by multiple readers are less common than
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Statements supported by a single reader, but our analysis showed

that both the existence of reader overlap as well as lack of overlap for

a given Statement can be informative in predicting Statement correct-

ness. Moreover, in the absence of human-curated data across multi-

ple Statement features—a type of data that is laborious to generate—
a parametric model (such as the INDRA Belief Model) based on the

error profiles of individual readers can perform well from a precision-

recall perspective. When sufficient curated training data are available,

machine learning models such as Random Forests can achieve greater

performance, obtaining the highest AUPRCs in several different con-

figurations. These findings provide empirical support for INDRA’s

approach to assembling sets of Statements from multiple text mining

and curated database sources with principled estimates of correct-

ness. Both the INDRA Belief Model and the machine-learned classifier

models are available in the belief submodule of INDRA and allow

parameters to be either manually set or estimated from curation data.

Validation of assembled mechanisms and comparison against
curated resources

To test INDRA on a prototypical biocuration task, we compared the

subset of Statements representing human PPIs in the Benchmark

Corpus to the BioGRID database (Oughtred et al, 2019). BioGRID is

a curated public database containing structured information on

protein–protein and protein–small molecule interactions, as well as

genetic interactions obtained from multiple organisms. These inter-

actions were extracted by expert curators from a combination of

high-throughput datasets and focused studies. As a measure of the

utility of INDRA for biocuration, we determined (i) the number of

previously-uncurated PPIs that the INDRA Benchmark Corpus could

add to BioGRID and (ii) the amount of new literature evidence that

it could add to PPIs currently in BioGRID. We used our best-

performing Random Forest model to assign a belief to each INDRA

Statement in the Benchmark Corpus.

The Benchmark Corpus contained ~26,000 Statements repre-

senting PPIs already in BioGRID and ~101,000 PPIs that were absent

(Fig 6A); the latter potentially represent known but previously uncu-

rated interactions. By grouping all PPIs in bins defined by belief

score, we found that belief score was highly correlated with whether

a PPI was curated in BioGRID (Fig 6B). This provides a quantitative

corroboration of the belief scores and, by extension, suggests that a

substantial number of the PPIs absent from BioGRID involve reading

errors that are associated with low belief scores. The belief scores

obtained from the Random Forest model can be interpreted as cali-

brated probabilities of correctness, allowing belief scores to estimate

the number of correct Statements in each bin. The proportion of

Statements in BioGRID was consistently below the belief score for

the bin, suggesting that each bin contained correctly extracted but

uncurated PPIs (Fig 6B, blue line below diagonal). Assuming that all

Statements found in BioGRID were correctly extracted, we estimated

a lower bound of 28,600 correct but uncurated PPIs in the Bench-

mark Corpus, a 6% increase over the ~480,000 unique human PPIs

in BioGRID.

As a practical matter, extending a curated resource such as

BioGRID would logically involve focusing first on Statements with

the highest belief scores. The ~2,200 uncurated Statements with

belief scores > 0.9 would be expected to yield > 1,870 PPIs or

roughly six correct for every seven reviewed. Statements with

lower belief scores are more numerous but also have a lower

expected yield: 18,700 correct Statements would be expected

among the 41,600 uncurated Statements with belief scores between

0.4 and 0.9, with the curation yield starting at 67% (for Statements

with belief between 0.8 and 0.9) to 29% (for Statements with

belief between 0.4 and 0.5) (Fig 6C). To illustrate this, we exam-

ined one PPI not currently in BioGRID that involved binding of the

KIF1C kinesin to RAB6A, a GTPase and regulator of membrane

trafficking. INDRA assembled a total of 40 mentions supporting

this PPI, extracted by two machine reading systems (Reach and

Figure 6. Comparison of INDRA-assembled mechanisms with a curated resource, BioGRID.

A Number of INDRA Statements representing PPIs (i.e., complex formation between two human proteins) grouped into bins by their belief score (as determined by a
random forest belief model), differentiating whether the PPI represented by the Statement appears in BioGRID (orange) or not (blue).

B Fraction of INDRA Statements representing PPIs that appear in BioGRID grouped into bins by their belief score. A gray dashed line shows the expected fraction of
correct Statements in each belief bin. The space between the gray and blue lines (i.e., between the expected fraction of correct Statements in each bin and the
fraction of Statements that appear in BioGRID) represents an estimate of the set of correct Statements missing from BioGRID.

C Plot showing estimated curation yield if Statements were reviewed by decreasing belief score for inclusion into a curated resource. The blue line plots the number of
correct Statements expected to be found as a function of the number of Statements reviewed, with green and pink dashed lines serving as guides showing 100%
return (i.e., every reviewed Statement is correct) and 25% return (i.e., 1 out of 4 reviewed Statements is correct).
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Sparser), into a Statement with a belief score of 0.82. Human cura-

tion confirmed that the interaction had been reliably demonstrated

using both co-immunoprecipitation and reconstitution experiments

(Lee et al, 2015).

A second application of INDRA is to add evidence for PPIs

already in BioGRID and thereby (i) provide different types of evi-

dence for an existing PPI (e.g., mass spectrometry vs. 2-hybrid inter-

action), (ii) reveal additional biological settings or cell types in

which a PPI might occur, and (iii) provide additional mechanistic

detail about a particular PPI. As an example of (i) and (ii), BioGRID

lists only three publications as a reference for the interaction

between brain-derived neurotrophic factor (BDNF) and the NTRK2

receptor tyrosine kinase, whereas the INDRA Benchmark Corpus

contains 168 mentions of this interaction from a total of 94 publica-

tions. Some of these additional publications provide primary experi-

mental evidence for this interaction (e.g., Vermehren-Schmaedick

et al, 2014) whereas Wang et al (2009a) discuss the role of the

BDNF-NTRK2 interaction in important clinical settings. As an exam-

ple of (iii), the interaction between paxillin (PXN) and the tyrosine

kinase PTK2B is supported by six references in BioGRID; INDRA

not only identified 49 mentions from 18 different publications

supporting this PPI but assembled a Statement with substantially

more mechanistic information than BioGRID: namely that PTK2B,

when phosphorylated on Y402, phosphorylates PXN on Y118 (Park

et al, 2006; Moody et al, 2012, 2). This example shows that for a PPI

lacking mechanistic detail, INDRA can illuminate the directionality

and type of regulation, as well as the amino acids involved in post-

translational modifications.

Detecting and explaining gene dependency correlations with an
assembled causal network

To study how networks that incorporate text-mined information

can aid in the interpretation of functional genomic datasets, we

used INDRA to detect and explain significant gene dependencies in

the Cancer Dependency Map (https://depmap.org; Meyers

et al, 2017; Tsherniak et al, 2017). The DepMap reports the effects

of RNAi or CRISPR-Cas9 mediated gene inactivation on cell viabil-

ity and growth in > 700 cancer cell lines using a competition

assay. In this assay, the effect of gene inactivation is assessed by

determining the rate at which a specific knockout (or knockdown)

disappears from a co-culture comprising cells transfected with a

genome-scale RNAi or CRISPR-Cas9 library. It has previously been

observed that genes whose knockouts have similar effects on via-

bility across a large number of cell lines—a phenomenon known

as codependency—frequently participate in the same protein com-

plex or pathway (Meyers et al, 2017; Tsherniak et al, 2017; Pan

et al, 2018; Doherty et al, 2021; Rahman et al, 2021; Shimada

et al, 2021). For example, CHEK2 and CDKN1A have a correlation

coefficient of 0.359 and 0.375 in DepMap CRISPR and RNAi data,

respectively (Fig 7A), and this codependency can be explained by

the fact that the CHEK2 kinase is an activator of CDKN1A (also

known as p21) and that the two genes jointly regulate cell cycle

progression. To obtain robust measures of gene co-dependencies,

we combined the CRISPR and RNAi perturbation data by

converting the Pearson correlation coefficients for each gene pair

into signed z-scores and computing the combined z-score between

the two datasets using Stouffer’s method (Fig 7A). In analyzing

the data, we first accounted for a bias also observed by others

(Dempster et al, 2019; Rahman et al, 2021), namely that many of

the strongest correlations are between mitochondrial genes

(Fig 7B). These correlations have been described as an artifact of

the screening method (such as the timepoint of the viability mea-

surements relative to cell doubling time) rather than reflecting true

co-dependencies (Rahman et al, 2021). We considered the correla-

tions among these genes to be “explained” a priori due to their

shared mitochondrial function. Using the mitochondrial gene data-

base MitoCarta as a reference (Rath et al, 2021), we excluded cor-

relations among them from subsequent analysis.

From the Benchmark Corpus of assembled INDRA Statements,

we generated a network model in which each node represents a

human gene and each directed edge corresponds to an INDRA State-

ment (such as Phosphorylation, Activation, etc.) connecting two

nodes. We used the resulting network for two tasks: first, to con-

strain the number of hypotheses tested when determining the statis-

tical significance of codependency correlations and second, to find

mechanistic explanations for the observed codependencies.

For the first task, we calculated the number of codependencies

that were significant at a false discovery rate (FDR) of 0.05 using

three methods for controlling FDR with and without the use of the

network to limit the number of hypotheses tested (Table 6). Overall,

fewer codependencies were significant when we restricted compari-

sons to relationships in the INDRA-assembled network, both

because the network is incomplete and because many codepen-

dencies reflect indirect functional relationships (which are not cap-

tured by a single direct edge in the network). However, many

codependencies (4,007 using Benjamini–Yekutieli FDR correction)

were detected as significant only when using the network (Table 6,

“INDRA only”) due to the smaller number of hypotheses tested.

Moreover, the majority of these (2,729) were based on interactions

obtained only from machine reading, of which > 60% were

supported by a Statement with a belief score greater than 0.5.

Conversely, the existence of a codependency added context to

text-mined mechanisms. For example, the negative correlation

between ERBB2 and STMN1 (ρ = −0.146 in DepMap CRISPR data)

was associated with a single INDRA phosphorylation Statement in

the Benchmark Corpus; the fact that the codependency correlation

is negative indicates that ERBB2 phosphorylation of STMN1 inhibits

it (a finding corroborated by Benseddik et al (2013)). Similarly, the

negative correlation between GRB10 and IRS2 (ρ = −0.137 in

CRISPR) is consistent with reports that the binding of GRB10 to

IRS2 is inhibitory. This provides context for the INDRA Statement

derived from (Mori et al, 2005; Keegan et al, 2018, 1) that “GRB10

binds IRS2” and is particularly interesting because the effect of

GRB10 binding to IRS2 has been reported as both inhibitory (Wick

et al, 2003) and activating (Deng et al, 2003, 10). The negative

DepMap correlation suggests that the inhibitory effect is more rele-

vant in the context of the two genes’ co-regulation of cell viability.

Overall, these findings suggest that an INDRA-assembled network

can lead to the detection of codependencies that would otherwise be

missed, and—as the previous two examples show—the combined

information from data and assembled knowledge provides deeper

mechanistic insight into each interaction than data alone.

We next tested whether the Benchmark Corpus could provide

mechanistic explanations of DepMap codependencies beyond what

can be explained by curated pathway databases. We considered
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Figure 7. Detecting and explaining gene codependency in cancer cell lines using an INDRA-assembled network.

A CRISPR (left) and RNAi (right) data from DepMap showing the codependency of the CHEK2 and CDKN1A genes across a panel of cancer cell lines (each blue dot
represents a cell line, placed according to normalized cell viability change upon gene perturbation). Black lines show the linear regression plot over the cell line
viability values.

B Percent of gene codependencies (i.e., correlations) involving one or two mitochondrial genes as a function of the absolute z-score corresponding to the codependency.
C Patterns of network nodes and edges that constitute an “explanation” for an observed DepMap codependency, including “Direct” (a direct edge between two specific

genes A and B), “Family/Complex” (two genes A and B are part of the same family or complex), and “Parent Link” (where one or both of the specific genes A and B are
related via a parent family/complex they are part of).

D Percent of codependencies/correlations explained using the INDRA network when considering all edges (red) or only edges supported by curated databases, excluding
text mining (blue), with randomly shuffled controls shown.

E Upset plot showing the intersection of explanations for DepMap codependencies provided by three networks: BioGRID interactions, the INDRA network, and
Reactome pathways.

F Upset plot showing the intersection of three types of explanation for DepMap codependencies provided by the INDRA Network, corresponding to explanation
patterns shown in panel (C).

G An example explanation for the codependency between ROCK2 and MPRIP derived from the INDRA network. INDRA provides evidence for a complex in which ROCK
(the protein family of which ROCK2 is a member) binds MPRIP in a three-way complex with PPP1R12A (also called MBS) through the mention shown at the bottom
(extracted from Wang et al, 2009a; Wang et al, 2009b).
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three types of explanatory relationships: (i) direct causal relation-

ships where one gene was reported to regulate, modify or interact

with another, for example, the inhibition of TP53 by MDM2 (Fig 7C,

“Direct”), (ii) information that the two correlated genes were mem-

bers of the same protein family or complex, as indicated by FamPlex

relations (Bachman et al, 2018; Fig 7C, “Family/Complex”), or (iii)

a link between the parent family/complex of a gene and another

gene or its parent family/complex (Fig 7C, “Parent Link”). For the

purpose of this analysis, we did not consider multi-step causal paths

between genes in the network to be explanatory. This is due to the

challenge of ensuring that sequences of edges in the network repre-

sent causally linked biochemical events rather than unrelated asso-

ciations, which would lead to false-positive explanations. Capturing

and representing information about causal transitivity in biological

networks is the subject of ongoing research (Fig 4A, “causal transi-

tivity” in the lower-right quadrant).

To measure the impact of text mining, we derived a smaller,

“database-only” network from the Benchmark Corpus by excluding

edges that were supported only by text mining evidence from the

“full” network. As a control, we permuted the node labels of both

the full and database-only networks and repeated our analysis. We

found that the full network explained a greater proportion of code-

pendencies than the database-only network (22 vs. 11% for code-

pendencies with |z-score| > 6), with similar improvements at all

significance levels (Fig 7D). This improvement is striking consider-

ing the text mining results were drawn from a corpus that consti-

tutes only a fraction of what is currently available in PubMed. We

also found that for either network, stronger codependencies were

more likely to be explainable than weaker ones (Fig 7D),

highlighting that the curated and published mechanistic knowledge

(that is likely to be picked up by INDRA) is generally biased toward

the most robust functional relationships.

To better characterize how INDRA-assembled networks provide

mechanistic context for relationships in DepMap, we compared

codependencies explainable via the full INDRA network to those

explainable via interactions in BioGRID or by co-membership in a

Reactome pathway. Of the 345,077 non-mitochondrial gene pairs

with DepMap codependency correlations above the Benjamini–
Yekutieli significance cutoff, only 21,475, or 6.2%, could be

explained by BioGRID interactions, a common Reactome pathway,

or the INDRA network, highlighting the many potential functional

relationships in DepMap without a literature precedent. The largest

number of explanations were based on co-occurrence in a common

Reactome pathway, the least specific type of explanation; 6,952

codependencies were explainable only via this information (Fig 7E).

The INDRA network accounted for the next-highest number of

unique explanations with 4,819 (Fig 7E). Interestingly, a majority of

these were regulatory relationships mediated by protein families

and complexes, to which the codependent genes belong (Fig 7F,

“Parent Link” explanations). While less stringent than explicit gene–
gene relationships, family-mediated connections provide compelling

explanations for genes commonly described at the family or com-

plex level (Bachman et al, 2018). For example, the strong negative

correlation between MPRIP and ROCK2 (ρ = −0.291) is explained by

multiple text-mined Statements that link MPRIP to the ROCK protein

family (referred to generically as “ROCK” or “Rho kinase”) via their

joint binding to the myosin-binding subunit of the myosin light

chain phosphatase (gene PPP1R12A, Fig 7G; Surks et al, 2003;

Wang et al, 2009b; Nunes et al, 2010).

The remainder of the INDRA-dependent explanations were

derived from Statements involving two specific codependent genes

(Fig 7F, “A− > B”). While these explanations are “direct” in the

sense that two genes are linked by an edge in the INDRA network,

the relationships may not involve physical binding and might there-

fore have intermediaries (a mechanistically indirect connection).

Such indirect mechanisms can be an advantage in many systematic

explanation tasks. For example, the strong correlation between

BRAF and MITF (ρ = 0.456) cannot be explained by a common

Reactome pathway, a physical interaction in BioGRID, or interac-

tions in any of the pathway databases incorporated in the INDRA

network. However, BRAF and MITF are linked by an INDRA net-

work edge derived from 20 text-mined Statements (supported by 59

distinct mentions), which characterize their complex mutual regula-

tory relationship. The Statements correctly capture the evidence that

oncogenic BRAF activates the expression of MITF through the tran-

scription factor BRN2 (Kumar et al, 2014) whereas wild-type BRAF

in melanocytes inhibits MITF expression due to the lack of expres-

sion of BRN2 (Wellbrock et al, 2008). Because INDRA can represent

molecular states on Agents (in this case BRAF vs. its mutated form

BRAF-V600E), these extracted Statements can provide machine-

readable information that differentiates the two distinct contexts.

Finally, we noted that interactions obtained exclusively from text

mining were not restricted to well-characterized or indirect relation-

ships: for example, the INDRA network also incorporates a State-

ment extracted from a single sentence explaining the correlation

between DOCK5 and BCAR1 (better known as p130Cas) as arising

from their joint interaction with the scaffold protein CRK (Frank

Table 6. Number of codependencies detected at a significance cutoff
of P < 0.05 without multiple hypothesis correction or after one of
three methods for multiple hypothesis testing correction (Bonferroni,
Benjamini–Hochberg, and Benjamini–Yekutieli).

No prior

INDRA prior

Total
INDRA
only

Number of comparisons (non-
mitochondrial)

121,778,711 265,874 N/Aa

Correlations with uncorrected
P < 0.05

21,526,511 63,926a N/Aa

Significant corrs after Bonferroni 99,544 4,982 1,836

Significant corrs after Benjamini–
Hochberg

5,025,535 30,127 7,506

Significant corrs after Benjamini–
Yekutieli

972,831 12,812 4,007

Results are shown for a case in which no prior is used and data are analyzed
directly (“No prior”), or when an INDRA prior is used (“INDRA prior/Total”).
The rightmost column shows the number of novel codependencies recovered
exclusively when an INDRA prior was used along with correction for multiple
testing (“INDRA prior/INDRA only”).
aFigures for uncorrected P-values do not apply to the “INDRA prior/INDRA-
only” case because without correction for multiple testing, the prior does not
play a role in determining significance. Figures are shown for the “INDRA
prior/Total” case to establish the number of codependencies with uncorrected
P-values > 0.05 that fall within the scope of the INDRA network; this serves
as an upper bound for the number of correlations determined to be signifi-
cant with the different approaches to multiple testing shown in the bottom
three rows.
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et al, 2017, 5). Despite their robust correlation (ρ = 0.361), DOCK5

and BCAR1/p130Cas have only been co-mentioned in a total of

three publications in PubMed.

Discussion

In this paper, we described a method, implemented in the INDRA

software system, for robust, automated assembly of mechanistic

causal knowledge about biological interactions. The method nor-

malizes information from heterogeneous sources, including both

curated databases and text mining systems, identifies relationships

between Statements, and uses statistical models to estimate the reli-

ability of each Statement based on the compendium of supporting

evidence. The corpus used in this paper (~570,000 articles) focuses

on human gene function and covers only a fraction of the published

biomedical literature (> 30 million articles). Nevertheless, we dem-

onstrate that it is possible to meaningfully extend curated interac-

tion databases and provide explanations for gene dependency

correlations in the Cancer Dependency Map. INDRA enriches

biocuration and data analysis efforts in three ways, (i) by aggregat-

ing and normalizing new, previously uncurated mechanisms

directly from the literature in machine-readable form, (ii) by adding

mechanistic detail (activation, modification, binding, etc.) to generic

PPIs or empirical relationships, and (iii) by supplying supporting

evidence and context from the literature. Others can use INDRA

tools since they are open-source (https://github.com/sorgerlab/

indra) and well-documented (https://indra.readthedocs.io). INDRA

has already been used for diverse knowledge assembly, curation,

and analysis tasks—using custom pipelines similar to the one used

in the current paper—including network-based gene function

enrichment (Ietswaart et al, 2021), causal analysis of viral pathogen-

esis (Zucker et al, 2021), drug target prioritization for acute myeloid

leukemia (Wooten et al, 2021), assembling knowledge about protein

kinases (preprint: Moret et al, 2021), assisting manual biocuration

efforts (Hoyt et al, 2019a; Glavaški & Velicki, 2021; Ostaszewski

et al, 2021), and helping authors capture mechanistic findings in

computable form (Wong et al, 2021).

The approaches to knowledge assembly described here are

related to prior work on the integration of biological databases (Türei

et al, 2016; Rodchenkov et al, 2020; Szklarczyk et al, 2021), assem-

bly of biological knowledge graphs (Himmelstein et al, 2017; pre-

print: Hoyt et al, 2019b), large-scale biomedical event extraction

(Van Landeghem et al, 2011), and estimation of the reliability of indi-

vidual interactions in knowledge graphs (preprint: Neil et al, 2018;

Jia et al, 2019). However, the current work goes beyond the straight-

forward aggregation of interactions from multiple sources by (i) sys-

tematically normalizing named entities, (ii) organizing Statements

by specificity, and (iii) exploiting information about Statement

sources, frequency, and specificity to predict Statement reliability.

Others have introduced innovative methods for using machine read-

ing and curated databases for automated model learning and exten-

sion, while also using INDRA to process reader output (Holtzapple

et al, 2020) and estimate Statement reliability (Ahmed et al, 2021).

However, we believe our work to be the first demonstration of a

method that automatically assembles reliable, non-redundant mech-

anistic knowledge from both curated resources and multiple biomed-

ical text mining systems at scale.

As used in this work INDRA focuses on capturing the types of

information typically represented in biological pathway databases:

post-translational modifications and physical and regulatory interac-

tions among proteins, chemicals, and biological processes. It does

not currently represent genetic interactions, gene–disease relation-

ships, biomarkers, or other types of statistical associations. How-

ever, given suitable data sources and text extraction systems,

INDRA could be used for named entity linking, hierarchical assem-

bly, and reliability assessment for a wide range of other types of

knowledge. Indeed, the core methodology described here has been

used to generate probabilistic causal models from a reading system

that extracts causal relations from open-domain text (Sharp

et al, 2019).

Automatically assembled knowledge bases have many uses in

computational biology beyond the biocuration and functional

genomics use cases we described here. For example, methods

have been described that use pathway information for regulariza-

tion in machine learning (Sokolov et al, 2016), to control false

discovery in hypothesis testing (Babur et al, 2015), and to gener-

ate causal hypotheses from -omics data (Tuncbag et al, 2016;

Dugourd et al, 2021). Most current methods for prior-guided data

analysis require information about mechanisms to be “flattened”

into directed (in some cases signed) networks (as we ourselves

did for DepMap gene codependency analysis). However, INDRA

has the ability to assemble information from multiple sources

while preserving much more detailed information about muta-

tions, modifications, and activity states. This supports the further

development of analytical methods that exploit prior knowledge

that is both broad and mechanistically detailed. INDRA facilitates

this because it assembles information from sources in terms of

knowledge-level assertions rather than model-specific implementa-

tions. Thus, different types of causal models can be generated

from the same assembled knowledge depending on the down-

stream application, including signed directed graphs, Boolean net-

works, or other types of executable models. In our previous

work, we described a method for automatically assembling declar-

ative natural language into detailed ODE-based models of biologi-

cal pathways (Gyori et al, 2017). In principle, the methods

described here also allow mechanistically detailed signaling

models to be initialized from systematically compiled knowledge

bases with a quality suitable for static causal analysis (Gyori

et al, 2021, see https://emmaa.indra.bio). However, manual cura-

tion is generally still required to produce dynamical simulation

models, due to the need to supply reverse rates and guarantee

detailed balance; making this process more efficient is an area of

ongoing research (Gyori & Bachman, 2021).

One of the striking conclusions from this work is that different

reading systems extract different types of information from the

same text corpus. Moreover, even in the case of a single INDRA

Statement, different reading systems extract different mentions from

the same text. This points to the value of using multiple readers in

parallel, something that has not been previously explored, and sug-

gests that direct comparison of reading system errors has the poten-

tial to improve these systems. To make use of multiple readers we

developed an approach for estimating the technical reliability of

Statements based on the number of mentions, the characteristics of

their supporting evidence, and the properties of individual reading

systems. While addressing this purely technical source of
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uncertainty is a prerequisite for the practical use of text-mined

information in downstream applications, addressing additional

types of uncertainty in assembled knowledge and models is a

worthwhile area of future research. In particular, there is a need for

systematic approaches to managing conflicts and contradictions

among assembled Statements (Fig 4A, upper right), which often

take the form of polarity conflicts (“A activates B” vs. “A inhibits

B”). While polarity conflicts can arise due to systematic errors in

machine reading (Noriega-Atala et al, 2019), many represent incon-

sistent reports in the underlying scientific literature. These conflicts

can potentially be addressed by more thorough incorporation of

biological context alongside causal information (Noriega-Atala

et al, 2020), for example, through the use of functional data such as

the DepMap, or potentially by ensemble modeling procedures that

capture polarity uncertainty in downstream analysis. Another con-

cern in the use of text-mined information is the unreliability of

many scientific studies (Baker, 2016). Recent efforts in meta-

scientific analysis have examined features such as journal impact

factors, article citations, and collaboration networks among

researchers to determine whether these can predict the likelihood of

the future replication of a study (Danchev et al, 2019). Large-scale

assembly of causal information from the literature using INDRA has

the potential to facilitate the study of the experimental, computa-

tional, and meta-scientific factors that promote scientific reproduc-

ibility and its absence.

It is interesting to speculate what might be possible were all of

PubMed to be made fully machine readable. The corpus of 570,000

papers used in this study was chosen in part to focus on human

genes and their functions. Because it is not a randomly selected sub-

set of all 30 million PubMed articles, comprehensive machine read-

ing followed by assembly in INDRA is unlikely to generate 60-fold

more mechanistic information than the current study. To obtain a

rough estimate of what could be expected, we determined the

increase in the number of unique Statements and total mentions for

a single gene of interest, BRAF, obtainable by processing all

machine-readable abstracts and full-text articles in PubMed with

two readers, Reach and Sparser. We found that, relative to the

Benchmark Corpus, unique Statements roughly doubled (from

~1,500 to ~3,300), while total mentions tripled (~4,000 to ~12,000)
and the total number of supporting articles quadrupled (~1,000 to

~4,000). These numbers highlight the potential value of applying

knowledge extraction and assembly methods more broadly,

although accomplishing this will require overcoming legal restric-

tions to scale reading the literature (Westergaard et al, 2018), which

extends even to papers in PubMed Central.

The availability of INDRA tools for combining the outputs of

multiple text reading systems, assigning belief scores, and assem-

bling fragmentary information into coherent and useful mechanistic

knowledge has the potential to substantially impact biocuration and

functional genomics. However, substantial technical issues must

still be overcome for this promise to be realized. In particular, addi-

tional work is required to improve the precision and recall of text

reading systems, address issues with grounding multi-component,

misspelled, or ambiguous biological entities, extending Statements

to additional types of mechanisms, and capturing biological context

in a principled manner. INDRA represents a flexible and performa-

tive software environment to undertake this additional research.

Materials and Methods

Reagents and Tools table

Software Reference or source

INDRA https://github.com/sorgerlab/indra

ProtMapper https://github.com/indralab/protmapper

Adeft https://github.com/indralab/adeft

Gilda https://github.com/indralab/gilda

FamPlex https://github.com/sorgerlab/famplex

Reach https://github.com/clulab/reach

Sparser https://github.com/ddmcdonald/sparser

TRIPS/DRUM https://github.com/wdebeaum/drum

RLIMS-P https://research.bioinformatics.udel.edu/rlimsp/

MedScan https://doi.org/10.1093/bioinformatics/btg207

ISI/AMR https://hub.docker.com/r/sahilgar/bigmechisi

powerlaw https://github.com/jeffalstott/powerlaw

emcee https://github.com/dfm/emcee

Methods and Protocols

Article corpus for event extraction
The Entrez gene database was queried with the official gene sym-

bols for all human genes in the HUGO database for MEDLINE arti-

cles curated as having relevance to the function of each gene. The

resulting list of PubMed identifiers (PMIDs) is included in the code

and data associated with the paper at https://github.com/sorgerlab/

indra_assembly_paper. For these PMIDs, we obtained full-text con-

tent when available from three sources: The PubMed Central open

access and author’s manuscript collections, and the Elsevier Text

and Data mining API (https://dev.elsevier.com). For the remaining

PMIDs, we obtained abstracts from PubMed. Table 1 shows the dis-

tribution of text content sources.

Text mining of article corpus
We used multiple text mining systems integrated with INDRA to

process all or part of the corpus of interest described in the previ-

ous section. INDRA implements an input API and processor dedi-

cated to each reading system. Each such processor takes as input

the reading system’s extractions for one or more articles, and

constructs INDRA Statements from these extractions. With the

exception of the ISI/AMR system, each system performs its own

named entity recognition and normalization; consequently, pro-

cessors assign identifiers to Agents based on reader outputs. In

the case of the ISI/AMR system, INDRA’s processor integrates

Gilda (Gyori et al, 2022) to assign identifiers for Agents processed

from the output of the system.

Reach version 1.3.3 was downloaded from https://github.com/

clulab/reach and used to process all text content for the collected

corpus described in the previous section. Reach reading output was

processed into INDRA Statements using the indra.sources.reach

module.
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Sparser was obtained as an executable image from its developers

and was used to process all text content for the collected corpus

described in the previous section. The Sparser source code is avail-

able at https://github.com/ddmcdonald/sparser and the Sparser

executable is available as part of the INDRA Docker image which

can be obtained from https://hub.docker.com/r/labsyspharm/

indra. Sparser reading output was processed into INDRA Statements

using the indra.sources.sparser module.

MedScan reader output for the collected corpus described in the

previous section was obtained from Elsevier and processed into

INDRA Statements using the indra.sources.medscan module.

TRIPS/DRUM was obtained from https://github.com/wdebeaum/

drum and used to process part of the text content for the collected

corpus, as follows. First, we selected all papers for which only an

abstract was available, then selected those papers from which

Reach, Sparser, and MedScan extracted at least one Statement about

any of 227 genes relevant to a key cancer signaling pathway, the

Ras pathway. This resulted in a total of 42,158 abstracts which were

processed with TRIPS/DRUM. The outputs were then processed into

INDRA Statements using the indra.sources.trips module.

RLIMS-P reader output for PubMed abstracts and PubMedCentral

full-text articles was obtained from https://hershey.dbi.udel.edu/

textmining/export/ (accessed June 2019), and then filtered to the

corpus of interest described in the previous section. The outputs

were then processed into INDRA Statements using the indra.sour-

ces.rlimsp module.

ISI/AMR (Docker image available at https://hub.docker.com/r/

sahilgar/bigmechisi) reader output was provided by the system’s crea-

tors for 10,433 articles which were filtered to the corpus of interest

resulting in a total of 1,878 reader outputs. These were then processed

into INDRA Statements using the indra.sources.isi module.

Structured sources
In addition to text mining, we processed multiple pathway data-

bases with INDRA to obtain INDRA Statements.

TRRUST release 4/16/2018 with human transcription factor-

target relationships was obtained from https://www.grnpedia.org/

trrust/data/trrust_rawdata.human.tsv and processed into INDRA

Statements using the indra.sources.trrust module.

Signor content was processed through the Signor web service

(https://signor.uniroma2.it/download_entity.php) in June 2019 and

processed into INDRA Statements using the indra.sources.signor

module.

HPRD content was obtained from http://www.hprd.org/

RELEASE9/HPRD_FLAT_FILES_041310.tar.gz and processed into

INDRA Statements using the indra.sources.hprd module.

BEL content was obtained from the Selventa Large Corpus available

at https://raw.githubusercontent.com/cthoyt/selventa-knowledge/

master/selventa_knowledge/large_corpus.bel and processed using

PyBEL and the indra.sources.bel module into INDRA Statements.

CausalBioNet content was processed from JGF files from http://

causalbionet.com/Content/jgf_bulk_files/Human-2.0.zip and

processed into INDRA Statements using PyBEL and the indra.sour-

ces.bel module.

BioGRID content was obtained from https://downloads.

thebiogrid.org/Download/BioGRID/Release-Archive/BIOGRID-4.2.

192/BIOGRID-ALL-4.2.192.tab3.zip and processed into INDRA State-

ments using the indra.sources.biogrid module.

PhosphoSitePlus content was downloaded from https://www.

phosphosite.org/staticDownloads in June 2019 via the “BioPAX:

Kinase-substrate information” link, in BioPAX format, and

processed into INDRA Statements using the indra.sourecs.biopax

module.

Pathway Commons content was obtained from https://www.

pathwaycommons.org/archives/PC2/v12/PathwayCommons12.

Detailed.BIOPAX.owl.gz and processed using PyBioPAX and the

indra.sources.biopax module into INDRA Statements. To account for

the fact that BioGRID, PhosphoSitePlus, and HPRD content were

obtained separately (and these are also available as part of Pathway

Commons), we filtered out interactions from these sources when

processing Pathway Commons.

The scripts to process each source as described above are avail-

able at: https://github.com/sorgerlab/indra_assembly_paper/blob/

master/run_assembly/process_sources.py.

INDRA statement representation
INDRA aggregates content from reading systems and structured data-

bases as INDRA Statements, a knowledge representation meant to

capture biochemical interactions and regulation. Statements are

implemented as Python classes and can be serialized into a JSON for-

mat (see schema at: https://raw.githubusercontent.com/sorgerlab/

indra/master/indra/resources/statements_schema.json). Each State-

ment has a type (e.g., Complex, Phosphorylation, Inhibition, or

IncreaseAmount; see Table EV1 for a summary of Statement types

obtained from reading systems for the Benchmark Corpus) and takes

one or more Agents as arguments. Agents can represent entities such

as proteins, small molecules, or higher-level processes. Agents can

represent a variety of molecular states important for capturing pro-

tein function: modification state, mutational state, cellular location,

activity, and bound conditions. Some Statement types have addi-

tional arguments such as modification site or residue. Each State-

ment carries a list of Evidence objects. Evidence objects carry

metadata on supporting evidence for the Statement which can

include a mention extracted by a reading system from a given sen-

tence in a publication, or an entry in a structured database. In both

cases, Evidence maintains a reference to the source publication from

which it was extracted. Evidence objects also contain information on

context (disease, cell line, etc.) when available from the source.

The Statement object model is introduced in detail in (Gyori

et al, 2017) and is documented at: https://indra.readthedocs.io/en/

latest/modules/statements.html#indra-statements-indra-statements.

Documentation specific to Agent objects is at: https://indra.

readthedocs.io/en/latest/modules/statements.html#indra.statements.

statements.Agent and Evidence objects at: https://indra.readthedocs.

io/en/latest/modules/statements.html#indra.statements.statements.

Evidence.

Normalization and filtering of INDRA statements
INDRA contains a number of modules that implement normalization

and filtering operations on Statements. These can be put together

into custom assembly pipelines appropriate for a given application.

INDRA exposes the assemble_corpus module which provides a func-

tional interface to these functions, documented at: https://indra.

readthedocs.io/en/latest/modules/tools/index.html#module-indra.

tools.assemble_corpus. Here, we describe the normalization and fil-

tering steps used in the pipeline to assemble the Benchmark Corpus.
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Filtering out hypotheses

Descriptions of mechanisms in the literature are often made hypo-

thetically, that is, rather than asserting that, for example, “A phos-

phorylates B," a sentence might describe “we tested whether A

could phosphorylate B." Reading systems can recognize such differ-

ences in modality and set flags in their output to differentiate such

Statements. These flags are then propagated by INDRA as part of

the Statement representation and can be used to filter Statements.

First, we removed Statements that were supported by mentions

indicative of a hypothesis rather than an assertion (for instance,

including sentences phrased as “we tested whether. . .”). Documen-

tation: https://indra.readthedocs.io/en/latest/modules/tools/index.

html#indra.tools.assemble_corpus.filter_no_hypothesis.

Mapping grounding/disambiguation

INDRA implements a GroundingMapper class that performs a num-

ber of operations to improve and normalize the identifiers associ-

ated with Agents appearing in Statements. When an Agent is

extracted by a reading system, the span of text corresponding to the

entity represented by the Agent is also captured. This allows INDRA

to override identifiers assigned to the Agent originally by a reading

system.

First, the GroundingMapper checks if there is a disambiguation

model made available by Adeft (Steppi et al, 2020) for the text asso-

ciated with the Agent. As of version 0.11.1, Adeft contains machine-

learned disambiguation models for 179 acronyms including “ER,”

“IR,” “CF,” etc. These models take text surrounding the given entity

text (full article text when available, otherwise an abstract) as input

and return scores associated with different possible resolutions of

the acronym. When Adeft is invoked and produces a prediction,

INDRA takes the top-scoring identifier and sets it, overriding prior

identifiers assigned to the Agent. Next, the GroundingMapper

checks if Gilda (Gyori et al, 2022) contains a machine-learned dis-

ambiguation model for the Agent text. Gilda uses an approach simi-

lar to Adeft to train disambiguation models, however, it provides

models not only for acronyms but also other ambiguous synonyms

such as “PDK1” and “p44.” When a Gilda model is available, it is

invoked with surrounding article text as input, and the top identifier

returned by Gilda is set on the Agent. If neither Adeft, nor Gilda con-

tains an adequate disambiguation model, the GroundingMapper

checks if there is an entry in its curated grounding map for the given

Agent text. INDRA’s grounding map is imported from FamPlex

(Bachman et al, 2018) and was curated based on a systematic analy-

sis of the most frequently incorrectly grounding or ungrounded

entity texts by reading systems. The grounding map has around

3,500 entries and includes (but is not limited to) the most frequent

synonyms for protein families and complexes, for example “Erk”

and “NF-kappaB". The grounding map also contains entries for

other entities such as mapping “cPARP” to the PARP1 gene. An

evaluation of the improvement attributable to these mappings when

overriding groundings from reading systems was done in Bachman

et al (2018).

Once all grounding overrides have been done, the Grounding-

Mapper performs identifier normalization on Agents using the

INDRA ontology graph. The INDRA ontology graph combines

entries across multiple ontologies and represents each entry as a

graph node with a set of properties (namespace, identifier, stan-

dard name). There are three types of edges in the graph: xref

(cross-reference meaning that the source node and the target node,

often from different namespaces, are equivalent), isa (the source

node is one of a set of entities represented by the parent node),

and partof (the source node is part of a complex represented by the

parent node). Each INDRA Agent has zero or more namespace/

identifier pairs associated with it which constitute its grounding.

When standardizing the grounding of INDRA Agents, the xref

edges of the ontology graph are traversed following all directed

paths starting from each available grounding for the Agent. The

namespaces and identifiers of nodes visited along these paths are

then added as grounding for the Agent. Finally, a standardized

name is chosen for the Agent based on its canonical identifier. Doc-

umentation: https://indra.readthedocs.io/en/latest/modules/

preassembler/grounding_mapper.html.

Filtering to grounded statements

Each Statement has one or more Agent arguments, and an Agent is

ungrounded if it does not have any identifiers associated with it

beyond a text name. This filter removes and Statements that have

any ungrounded Agents as arguments. Documentation: https://

indra.readthedocs.io/en/latest/modules/tools/index.html#indra.

tools.assemble_corpus.filter_grounded_only.

Filtering to genes

This filter checks each Statement’s Agent arguments and determines

whether each Agent represents a gene or protein (based on whether

it contains an HGNC, UniProt, or FamPlex identifier). Statements

that contain any Agents that are not genes are removed.

Filtering to human

This filter checks each Statement’s Agent arguments and determines

whether each Agent that represents a gene is a human or non-

human gene. Statements that contain any Agents representing non-

human genes are removed.

Normalizing sequence positions and filtering out non-canonical

positions

Statements can refer to sequence residue positions on proteins in

two ways: (i) via Agent arguments that have modification site con-

ditions or (ii) directly, if the Statement is of a type that references a

residue and position such as Phosphorylation Statements. Asser-

tions in literature as well as curated pathway databases often refer

to protein site positions using non-canonical position numbering,

that is, numbering that does not match the reference sequence of

the given protein. To normalize across these variants, INDRA uses

the ProtMapper (preprint: Bachman et al, 2022) which draws on

UniProt (The UniProt Consortium, 2019) for reference sequence

data for proteins and PhosphoSitePlus (Hornbeck et al, 2012) for

data on known phosphorylation site positions. The ProtMapper

incorporates a manually curated site position map and applies a

number of automated mapping rules that account for frequent pat-

terns of position variations. Based on the results of mapping, the

Agent modification condition residue positions or the Statements

residue position argument is overwritten. ProtMapper also reports if

it detects a position that does not match the reference sequence but

cannot map it to a canonical position. INDRA uses this information

to filter out Statements that refer to any such sequence positions

which are usually a sign of reading errors.
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Procedure for identifying duplicates and refinements
When determining whether two Statements are duplicates, we

require that (i) the two Statements’ types are the same, (ii) all the

Agent arguments of the two Statements are matching in their canoni-

cal grounding; this is determined using a built-in (but configurable)

priority order of namespaces to choose a single canonical grounding

for an Agent, or, if an Agent has no groundings available, its name is

used as canonical grounding, (iii) all states (activity, modifications,

bound conditions, location, mutations) of the matching Agents of the

two Statements are equivalent, and (iv) all additional Statement

arguments are equivalent (e.g., residue and position for a Modifica-

tion Statement). To avoid making pairwise comparisons, we con-

struct an equivalence key from properties (i–iv) needed to determine

equivalence for each individual Statement, and then use a hash map

data structure to group Statements efficiently by equivalence key.

Groups of Statements having the same equivalence key are collapsed

into a single Statement and their Evidences are concatenated.

For finding refinements among Statements, we make use of the

INDRA ontology graph’s is a and part of edges. For determining a

refinement, we require that the two Statements have the same type,

and that one Statement is a refinement of the other with respect to

at least one of the properties (ii–iv) described above, and that the

other Statement does not refine the first one based on any of these

properties. In other words, if one Statement is more specific than

the other according to one property but less specific according to

another property, there is no refinement relationship between them

at the Statement level.

Statement curation
In this paper, we created a dataset consisting of 1,689 curated State-

ments with 5,386 mentions for analysis of reader errors and to train and

evaluate belief models. The full Curated Corpus dataset (which we call

the Extended Multi-reader Curation Dataset below) was built up through

a process of reader-specific stratified curation to create the Reader-

specific Curation Dataset and the Multi-reader Curation Dataset which

were used for some of the intermediate results, as described below.

Reader-specific curation dataset

Random samples of Statements were drawn with replacements from

the Benchmark Corpus for curation, stratified by reader and number

of mentions. For each reader, a sample of Statements was taken with

different numbers of mentions from that reader, starting with one

mention and continuing up to 10 mentions. Statements were curated

by authors JAB and BMG by evaluating mentions from the given

reader to determine whether the Statement, as extracted, was fully

supported by the text from the mention. In many cases (e.g., ambigu-

ous grounding) this required inspection of the context of the source

document. From the perspective of a single reader (i.e., when fitting

reader-specific models), a Statement was considered to be completely

curated if all the mentions for that given reader were curated. Given

correctness curations for each mention supporting a Statement, the

Statement was determined to be overall correct if it was supported by

at least one correctly extracted mention. The number of fully curated

Statements by reader and mention count are listed in Table 2, rows

marked “Complete” (note that counts in the table reflect sampled

instances of Statements, in some cases the same Statement having

been sampled multiple times). When fitting models at the mention

level (Figs 4D and EV3, Table 3), only these complete curations are

used. When showing the empirical trend of correctness at different

mention counts for Reach, Sparser, and MedScan (Fig 4B), we include

“Incomplete” curations (Table 2 “Incomplete”) where if at least one

correctly extracted mention was identified (even if not all mentions

were explicitly curated), it was sufficient to establish the overall cor-

rectness of the Statement. Similarly, for Statements where all men-

tions in a manually reviewed subset were incorrect, the assumption

was made that this subset implied the overall incorrectness of the

Statement. This was justified by the fact that overall incorrectness

could generally be inferred from patterns of systematic errors (e.g.,

misgrounding) evident in the reviewed mentions.

Multi-reader curation dataset

For assessing multi-reader overlap and training multi-reader belief

models (Figs 5 and EV4), we used the union of curations for all

readers from the Reader-specific Curation Dataset, allowing for

incomplete mention curations as described above.

Curated corpus (extended multi-reader curation dataset)

In the course of the analysis of the Benchmark Corpus, additional

Statements were curated to increase coverage of PPIs, particularly

Complex and Phosphorylation Statements. These Statements were

drawn from the Benchmark Corpus but were not stratified by the

reader or mention count. This set was used for multi-reader model

training and analysis for Table EV2 as well as the applications

presented in Figs 6 and 7. The resulting dataset included 1,800 curated

Statements with a total of 5,709 unique curated mentions (6,022 total

curated mentions with some mentions curated more than once by dif-

ferent curators). The list of curations is available as a resource file at

https://github.com/sorgerlab/indra_assembly_paper/blob/master/

data/curation/indra_assembly_curations.json and on Zenodo.

Binomial, beta-binomial, and INDRA Belief models of Statement
reliability
The INDRA belief model

The “INDRA belief model” represents the probability of a Statement

being correct as the result of a two-step random process (Fig 4C).

The first process considers the probability that a Statement is drawn

from the pool of Statements that are always incorrect, regardless of

the number of mentions they have. This probability is based on the

systematic error parameter for each reading system. If the Statement

is not from this pool, then its reliability is alternatively modeled to

follow a binomial distribution assuming a particular random error

rate for that source. Like the beta-binomial model, the INDRA belief

model captures the plateau in Statement reliability (Fig 4D), though

the predicted distributions for mention correctness do not corre-

spond well to the empirical U-shaped distribution (Fig EV3A).

The INDRA Belief Model is calculated based on the Evidence

objects belonging to a Statement, each Evidence corresponding to a

mention produced by a source such as a text mining system or a

pathway database integrated with INDRA. In the simple case of a

single knowledge source, we define the belief of a Statement with n

Evidences as

1� esyst þ enrand 1�esyst
� �� �

where esyst and erand are the systematic and random error parame-

ters for the given source, respectively.
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This model can also be generalized to multiple sources as fol-

lows. Assume there are a total of K known sources

S ¼ S1; S2; . . . ; SKf g, each associated with a random and system-

atic error rate. For source Sk, e will denote the systematic error

rate, and e the random error rate. Given a set of N Evidences for

Statement T ET ¼ ET;1; . . . ; ET;N

� �
, with Source Eð Þ∈ S correspon-

ding to the source of evidence of ET;i, we introduce NT;k, the

number of Evidences for Statement T from source Sk:

NT;k ¼ ∑
N

i¼1

I Source ET;i

� �
; Sk

� �

where I(X, Y) stands for the indicator function which evaluates to

1 if X = Y, and 0 otherwise. We then define the belief of Statement

T as follows:

B Tð Þ ¼ 1�
YK
k¼1

�
ek;syst �min 1;NT;k

� �
þe

NT;k

k;rand 1�ek;syst �min 1;NT;K

� �� ��
:

For the calculation of beliefs for a Statement that is refined by

other Statements, we introduce the extended Evidence set denoted

as E0 Tð Þ which is defined as

E0
T ¼

[
ET ;

[
X ∈ PT

E0
X

 !
:

Here, X ∈PT if and only if X refines T. In other words, we

take the union of all Evidences for the Statement itself and all

the Statements by which it is refined, recursively. We then apply

the equation for NT,k and B(T) to E0 Tð Þ instead of E(T) in the

obvious way.

When the quality of fit of the three different models was com-

pared using maximum likelihood parameter values, the original

belief model performed very slightly better than the beta-binomial

model for both the Reach and Sparser reading systems (Table 3).

The Binomial and Beta-binomial belief models

The binomial model treats every individual mention as a

Bernoulli trial, where the probability of a single reading system

being jointly incorrect for all sentences decreases according to a

binomial distribution (e.g., the probability of incorrectly proces-

sing 10 sentences is analogous to flipping a coin 10 times and

getting 10 tails). The binomial model substantially overestimates

the reliability of Statements with three or more Evidences from

Reach, due to the fact that it does not account for systematic

errors (Fig 4D). In addition, the binomial model predicts that for

a Statement with n Evidences, the mode of the distribution of the

number of correct Evidences is close to n/2 (bell-shaped red

curves in Fig EV3B), whereas the curation data shows that Evi-

dences are more likely to be either all incorrect (zero bars) or all

correct (right-most bars).

The binomial belief model has a single random error rate param-

eter erand for each source, and—making use of definitions from the

previous section—the belief for a Statement T with Evidences from

K sources can be calculated as

B Tð Þ ¼ 1�
YK
k¼1

e
NT;k

k;rand:

The beta-binomial model is based on a binomial model where

the probability of each mention being correctly extracted is itself

drawn from a beta distribution (Wilcox, 1979). The beta-binomial

model better captures the tendency of Statement reliability to pla-

teau below 100% (Fig 4D) as well as the U-shaped distributions of

the numbers of underlying correct evidence (Fig EV3C).

The beta-binomial belief model has two parameters for each

source, α and β, and for a Statement with Evidences from K sources,

it can be calculated as

B Tð Þ ¼ 1�
YK
k¼1

Beta αk;NT;k þ βk
� �
Beta αk; βkð Þ :

where Beta is the standard beta-function.

Parameter estimation for INDRA belief, binomial, and Beta-Binomial

models

Parameter estimation for the belief models was performed by affine-

invariant MCMC as implemented by the emcee software package

(Foreman-Mackey et al, 2013). The likelihood function for each

model was derived from the functions B(T) as described above.

MCMC was performed with 100 walkers running for 100 burn-in

steps followed by 100 sampling steps. Python code implementing

the MCMC runs is in the GitHub repository for the paper in

modules bioexp/curation/process_curations.py and bioexp/cura-

tion/model_fits.py.

Machine-learned models of statement reliability
Model types and evaluation

Classification models evaluated for their ability to predict Statement

correctness were obtained from the Python package sklearn. Evalu-

ated models included Support Vector Classification (sklearn.svm.SVC

with probability estimation enabled), k-Nearest Neighbors (sklearn.-

neighbors.KNeighborsClassifier, used with default parameters), logistic

regression with log-transformed mention counts (sklearn.linear_mo-

del.LogisticRegression), and Random Forests (sklearn.ensemble.Ran-

domForestClassifier with n_estimators = 2000 and max_depth = 13,

obtained by manual hyper-parameter optimization). Model perfor-

mance was evaluated by 10-fold cross-validation; each fold was used

to calculate the AUPRC for the held-out data. Values in Table EV2

reflect the mean AUPRC values across the 10 folds.

Encoding of features for Statement belief prediction

Reader mention counts. Mention counts for each reader were

included as distinct features (columns) for each Statement. When

incorporating evidence from more specific Statements (“specific evi-

dences” in Table EV2) these were added in a separate set of col-

umns for each reader; a Statement could thus have two columns

with Reach mention counts, one for mentions directly supporting

the Statement, and another for mentions obtained from more spe-

cific Statements.

Number of unique PMIDs. Unique PMIDs supporting each State-

ment were obtained from its mentions and added as a single feature.

When incorporating evidence from more specific Statements, an
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additional feature was added for the number of unique PMIDs

supporting these Statements.

Statement type. Statement types were one-hot encoded (one binary

feature for each type, Activation, Inhibition, Phosphorylation, etc.)

Average evidence length. Mention texts directly supporting the

Statement were split by whitespace; the number of resulting

substrings were counted and averaged across all mentions and

included as a feature.

“Promoter” frequency. The number of mention texts containing

the term “promoter” were counted and the resulting value was

divided by the total number of mentions to obtain a frequency of

the occurrence of this keyword.

Data availability

INDRA is available at https://github.com/sorgerlab/indra under an

open-source BSD 2-clause license. The source code used to generate

results in this paper is available at https://github.com/sorgerlab/

indra_assembly_paper. The INDRA Benchmark Corpus and the

Curation Corpus used to train belief models are available on Zenodo

at https://doi.org/10.5281/zenodo.7559353.

Expanded View for this article is available online.
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